Yuan, Z., Wang, W., & Fan, X. (2019). Back propagation neural network clustering architecture for stability enhancement and harmonic suppression in wind turbines for smart cities. *Computers & Electrical Engineering,* *74*(4), 105–116. https://doi.org/10.1016/j.compeleceng.2019.01.006

Article
Google Scholar

GWEC, Global Wind Report 2022. (2022). https://gwec.net/wp-content/uploads/2022/03/GWEC-GLOBAL-WIND-REPORT-2022.pdf.

Pena, R., Clare, J. C., & Asher, G. M. (1996). Doubly fed induction generator using back-to-back PWM converter and its application to variable-speed wind energy generation. *IEE Proceedings Electric Power Applications,* *143*(3), 231–241. https://doi.org/10.1049/ip-epa:19960288

Article
Google Scholar

Ngamroo, I. (2017). Review of DFIG wind turbine impact on power system dynamic performances. *IEE J Transactions on Electrical and Electronic Engineering,* *12*(3), 301–311. https://doi.org/10.1002/tee.22379

Article
Google Scholar

Boroujeni, H. Z., Othman, M. F., Shirdel, A. H., Rahmani, R., Movahedi, P., & Toosi, E. S. (2015). Improving waveform quality in direct power control of DFIG using fuzzy controller. *Neural Computing and Applications,* *26*, 949–955. https://doi.org/10.1007/s00521-014-1725-7

Article
Google Scholar

Okedu, K. E., & Barghash, H. F. A. (2021). Enhancing the performance of DFIG wind turbines considering excitation parameters of the insulated gate bipolar transistors and a new PLL scheme. *Frontiers in Energy Research,* *8*(620277), 1–11. https://doi.org/10.3389/fenrg.2020.620277

Article
Google Scholar

Kelkoul, B., & Boumediene, A. (2020). Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for Doubly fed induction generator (DFIG) under wind turbine. *Energy Elsevier,* *214*(11), 1–30. https://doi.org/10.1016/j.energy.2020.118871

Article
Google Scholar

Sheikhan, M., Shahnazi, R., & Nooshad Yousefi, A. (2013). An optimal fuzzy PI controller to capture the maximum power for variable-speed wind turbines. *Neural Computing and Applications,* *23*(5), 1359–1368. https://doi.org/10.1007/s00521-012-1081-4

Article
Google Scholar

Boldea, I. (2006). Variable speed generator. *Taylor & Francis*. https://doi.org/10.1201/b19293

Article
Google Scholar

Anaya-Lara, O., Jenkins, N., Ekanayake, J., Cartwright, P., & Hughes, M. (2011). *Wind energy generation: modeling and control*. John Wiley & Sons.

Google Scholar

Gayen, P. K., Chatterjee, D., & Goswami, S. K. (2015). Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator). *Energy Elsevier,* *89*, 461–472. https://doi.org/10.1016/j.energy.2015.05.111

Article
Google Scholar

Qiao, W., Zhou, W., Aller, J. M., & Harley, R. G. (2008). Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG. *IEEE Transactions on Power Electronics,* *23*(3), 1156–1169. https://doi.org/10.1109/TPEL.2008.921185

Article
Google Scholar

Pan, C. T., & Juan, Y. L. (2010). A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system. *IEEE Transactions on Energy Conversion,* *25*(1), 207–216. https://doi.org/10.1109/TEC.2009.2032604

Article
Google Scholar

Thresher, R. W., & Dodge, D. M. (1998). Trends in the evolution of wind turbine generator configurations and systems. *Wind Energy,* *1*, 70–85. https://doi.org/10.1002/(SICI)1099-1824(199804)1:1+%3c70::AID-WE2%3e3.0.CO;2-9

Article
Google Scholar

Datta, R., & Ranganthan, V. T. (2002). Variable speed wind power generation using doubly fed wound rotor induction machine: A comparison with alternative schemes. *IEEE Transactions on Energy Conversion,* *17*(3), 414–421. https://doi.org/10.1109/TEC.2002.801993

Article
Google Scholar

Badreldien, M., Usama, R., El-Wakeel, A., & Abdelaziz, A.Y. (2014). Modeling, analysis and control of doubly fed induction generators for wind turbines. In *9th international conference on electrical engineering* (pp. 1–17), Cairo, Egypt. https://doi.org/10.21608/iceeng.2014.30383

Leonhard, W. (2001). Control of electrical drives. *Springer*. https://doi.org/10.1007/978-3-642-56649-3

