Bo, Z., Shaojie, O., Jianhua, Z., Hui, S., Geng, W., & Ming, Z. (2015). An analysis of previous blackouts in the world: Lessons for China's power industry. *Renew Sust Energ Rev, 42*, 1151–1163.

Article
Google Scholar

Vournas, D., & Manos, A. (2001). Emergency tap-blocking to prevent voltage collapse. Porto, Portugal: In IEEE Power Tech. Conf.

Otomega, B., Sermanson, V., & Van Cutsem, T. (2003). Reverse-logic controlof load tap changers in emergency voltage conditions. Bologna, Italy: In IEEE Power Tech. Conf.

Vournas, C., & Karystianos, M. (2004). Load tap changers in emergency and preventive voltage stability control. *IEEE Trans Power Syst, 19*(1), 492–498.

Article
Google Scholar

Barboza, L., Lerm, A., & Salgado, R. (2005). Load shedding – an efficient use of LTC transformers. In 15th Power System Computation Conference (PSCC 2005 LIEGE), Liège, Belgium (pp. 289-295).

Ashwani Kumar, S., Srivastava, S., & Singh, A. (2004). Zonal congestion management approach using real and reactive power rescheduling. *IEEE Trans Power Syst, 19*(1), 554–562.

Article
Google Scholar

Talukdar, B., Sinha, A., & Mukhopadhyay, S. (2005). A computationally simple method for cost-efficient generation rescheduling and load shedding for congestion management. *Int. J. Electr Power Energy Syst, 77*, 379–388.

Article
Google Scholar

Yesuratnam, G., & Thukaram, D. (2007). Congestion management in open access based on relative electrical distances using voltage stability criteria. *Elect Power Syst Res, 77*, 1608–1618.

Article
Google Scholar

Dutta, S., & Singh, S. (2008). Optimal rescheduling of generator for congestion management based on particle swarm optimization. *IEEE Trans Power Syst, 23*(4), 1560–1569.

Article
Google Scholar

Chakrabarti, S., & Jeyasurya, B. (2008). Generation rescheduling using ANN-based computation of parameter sensitivities of the voltage stability margin. *Eng Appl Artif Intell, 21*(8), 1164–1169.

Article
Google Scholar

Raouf, H., & Kalantar, M. (2009). Reactive power rescheduling with generator ranking for voltage stability improvement. *Energy Convers Manag, 50*(4), 1129–1135.

Article
Google Scholar

Rajalakshmy, S., & Jasmy, P. (2015). Voltage stability by reactive power rescheduling using PSO algorithm. *Proc Comput Sci, 46*, 1377–1384.

Article
Google Scholar

Sumit, V., & Vivekananda, M. (2016). Optimal real power rescheduling of generators for congestion management using a novel ant lion optimiser. *IET Generation, Transm Distrib, 10*(10), 2548–2561.

Article
Google Scholar

Sadhan, G., Arup, G., Prashant, T., & Subhasish, D. (2016). Rescheduling of real power for congestion management with integration of pumped storage hydro unit using firefly algorithm. *Electr Power Energy Syst, 83*, 434–442.

Article
Google Scholar

Jeslin, J., Drusila, P., Venkatesh, S., & Charles, R. (2016). Energy management by generator rescheduling in congestive deregulated power system. *Appl Energy, 171*, 357–371.

Article
Google Scholar

Laghari, J., Mokhlis, H., Bakar, A., & Hasmaini, M. (2013). Application of computational intelligence techniques for load shedding in power systems: A review. *Energy Convers Manag, 75*, 130–140.

Article
Google Scholar

Ardiaty, A., Yang, Z., Muhammad, B., & Marcus, G. (2013). Under voltage load shedding in power systems with wind turbine-driven doubly fed induction generators. *Electr Power Syst Res, 96*, 91–100.

Article
Google Scholar

Tang, J., Liu, J., Ponci, F., & Monti, A. (2013). Adaptive load shedding based on combined frequency and voltage stability assessment using synchrophasor measurements. *IEEE Trans Power Syst, 28*, 2035–2047.

Article
Google Scholar

Mousa, M., Maziar, M., Mudathir, F., & Ghazal, K. (2016). Adaptive load shedding scheme for frequency stability enhancement in microgrids. *Electr Power Syst Res, 140*, 78–86.

Article
Google Scholar

Hsu, C., Kang, M., & Chen, C. (2005). Design of adaptive load shedding by artificial neural networks. *IET Gener Transm Dis, 15*(2), 415–421.

Article
Google Scholar

Hooshmand, R., & Moazzami, M. (2012). Optimal design of adaptive under frequency load shedding using artificial neural networks in isolated power system. *Electr Power Energy Syst, 42*, 220–228.

Article
Google Scholar

Haidar, A., Mohamed, A., Al-Dabbagh, M., & Hussain, A. (2008). Vulnerability assessment and control of large-scale interconnected power systems usingneural networks and neuro-fuzzy techniques. In 2008 Australasian Universities Power Engineering Conference. Sydney, Australia.

Haidar, A., Mohamed, A., & Hussain, A. (2010). Vulnerability control of large scale interconnected power system using neuro-fuzzy load shedding approach. *Exp Syst App, 37*(3), 171–176.

