Zhou, K., Yang, S., Chen, Z., et al. (2014). Optimal load distribution model of microgrid in the smart grid environment. Renewable and Sustainable Energy Reviews, 35, 304–310. https://doi.org/10.1016/j.rser.2014.04.028.
Article
Google Scholar
Yu, Z., Gatsis, S. N., & Giannakis, G. B. (2013). Robust energy Management for Microgrids with High-Penetration Renewables. IEEE Transactions on Sustainable Energy, 4(4), 944–953. https://doi.org/10.1109/TSTE.2013.2255135.
Article
Google Scholar
Nehrir, M. H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., Miao, Z., & Salameh, Z. (2011). A review of hybrid renewable/alternative energy Systems for Electric Power Generation: Configurations, control, and applications. IEEE Transactions on Sustainable Energy, 2(4), 392–403. https://doi.org/10.1109/TSTE.2011.2157540.
Article
Google Scholar
Ahmad Khan, A., Naeem, M., Iqbal, M., et al. (2016). A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids. Renewable and Sustainable Energy Reviews, 58, 1664–1683. https://doi.org/10.1016/j.rser.2015.12.259.
Article
Google Scholar
Jiang, Q., Xue, M., & Geng, G. (2013). Energy management of microgrid in grid-connected and stand-alone modes. IEEE Transactions on Power Apparatus and Systems, 28(3), 3380–3389. https://doi.org/10.1109/TPWRS.2013.2244104.
Article
Google Scholar
Joseba Jimeno, Y., Anduaga, J., Oyarzabal, J., & de Muro, A. G. (2011). Architecture of a microgrid energy management system. European Transactions on Electrical Power, 21, 1142–1158. https://doi.org/10.1002/etep.443.
Article
Google Scholar
De Santis, E., Rizzi, A., & Sadeghian, A. (2017). Hierarchical genetic optimization of a fuzzy logic system for energy flows management in microgrids. Applied Soft Computing, 60, 135–149. https://doi.org/10.1016/j.asoc.2017.05.059.
Article
Google Scholar
Marzband, M., Parhizi, N., & Adabi, J. (2016). Optimal energy management for stand-alone microgrids based on multi-period imperialist competition algorithm considering uncertainties: Experimental validation. International Transactions Electric Energy Systems, 26, 1358–1372. https://doi.org/10.1002/etep.2154.
Article
Google Scholar
Cominesi, S. R., Farina, M., Giulioni, L., et al. (2018). A two-layer stochastic model predictive control scheme for microgrids. IEEE Transactions on Control Systems Technology, 26(1), 1–13. https://doi.org/10.1109/TCST.2017.2657606.
Article
Google Scholar
Guo, Y., & Zhao, C. (2018). Islanding-aware robust energy management for microgrids. IEEE Transactions on Smart Grid, 9(2), 1301–1309. https://doi.org/10.1109/TSG.2016.2585092.
Article
Google Scholar
Hu, W., Wang, P., & Gooi, H. B. (2018). Toward optimal energy management of microgrids via robust two-stage optimization. IEEE Transactions on Smart Grid, 9(2), 1161–1174. https://doi.org/10.1109/TSG.2016.2580575.
Article
Google Scholar
Liu, T., Tan, X., Sun, B., et al. (2018). Energy management of cooperative microgrids: A distributed optimization approach. International Journal of Electrical Power & Energy Systems, 96, 335–346. https://doi.org/10.1016/j.ijepes.2017.10.021.
Article
Google Scholar
Oliveira, D. Q., Zambroni de Souza, A. C., Santos, M. V., et al. (2017). A fuzzy-based approach for microgrids islanded operation. Electric Power Systems Research, 149, 178–189. https://doi.org/10.1016/j.epsr.2017.04.019.
Article
Google Scholar
Sarshar, J., Moosapour, S. S., & Joorabian, M. (2017). Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting. Energy, 139, 680–693. https://doi.org/10.1016/j.energy.2017.07.138.
Article
Google Scholar
Wang, L., Li, Q., Ding, R., et al. (2017). Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach. Energy, 130, 1–14. https://doi.org/10.1016/j.energy.2017.04.115.