Article
Google Scholar

Akagi, H., & Sato, H. (2002). Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. *IEEE Transactions on Power Electronics,* *17*(1), 109–116. https://doi.org/10.1109/63.988676

Article
Google Scholar

Muller, S., Deicke, M., & De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines. *IEEE Industry Applications Magazine,* *8*(3), 26–33. https://doi.org/10.1109/2943.999610

Article
Google Scholar

Naderi, S. B., Negnevitsky, M., & Muttaqi, K. M. (2019). A Modified DC chopper for limiting the fault current and controlling the DC-Link voltage to enhance fault ride-through capability of doubly-fed induction-generator-based wind turbine. *IEEE Transactions on Industry Applications,* *55*(2), 2021–2032. https://doi.org/10.1109/TIA.2018.2877400

Article
Google Scholar

Darvish Falehi, A., & Rafiee, M. (2017). Fault ride-through capability enhancement of DFIG-based wind turbine using novel dynamic voltage restorer based on two switches boost converter coupled with quinary multi-level inverter. *Energy Systems Springer,* *9*(4), 1071–1094. https://doi.org/10.1007/s12667-017-0249-5

Article
Google Scholar

Vidal, J., Abad, G., Arza, J., & Aurtenechea, S. (2013). Single-phase DC crowbar topologies for low voltage ride through fulfillment of high-power doubly fed induction generator-based wind turbines. *IEEE Transactions on Energy Conversion,* *28*(3), 768–781. https://doi.org/10.1109/TEC.2013.2273227

Article
Google Scholar

Justo, J. J., & Bansal, R. C. (2018). Parallel R-L configuration crowbar with series R-L circuit protection for LVRT strategy of DFIG under transient-state. *Electric Power Systems Research,* *154*, 299–310. https://doi.org/10.1016/j.epsr.2017.09.002

Article
Google Scholar

Yang, J., Fletcher, J. E., & O’Reilly, J. E. (2010). A Series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions. *IEEE Transactions on Energy Conversion,* *25*(2), 422–432. https://doi.org/10.1109/TEC.2009.2037970

Article
Google Scholar

Tohidi, S., & Mohammadi-ivatloo, B. (2016). A comprehensive review of low voltage ride through of doubly fed induction wind generators. *Renewable and Sustainable Energy Reviews,* *57*, 412–419. https://doi.org/10.1016/j.rser.2015.12.155

Article
Google Scholar

Shen, Y., Ke, D., Sun, Y., Kirschen, D. S., Qiao, W., & Deng, X. (2016). Advanced auxiliary control of an energy storage device for transient voltage support of a doubly fed induction generator. *IEEE Transactions on Sustainable Energy,* *7*(1), 63–76. https://doi.org/10.1109/TSTE.2015.2472299

Article
Google Scholar

Huang, P. H., El-Mousri, M. S., Xiao, W., & Kirtley, J. L., Jr. (2013). Novel fault ride-through configuration and transient management scheme for doubly fed induction generator. *IEEE Transactions on Energy Conversion,* *28*(1), 86–94. https://doi.org/10.1109/TEC.2012.2222886

Article
Google Scholar

El-Mousri, M. S. (2011). Fault ride through capability enhancement for self-excited induction generator-based wind parks by installing fault current limiters. *IET Renewable Power Generation,* *5*(4), 269–280. https://doi.org/10.1049/iet-rpg.2010.0123

Article
Google Scholar

Zhao, C., Wang, Z., Zhang, D., Zhang, J., Du, X., Guo, W., Xiao, L., & Lin, L. (2007). Development and test of a superconducting fault current limiter-magnetic energy storage (SFCL-MES) system. *IEEE Transactions on Applied Superconductivity,* *17*(2), 2014–2017. https://doi.org/10.1109/TASC.2007.899825

Article
Google Scholar

Molinas, M., Suul, J. A., & Undeland, T. (2008). Low voltage ride through of wind farms with cage generators: STATCOM versus SVC. *IEEE Transactions on Power Electronics,* *23*(3), 1104–1117. https://doi.org/10.1109/TPEL.2008.921169

Article
Google Scholar

Qiao, W., Venayagamoorthy, G. K., & Harley, R. G. (2009). Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators. *IEEE Transactions on Industry Applications,* *45*(1), 98–107. https://doi.org/10.1109/TIA.2008.2009377