Google Scholar

Bikas, A., Voumvoulakis, E., & Hatziargyriou, N. (2009). Neuro-fuzzy decisiontrees for dynamic security control of power systems. In 15th International Conference on Intelligent System Applications to Power Systems (ISAP 2009). Curitiba, Brazil. (pp. 232-237).

Luan, W., Irving, M., & Daniel, J. (2002). Genetic algorithm for supply restoration and optimal load shedding in power system distribution networks. *IET Gener Transm Dis, 149*, 145–151.

Article
Google Scholar

Arya, L., Singh, P., & Titar, L. (2012). Optimum load shedding based on sensitivity to enhance static voltage stability using DE. *Swarm Evol Comput, 6*, 25–38.

Article
Google Scholar

Mageshvaran, R., & Jayabarathi, T. (2015). GSO based optimization of steady-state load shedding in power systems to mitigate blackout during generation contingencies. *Ain Shams Eng J, 6*, 145–160.

Article
Google Scholar

Mageshvaran, R., & Jayabarathi, T. (2015). Steady-state load shedding to mitigate blackout in power systems using an improved harmony search algorithm. *Ain Shams Eng J, 6*, 819–834.

Article
Google Scholar

Ketabi, A., & Hajiakbari, M. (2017). Adaptive under-frequency load shedding using particle swarm optimization algorithm. *J Appl Res Technol, 15*, 54–60.

Article
Google Scholar

Sadati, N., Amraee, T., & Ranjbar, A. (2017). Global particle swarm-based-simulated annealing optimization technique for under-voltage load shedding problem. *Appl Soft Comput, 9*, 652–657.

Article
Google Scholar

Nikolaos, G., Erdinç, O., & João, P. (2017). An overview of demand response: Key-elements and international experience. *Renew Sust Energ Rev, 69*, 871–891.

Article
Google Scholar

Jamshid, A., Mohammad-Iman, A., Pierluigi, S., & Alireza, H. (2016). Contribution of emergency demand response programs in power system reliability. *Energy, 103*, 688–696.

Article
Google Scholar

Yousefi, A., Shayesteh, E., Zare, K., Jalal, K., Moghaddam, M., & Haghifam, M. (2008). Risk-based spinning reserve allocation considering emergency demand response program. In 2008 43rd International Universities Power Engineering Conference (UPEC). Padova, Italy. (pp. 160-164).

Shayesteh, E., Yousefi, A., Parsa, M., & Sheikh-EL-Eslami, M. (2009). ATC enhancement using emergency demand response program. Seattle, USA: In IEEE/PESPower System Conference and Exposition. (pp. 1395-1401).

Rajesh, T., & Jason, W. (2010). Emergency demand response for distribution system contingencies. New Orleans, USA: In IEEE/PES Transmission and Distribution Conference and Exposition (T&D 2010).(pp. 922-925).

Sahebi, M., Duki, E., Kia, A., & Soroudi, M. (2012). Simultaneous emergency demand response programming and unit commitment programming in comparison with interruptible load contracts. *IET Gener Transm Distrib, 6*(7), 605–611.

Article
Google Scholar

Rahmani-Andebili, M., Abdollahi, A., Parsa, M., & Moghaddam, M. (2011). An investigation of implementing emergency demand response program (EDRP) in unit commitment problem. Detroit, USA: In IEEE Power and Energy Society General Meeting.

Aalami, A., & Khatibzadeh, A. (2016). Regulation of market clearing price based on nonlinear models of demand bidding and emergency demand response programs. *Int Trans Electr Energy Syst, 26*(11), 2463–2478.

Article
Google Scholar

Aghaei, J., Alizadeh, M., Siano, P., & Heidari, A. (2016). Contribution of emergency demand response programs in power system reliability. *Energy, 103*, 688–696.

Article
Google Scholar

Wang, Y., Iraj, P., & Wilson, X. (2011). An event-driven demand response scheme for power system security enhancement. *IEEE Trans Smart Grid, 2*(1), 23–29.

Article
Google Scholar

Mohamed, A., Mohamed, Y. S., El-Gaafary, A. A., & Hemeida, A. M. (2017). Optimal power flow using moth swarm algorithm. *Electr Power Syst Res, 142*, 190–206.

Article
Google Scholar

Yanfeng, G., Schulz, N., & Guzman, A. (2006). Synchrophasor-based real-time voltage stability index. Atlanta, USA: In IEEE/PES Power Systems Conference and Exposition(PSCE '06).

Salehi, V., &Ossama, M. (2011). Real-time voltage stability monitoring and evaluation using Synchrophasor. Boston, USA: In IEEE North American Power Symposium (NAPS 2011). (pp. 260-266).

Adewole, A.C, & Tzoneva, L. (2016). Extended synchrophasor-based online voltage stability assessment. International Transactions on Electrical Energy Systems, 27(1).

Chandraa, A., & Pradhan, A. K. (2019). Online voltage stability and load margin assessment using wide area measurements. *Electr Power Energy Syst, 108*, 392–401.

Article
Google Scholar

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. *Adv Eng Softw, 95*, 51–67.

Article
Google Scholar

Zimmerman, R.D., Murillo-Sánchez, C.E., & Thomas, R.J. Matpower. http://www.pserc.cornell.edu/matpower.

Slimani, L., & Bouktir, T. (2012). Optimal power flow solution of the Algerian electrical network using differential evolution algorithm. *Telkomnika, 10*(2), 199–210.

Article
Google Scholar