Article
Google Scholar
Jirdehi, M. A., Tabar, V. S., Hemmati, R., et al. (2017). Multi objective stochastic microgrid scheduling incorporating dynamic voltage restorer. International Journal of Electrical Power & Energy Systems, 93, 316–327. https://doi.org/10.1016/j.ijepes.2017.06.010.
Article
Google Scholar
Li, X., Deb, K., & Fang, Y. (2017). A derived heuristics based multi-objective optimization procedure for micro-grid scheduling. Engineering Optimization, 49(6), 1078–1096. https://doi.org/10.1080/0305215X.2016.1218864.
Article
MathSciNet
Google Scholar
Tabar, V. S., Jirdehi, M. A., & Hemmati, R. (2017). Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option. Energy, 118, 827–839. https://doi.org/10.1016/j.energy.2016.10.113.
Article
Google Scholar
Farzin, H., Fotuhi-Firuzabad, M., & Moeini-Aghtaie, M. (2017). A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids. IEEE Transactions on Smart Grid, 8(1), 117–127. https://doi.org/10.1109/TSG.2016.2598678.
Article
Google Scholar
Hamidi, A., Nazarpour, D., & Golshannavaz, S. (2018). Multiobjective scheduling of microgrids to harvest higher photovoltaic energy. IEEE Transactions on Industrial Informatics, 14(1), 47–57. https://doi.org/10.1109/TII.2017.2717906.
Article
Google Scholar
Riva Sanseverino, E., Buono, L., Di Silvestre, M. L., et al. (2017). A distributed minimum losses optimal power flow for islanded microgrids. Electric Power Systems Research, 152, 271–283. https://doi.org/10.1016/j.epsr.2017.07.014.
Article
Google Scholar
Anglani, N., Oriti, G., & Colombini, M. (2017). Optimized energy management system to reduce fuel consumption in remote military microgrids. IEEE Transactions on Industry Applications, 53(6), 5777–5785. https://doi.org/10.1109/TIA.2017.2734045.
Article
Google Scholar
Arcos-Aviles, D., Pascual, J., Marroyo, L., et al. (2018). Fuzzy logic-based energy management system design for residential grid-connected microgrids. IEEE Transactions on Smart Grid, 9(2), 530–543. https://doi.org/10.1109/TSG.2016.2555245.
Article
Google Scholar
Carpinelli, G., Mottola, F., Proto, D., et al. (2017). A multi-objective approach for microgrid scheduling. IEEE Transactions on Smart Grid, 8(5), 2109–2118. https://doi.org/10.1109/TSG.2016.2516256.
Article
Google Scholar
Zheng, Y., Li, S., & Tan, R. (2018). Distributed model predictive control for on-connected microgrid power management. IEEE Transactions on Control Systems Technology, 26(3), 1028–1039. https://doi.org/10.1109/TCST.2017.2692739.
Article
Google Scholar
Li, J., Liu, Y., & Wu, L. (2018). Optimal operation for community-based multi-party microgrid in grid-connected and islanded modes. IEEE Transactions on Smart Grid, 9(2), 756–765. https://doi.org/10.1109/TSG.2016.2564645.
Article
Google Scholar
Parisio, A., Wiezorek, C., Kyntäjä, T., et al. (2017). Cooperative MPC-based energy management for networked microgrids. IEEE Transactions on Smart Grid, 8(6), 3066–3074. https://doi.org/10.1109/TSG.2017.2726941.
Article
Google Scholar
Zakariazadeh, A., Jadid, S., & Siano, P. (2014). Smart microgrid energy and reserve scheduling with demand response using stochastic optimization. International Journal of Electrical Power & Energy Systems, 63, 523–533. https://doi.org/10.1016/j.ijepes.2014.06.037.
Article
Google Scholar
Kou, P., Liang, D., & Gao, L. (2018). Stochastic energy scheduling in microgrids considering the uncertainties in both supply and demand. IEEE Systems Journal, 12(3), 2589–2600. https://doi.org/10.1109/JSYST.2016.2614723.