Article
Google Scholar

Rauf, A. M., & Khadkikar, V. (2015). An enhanced voltage Sag compensation scheme for dynamic voltage restorer. *IEEE Transactions on Industrial Electronics,* *62*(5), 2683–2692. https://doi.org/10.1109/TIE.2014.2362096

Article
Google Scholar

Wiik, J. A., Wijaya, F. D., & Shimada, R. (2009). Characteristics of the magnetic energy recovery switch (MERS) as a series facts controller. *IEEE Transactions on Power Delivery,* *24*(2), 828–836. https://doi.org/10.1109/TPWRD.2008.2005879

Article
Google Scholar

Jayanti, N. G., Basu, M., Conlon, M. F., & Gaughan, K. (2009). Rating requirements of the unified power quality conditioner to integrate the fixed-speed induction generator-type wind generation to the grid. *IET Renewable Power Generation,* *3*(2), 133–143. https://doi.org/10.1049/iet-rpg:20080009

Article
Google Scholar

Guo, W., Xiao, L., & Dai, S. (2013). Control and design of a current source united power quality conditioner with fault current limiting ability. *IET Power Electronics,* *6*(2), 297–308. https://doi.org/10.1049/iet-pel.2012.0297

Article
Google Scholar

Zhang, Y., Muljadi, E., Kosterev, D., & Singh, M. (2015). Wind power plant model validation using synchrophasor measurements at the point of interconnection. *IEEE Transactions on Sustainable Energy,* *6*(3), 984–992. https://doi.org/10.1109/TSTE.2014.2343794

Article
Google Scholar

Yang, L., Xu, Z., Ostergaard, J., Dong, Z. Y., & Wong, K. P. (2012). Advanced control strategy of DFIG wind turbines for power system fault ride through. *IEEE Transactions on Power Systems,* *27*(2), 713–722. https://doi.org/10.1109/TPWRS.2011.2174387

Article
Google Scholar

Mohseni, M., Islam, S., & Masoum, M. A. S. (2011). Fault ride-through capability enhancement of doubly-fed induction wind generators. *IET Renewable Power Generation,* *5*(5), 368–376. https://doi.org/10.1049/iet-rpg.2010.0154

Article
Google Scholar

Kazmierkowski, M. P., & Malesani, L. (1998). Current control techniques for three-phase voltage-source PWM converters: A survey. *IEEE Transactions on Industrial Electronics,* *45*(5), 691–703. https://doi.org/10.1109/41.720325

Article
Google Scholar

Liang, J., Howard, D. F., Restrepo, J. A., & Harley, R. G. (2013). Feed-forward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances. *IEEE Transactions on Industry Applications,* *49*(3), 1452–1463. https://doi.org/10.1109/TIA.2013.2253439

Article
Google Scholar

Riouch, T., & El-Bachtiri, R. (2014). Comparative study of fuzzy logic controller and sliding mode for enhancing the behavior of the DFIG under fault. In *International conference on multimedia computing and systems* (pp. 1602–1607), Marrakech, Morocco. https://doi.org/10.1109/ICMCS.2014.6911241

Li, X. M., Su, K., Zhang, X. Y., Wu, Y. J., & Lin, Z. W. (2018). Approximate error considered fuzzy proportional–integral control of DFIG with regional pole placement for FRT improvement. *IET Generation, Transmission & Distribution,* *12*(2), 335–346. https://doi.org/10.1049/iet-gtd.2016.1825

Article
Google Scholar

Calle-Prado, A., Alepuz, S., Bordonau, J., Nicolas-Apruzzese, J., Cortes, P., & Rodriguez, J. (2015). Model predictive current control of grid-connected neutral- point-clamped converters to meet low-voltage ride-through requirements. *IEEE Transactions on Industrial Electronics,* *62*(3), 1503–1514. https://doi.org/10.1109/TIE.2014.2364459

Article
Google Scholar

Ellabban, O., Abu-Rub, H., & Bayhan, S. (2016). Sensorless model predictive control scheme of wind-driven doubly fed induction generator in dc microgrid. *IET Renewable Power Generation.,* *10*(4), 514–521. https://doi.org/10.1049/iet-rpg.2015.0347

Article
Google Scholar

Zhou, Z., Peng, H., Liu, B., Wang, W., Niu, G., & Liu, C. (2022). Power decoupling control of DFIG rotor-side PWM converter based on auto-disturbance rejection control. *Wind Energy,* *25*(1), 94–106. https://doi.org/10.1002/we.2662

Article
Google Scholar

Sobhy, A., & Lei, D. (2021). Model-assisted active disturbance rejection controller for maximum efficiency schemes of DFIG-based wind turbines. *International Transactions on Electrical Energy Systems,* *31*(11), 1–21. https://doi.org/10.1002/2050-7038.13107

Article
Google Scholar

Yang, C., Yang, X., & Shardt, Y. A. W. (2018). An ADRC-based control strategy for FRT improvement of wind power generation with a doubly-fed induction generator. *Energies,* *11*(5), 1–19. https://doi.org/10.3390/en11051150

Article
Google Scholar

Beltran-Pulido, A., Cotres-Romero, J., & Coral-Enriquez, H. (2018). Robust active disturbance rejection control for LVRT capability enhancement of DFIG-based wind turbines. *Control Engineering Practice,* *77*, 174–189. https://doi.org/10.1016/j.conengprac.2018.06.001

Article
Google Scholar

Zheng, W., Luo, Y., Chen, Y. Q., & Wang, X. (2021). Synthesis of fractional order robust controller based on Bode’s ideas. *ISA Transactions,* *111*(6), 290–301. https://doi.org/10.1016/j.isatra.2020.11.019

Article
Google Scholar

Zaihidee, F. M., Mekhilef, S., & Mubin, M. (2019). Application of fractional order sliding mode control for speed control of permanent magnet synchronous motor. *IEEE Access,* *7*, 101765–101774. https://doi.org/10.1109/ACCESS.2019.2931324

Article
Google Scholar

Ren, H. P., Wang, X., Fan, J. T., & Kaynak, O. (2019). Fractional order sliding mode control of a pneumatic position servo system. *Journal of the Franklin Institute,* *356*(12), 6160–6174. https://doi.org/10.1016/j.jfranklin.2019.05.024

Article
MathSciNet
MATH
Google Scholar

Gomaa Haroun, A., & Yin-Ya, L. (2019). A novel optimized fractional-order hybrid fuzzy intelligent PID controller for interconnected realistic power systems. *Transactions of the Institute of Measurement and Control,* *41*(11), 3065–3080. https://doi.org/10.1177/0142331218820913

Article
Google Scholar

Li, H., Luo, Y., & Chen, Y. (2010). A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. *IEEE Transactions on Control Systems Technology,* *18*(2), 516–520. https://doi.org/10.1109/TCST.2009.2019120

Article
Google Scholar

Gao, Z. (2015). Active disturbance rejection control for nonlinear fractional-order systems. *International Journal of Robust and Nonlinear Control,* *26*(4), 876–892. https://doi.org/10.1002/rnc.3344

Article
MathSciNet
MATH
Google Scholar

Kumar, P., & Chaudhary, S.K. (2017). Stability analysis and fractional order controller design for control system. *International Journal of Applied Engineering Research*, 12(20), 10298–10304. https://doi.org/10.13140/RG.2.2.36590.72004

Chen, P., Luo, Y., Zheng, W., Gao, Z., & Chen, Y. (2021). Fractional order active disturbance rejection control with the idea of cascaded fractional order integrator equivalence. *ISA Transactions,* *114*(1), 359–369. https://doi.org/10.1016/j.isatra.2020.12.030

Article
Google Scholar

Trivedi, R., & Padhy, P. K. (2021). Design of indirect fractional order IMC controller for fractional order processes. *IEEE Transactions on Circuits and Systems II: Express Briefs,* *68*(3), 968–972. https://doi.org/10.1109/TCSII.2020.3013404

Article
Google Scholar

Li, D., Ding, P., & Gao, Z. (2016). Fractional active disturbance rejection control. *ISA Transactions,* *62*, 109–119. https://doi.org/10.1016/j.isatra.2016.01.022

Article
Google Scholar

Fang, H., Yuan, X., & Liu, P. (2019). Active–disturbance–rejection– control and fractional–order– proportional–integral–derivative hybrid control for hydroturbine speed governor system. *Measurement and Control,* *51*(5–6), 192–201. https://doi.org/10.1177/0020294018778312

Article
Google Scholar

Li, B., & Zhu, L. (2021). A new active disturbance controller based on an improved fraction-order extended state observer. In *4th international conference on robotics, control and automation engineering (RCAE)* (pp. 1–7), Wuhan, China. https://doi.org/10.1109/RCAE53607.2021.9638913