Article
Google Scholar
Almada, J. B., Leão, R. P. S., Sampaio, R. F., et al. (2016). A centralized and heuristic approach for energy management of an AC microgrid. Renewable and Sustainable Energy Reviews, 60, 1396–1404. https://doi.org/10.1016/j.rser.2016.03.002.
Article
Google Scholar
Liu, J., Chen, H., Zhang, W., et al. (2017). Energy management problems under uncertainties for grid-connected microgrids: A chance constrained programming approach. IEEE Transactions on Smart Grid, 8(6), 2585–2596. https://doi.org/10.1109/TSG.2016.2531004.
Article
Google Scholar
Dou, C., An, X., Dong, Y., & Li, F. (2017). Two-level decentralized optimization power dispatch control strategies for an islanded microgrid without communication network. International Transactions Electric Energy Systems, 27(1), 1–12. https://doi.org/10.1002/etep.2244.
Article
Google Scholar
Li, X., Dong, H., & Lai, X. (2013). Battery energy Storage Station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Transactions on Sustainable Energy, 4(2), 464–473. https://doi.org/10.1109/TSTE.2013.2247428.
Article
Google Scholar
Zhou, X., Ai, Q., & Wang, H. (2018). A distributed dispatch method for microgrid cluster considering demand response. International Transactions on Electrical Energy Systems, 28(12), 1–24. https://doi.org/10.1002/etep.2634.
Article
Google Scholar
Yi, Z., Xu, Y., Gu, W., & Wu, W. (2019). A multi-time-scale economic scheduling strategy for virtual power plant based on deferrable loads aggregation and disaggregation. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2019.2924936.
Lamadrid, A. J., Muñoz-Alvarez, D., Murillo-Sánchez, C. E., Zimmerman, R. D., Shin, H., & Thomas, R. J. (2019). Using the MATPOWER optimal scheduling tool to test power system operation methodologies under uncertainty. IEEE Transactions on Sustainable Energy, 10(3), 1280–1289. https://doi.org/10.1109/TSTE.2018.2865454.
Article
Google Scholar
Liu, N., Wang, J., & Wang, L. (2019). Hybrid energy sharing for multiple microgrids in an integrated heat–electricity energy system. IEEE Transactions on Sustainable Energy, 10(3), 1139–1151. https://doi.org/10.1109/TSTE.2018.2861986.
Article
Google Scholar
Maulik, A., & Das, D. (2019). Optimal power dispatch considering load and renewable generation uncertainties in an AC-DC hybrid microgrid. IET Generation Transmission and Distribution, 13(7), 1164–1176. https://doi.org/10.1049/iet-gtd.2018.6502.
Article
Google Scholar
Abniki, H. (2018). Seyed Masoud Taghvaei, Seyed Mohsen Mohammadi Hosseininejad. Optimal energy management of community microgrids: A risk -based multi - criteria approach. International Transactions on Electrical Energy Systems, 28(12), 1–16. https://doi.org/10.1002/etep.2641.
Article
Google Scholar
Conte, F., D’Agostino, F., Pongiglione, P., Saviozzi, M., & Silvestro, F. (2019). Mixed-integer algorithm for optimal dispatch of integrated PV-storage systems. IEEE Transactions on Industry Applications, 55(1), 238–247. https://doi.org/10.1109/TIA.2018.2870072.
Article
Google Scholar
Yang, L., Fan, X., Cai, Z., & Bing, Y. (2018). Optimal active power dispatching of microgrid and DistributionNetwork based on model predictive control. Tsinghua Science and Technology, 23(3), 266–276. https://doi.org/10.26599/TST.2018.9010083.
Article
Google Scholar
Yang, F., Feng, X., & Li, Z. (2019). Advanced microgrid energy management system for future sustainable and resilient power grid. IEEE Transactions on Industry Applications, 55(6), 7251–7260. https://doi.org/10.1109/TIA.2019.2912133.
Article
Google Scholar
Shuai, H., Fang, J., Ai, X., Tang, Y., Wen, J., & He, H. (2019). Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming. IEEE Transactions on Smart Grid, 10(3), 2440–2452. https://doi.org/10.1109/TSG.2018.2798039.