Zhang, Z., Yang, Z., Zhou, G., Liu, S., Zhou, D., Chen, S., & Zhang, X. (2021). Adaptive fuzzy active-disturbance rejection control-based reconfiguration controller design for aircraft anti-skid braking system. *Actuators,* *10*(8), 1–21. https://doi.org/10.3390/act10080201

Article
Google Scholar

Luo, J., Wang, L., & Liu, B. (2021). Low-speed control of PMSM based on ADRC + FOPID. *Systems Science & Control Engineering,* *9*(1), 73–87. https://doi.org/10.1080/21642583.2020.1863279

Article
Google Scholar

Liu, B., Hong, J., & Wang, L. (2019). Linear inverted pendulum control based on improved ADRC. *Systems Science & Control Engineering,* *7*(3), 1–12. https://doi.org/10.1080/21642583.2019.1625081

Article
Google Scholar

Meng, Y., Liu, B., & Wang, L. (2019). Speed control of PMSM based on an optimized ADRC controller. *Mathematical Problems in Engineering,* *2019*, 1–18. https://doi.org/10.1155/2019/1074702

Article
Google Scholar

Zhu, D., Zou, X., Deng, L., Huang, Q., Zhou, S., & Kang, Y. (2017). Inductance-emulating control for DFIG-based wind turbine to ride-through grid faults. *IEEE Transactions on Power Electronics,* *32*(11), 8514–8525. https://doi.org/10.1109/TPEL.2016.2645791

Article
Google Scholar

Zhu, D., Zou, X., Zhou, S., Dong, W., Kang, Y., & Hu, J. (2018). Feedforward current references control for DFIG-based wind turbine to improve transient control performance during grid faults. *IEEE Transactions on Energy Conversion,* *33*(2), 670–681. https://doi.org/10.1109/TEC.2017.2779864

Article
Google Scholar

Huang, Q., Zou, X., Zhu, D., & Kang, Y. (2016). Scaled current tracking control for doubly fed induction generator to ride-through serious grid faults. *IEEE Transactions on Power Electronics,* *31*(3), 2150–2165. https://doi.org/10.1109/TPEL.2015.2429153

Article
Google Scholar

Jiang, F., Tu, C., Shuai, Z., Cheng, M., Lan, Z., & Xiao, F. (2016). Multilevel cascaded-type dynamic voltage restorer with fault current-limiting function. *IEEE Transactions on Power Delivery,* *31*(3), 1261–1269. https://doi.org/10.1109/TPWRD.2015.2474703

Article
Google Scholar

Vrionis, T. D., Koutiva, X. I., & Vovos, N. A. (2014). A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators. *IEEE Transactions on Power Systems,* *29*(3), 1325–1334. https://doi.org/10.1109/TPWRS.2013.2290622

Article
Google Scholar

Ou, R., Xiao, X. Y., Zou, Z. C., Zhang, Y., & Wang, Y. H. (2016). Cooperative control of SFCL and reactive power for improving the transient voltage stability of grid-connected wind farm with DFIGs. *IEEE Transactions on Applied Superconductivity,* *26*(7), 1–6. https://doi.org/10.1109/TASC.2016.2574344

Article
Google Scholar

Zou, Z. C., Xiao, X. Y., Liu, Y. F., Zhang, Y., & Wang, Y. H. (2016). Integrated protection of DFIG-based wind turbine with a resistive-type SFCL under symmetrical and asymmetrical faults. *IEEE Transactions on Applied Superconductivity,* *26*(7), 1–5. https://doi.org/10.1109/TASC.2016.2574352

Article
Google Scholar

Wang, S., Chen, N., Yu, D., Foley, A., Zhu, L., Li, K., & Yu, J. (2015). Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration. *Energy Conversion and Management,* *93*, 239–248. https://doi.org/10.1016/j.enconman.2015.01.022

Article
Google Scholar

Kasem, A. H., El-Saadany, E. F., El-Tamaly, H. H., & Wahab, M. A. A. (2008). An improved fault ride-through strategy for doubly fed induction generator-based wind turbines. *IET Renewable Power Generation,* *2*(4), 201–214. https://doi.org/10.1049/iet-rpg:20070092

Article
Google Scholar

Campos-Gaona, D., Moreno-Goytia, E. L., & Anaya-Lara, O. (2013). Fault ride-through improvement of DFIG-WT by integrating a two-degrees-of-freedom internal model control. *IEEE Transactions on Industrial Electronics,* *60*(3), 1133–1145. https://doi.org/10.1109/TIE.2012.2216234