Article
Google Scholar
Garcia-Torres, F., Bordons, C., & Ridao, M. A. (2019). Optimal economic schedule for a network of microgrids with hybrid energy storage system using distributed model predictive control. IEEE Transactions on Industrial Electronics, 66(3), 1919–1929. https://doi.org/10.1109/TIE.2018.2826476.
Article
Google Scholar
Paul, T. G., Hossain, S. J., Ghosh, S., Mandal, P., & Kamalasadan, S. (2018). A quadratic programming based optimal power and battery dispatch for grid-connected microgrid. IEEE Transactions on Industry Applications, 54(2), 1793–1805. https://doi.org/10.1109/TIA.2017.2782671.
Article
Google Scholar
Sachs, J., & Sawodny, O. (2016). A two-stage model predictive control strategy for economic diesel-PV-Battery Island microgrid operation in rural areas. IEEE Transactions on Sustainable Energy, 7(3), 903–913. https://doi.org/10.1109/TSTE.2015.2509031.
Article
Google Scholar
Combe, M., Mahmoudi, A., Haque, M. H., & Khezri, R. (2019). Cost-effective sizing of an AC mini-grid hybrid power system for a remote area in South Australia. IET Generation Transmission and Distribution, 13(2), 277–287. https://doi.org/10.1049/iet-gtd.2018.5657.
Article
Google Scholar
Nejabatkhah, F., Li, Y. W., Nassif, A. B., & Kang, T. (2018). Optimal design and operation of a remote hybrid microgrid. CPSS Transactions on Power Electronics and Applications, 3(1), 3–13. https://doi.org/10.24295/CPSSTPEA.2018.00001.
Article
Google Scholar
Zhao, B., Qiu, H., Qin, R., Zhang, X., Gu, W., & Wang, C. (2018). Robust optimal dispatch of AC/DC hybrid microgrids considering generation and load uncertainties and energy storage loss. IEEE Transactions on Power Apparatus and Systems, 33(6), 5945–5957. https://doi.org/10.1109/TPWRS.2018.2835464.
Article
Google Scholar
Alharbi, H., & Bhattacharya, K. (2018). Stochastic optimal planning of battery energy storage Systems for Isolated Microgrids. IEEE Transactions on Sustainable Energy, 9(1), 211–227. https://doi.org/10.1109/TSTE.2017.2724514.
Article
Google Scholar
Lara, J. D., Olivares, D. E., & Cañizares, C. A. (2019). Robust energy Management of Isolated Microgrids. IEEE Systems Journal, 13(1), 680–691. https://doi.org/10.1109/JSYST.2018.2828838.
Article
Google Scholar
Li, Y., Wang, P., Gooi, H. B., Ye, J., & Wu, L. (2019). Multi-objective optimal dispatch of microgrid under uncertainties via interval optimization. IEEE Transactions on Smart Grid, 10(2), 2046–2058. https://doi.org/10.1109/TSG.2017.2787790.
Article
Google Scholar
Yang, L., Yang, Z., Zhao, D., Lei, H., Cui, B., & Li, S. (2019). Incorporating energy storage and user experience in isolated microgrid dispatch using a multi-objective model. IET Renewable Power Generation, 13(6), 973–981. https://doi.org/10.1049/iet-rpg.2018.5862.
Article
Google Scholar
Yang, L., Member, Z. Y., Li, G., Zhao, D., & Tian, W. (2019). Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties. IEEE Transactions on Industrial Electronics, 66(2), 1565–1575. https://doi.org/10.1109/TIE.2018.2840498.
Article
Google Scholar
Chaouachi, A., Kamel, R. M., Andoulsi, R., et al. (2013). Multiobjective intelligent energy management for a microgrid. IEEE Transactions on Industrial Electronics, 60(4), 1688–1699. https://doi.org/10.1109/TIE.2012.2188873.
Article
Google Scholar
Maknouninejad, A., & Qu, Z. (2014). Realizing unified microgrid voltage profile and loss minimization: A cooperative distributed optimization and control approach. IEEE Transactions on Smart Grid, 5(4), 1621–1630. https://doi.org/10.1109/TSG.2014.2308541.
Article
Google Scholar