Article
Google Scholar

Hossain, M. J., Saha, T. K., Mithulananthan, N., & Pota, H. R. (2013). Control strategies for augmenting LVRT capability of DFIGs in interconnected power systems. *IEEE Transactions on Industrial Electronics,* *60*(6), 2510–2522. https://doi.org/10.1109/TIE.2012.2228141

Article
Google Scholar

Hu, J., Xu, H., & He, Y. (2013). Coordinated control of DFIG’s RSC and GSC under generalized unbalanced and distorted grid voltage conditions. *IEEE Transactions on Industrial Electronics,* *60*(7), 2808–2819. https://doi.org/10.1109/TIE.2012.2217718

Article
Google Scholar

Lin, F. J., Huang, Y. S., Tan, K. H., Lu, Z. H., & Chang, Y. R. (2013). Intelligent-controlled doubly fed induction generator system using PFNN. *Neural Computing and Applications,* *22*, 1695–1712. https://doi.org/10.1007/s00521-012-0965-7

Article
Google Scholar

Laghridat, H., Essadki, A., Annoukoubi, M., & Nasser, T. (2020). A novel adaptive active disturbance rejection control strategy to improve the stability and robustness for a wind turbine using a doubly fed induction generator. *Journal of Electrical and Computer Engineering,* *8*, 1–14. https://doi.org/10.1155/2020/9847628

Article
Google Scholar

Girsang, I. P., Dhupia, J. S., Muljadi, E., Singh, M., & Pao, L. Y. (2014). Gearbox and drivetrain models to study dynamic effects of modern wind turbines. *IEEE Transactions on Industry Applications,* *50*(6), 3777–3786. https://doi.org/10.1109/TIA.2014.2321029

Article
Google Scholar

Boukhriss, A., Essadki, A., Bouallouch, A., & Nasser, T. (2014). Maximization of generated power from wind energy conversion systems using a doubly fed induction generator with active disturbance rejection control. In *Second world conference on complex systems* (pp. 330–335), Agadir, Morocco. https://doi.org/10.1109/ICoCS.2014.7060907

Boukhriss, A., Nasser, T., & Essadki, A. (2013). A linear active disturbance rejection control applied for DFIG based wind energy conversion system. *International Journal of Computer Science Issues,* *10*(2), 391–399.

Google Scholar

Han, J. (2009). From PID to auto disturbance rejection control. *IEEE Transactions on Industrial Electronics,* *56*(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621

Article
Google Scholar

Guo, B. Z., & Zhao, Z. L. (2016). Active disturbance rejection control for nonlinear systems: An introduction. *John Wiley & Sons*. https://doi.org/10.1002/9781119239932

Article
MATH
Google Scholar

Petras, I. (2011). *Fractional-order nonlinear systems: Modeling*. Springer. https://doi.org/10.1007/978-3-642-18101-6_4

Book
MATH
Google Scholar

Peng, N., Bai, Y., Luo, H., & Bai, J. (2013). Artillery position control through auto disturbance rejection controller based-on fuzzy control. In *5th international conference on intelligent human-machine systems and cybernetics* (pp. 496–499), Hangzhou, China. https://doi.org/10.1109/IHMSC.2013.124

Abad, G., Lopez, J., Rodriguez, M. A., Marroyo, L., & Iwanski, G. (2011). *Doubly fed induction machine: Modeling and control for wind energy generation*. Wiley-IEEE Press. https://doi.org/10.1002/9781118104965

Book
Google Scholar

Abu-Rub, H., Malinowski, M., & Al-Haddad, K. (2014). *Power electronics for renewable energy systems, transportation and industrial applications*. John Wiley & Sons. https://doi.org/10.1002/9781118755525

Book
Google Scholar

Abad, G. (2017). Power electronics and electric drives for traction applications. *John Wiley & Sons*. https://doi.org/10.1002/9781118954454

Article
Google Scholar

Wessels, C., & Fuchs, F.W. (2010). Fault ride through of DFIG wind turbines during symmetrical voltage dip with crowbar or stator current feedback solution. In *IEEE energy conversion congress and exposition* (pp. 2771–2777), Atlanta, GA, USA. https://doi.org/10.1109/ECCE.2010.5618076

Song, J., Gao, K., Wang, L., & Yang, E. (2016). Comparison of linear and nonlinear active disturbance rejection control method for hypersonic vehicle. In *35th Chinese control conference* (pp. 10759–10764), Chengdu, China. https://doi.org/10.1109/ChiCC.2016.7555064