Yuan, Z., Wang, W., & Fan, X. (2019). Back propagation neural network clustering architecture for stability enhancement and harmonic suppression in wind turbines for smart cities. Computers & Electrical Engineering, 74(4), 105–116. https://doi.org/10.1016/j.compeleceng.2019.01.006
Article
Google Scholar
GWEC, Global Wind Report 2022. (2022). https://gwec.net/wp-content/uploads/2022/03/GWEC-GLOBAL-WIND-REPORT-2022.pdf.
Pena, R., Clare, J. C., & Asher, G. M. (1996). Doubly fed induction generator using back-to-back PWM converter and its application to variable-speed wind energy generation. IEE Proceedings Electric Power Applications, 143(3), 231–241. https://doi.org/10.1049/ip-epa:19960288
Article
Google Scholar
Ngamroo, I. (2017). Review of DFIG wind turbine impact on power system dynamic performances. IEE J Transactions on Electrical and Electronic Engineering, 12(3), 301–311. https://doi.org/10.1002/tee.22379
Article
Google Scholar
Boroujeni, H. Z., Othman, M. F., Shirdel, A. H., Rahmani, R., Movahedi, P., & Toosi, E. S. (2015). Improving waveform quality in direct power control of DFIG using fuzzy controller. Neural Computing and Applications, 26, 949–955. https://doi.org/10.1007/s00521-014-1725-7
Article
Google Scholar
Okedu, K. E., & Barghash, H. F. A. (2021). Enhancing the performance of DFIG wind turbines considering excitation parameters of the insulated gate bipolar transistors and a new PLL scheme. Frontiers in Energy Research, 8(620277), 1–11. https://doi.org/10.3389/fenrg.2020.620277
Article
Google Scholar
Kelkoul, B., & Boumediene, A. (2020). Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for Doubly fed induction generator (DFIG) under wind turbine. Energy Elsevier, 214(11), 1–30. https://doi.org/10.1016/j.energy.2020.118871
Article
Google Scholar
Sheikhan, M., Shahnazi, R., & Nooshad Yousefi, A. (2013). An optimal fuzzy PI controller to capture the maximum power for variable-speed wind turbines. Neural Computing and Applications, 23(5), 1359–1368. https://doi.org/10.1007/s00521-012-1081-4
Article
Google Scholar
Boldea, I. (2006). Variable speed generator. Taylor & Francis. https://doi.org/10.1201/b19293
Article
Google Scholar
Anaya-Lara, O., Jenkins, N., Ekanayake, J., Cartwright, P., & Hughes, M. (2011). Wind energy generation: modeling and control. John Wiley & Sons.
Google Scholar
Gayen, P. K., Chatterjee, D., & Goswami, S. K. (2015). Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator). Energy Elsevier, 89, 461–472. https://doi.org/10.1016/j.energy.2015.05.111
Article
Google Scholar
Qiao, W., Zhou, W., Aller, J. M., & Harley, R. G. (2008). Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG. IEEE Transactions on Power Electronics, 23(3), 1156–1169. https://doi.org/10.1109/TPEL.2008.921185
Article
Google Scholar
Pan, C. T., & Juan, Y. L. (2010). A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system. IEEE Transactions on Energy Conversion, 25(1), 207–216. https://doi.org/10.1109/TEC.2009.2032604
Article
Google Scholar
Thresher, R. W., & Dodge, D. M. (1998). Trends in the evolution of wind turbine generator configurations and systems. Wind Energy, 1, 70–85. https://doi.org/10.1002/(SICI)1099-1824(199804)1:1+%3c70::AID-WE2%3e3.0.CO;2-9
Article
Google Scholar
Datta, R., & Ranganthan, V. T. (2002). Variable speed wind power generation using doubly fed wound rotor induction machine: A comparison with alternative schemes. IEEE Transactions on Energy Conversion, 17(3), 414–421. https://doi.org/10.1109/TEC.2002.801993
Article
Google Scholar
Badreldien, M., Usama, R., El-Wakeel, A., & Abdelaziz, A.Y. (2014). Modeling, analysis and control of doubly fed induction generators for wind turbines. In 9th international conference on electrical engineering (pp. 1–17), Cairo, Egypt. https://doi.org/10.21608/iceeng.2014.30383
Leonhard, W. (2001). Control of electrical drives. Springer. https://doi.org/10.1007/978-3-642-56649-3
Article
Google Scholar
Akagi, H., & Sato, H. (2002). Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Transactions on Power Electronics, 17(1), 109–116. https://doi.org/10.1109/63.988676
Article
Google Scholar
Muller, S., Deicke, M., & De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines. IEEE Industry Applications Magazine, 8(3), 26–33. https://doi.org/10.1109/2943.999610
Article
Google Scholar
Naderi, S. B., Negnevitsky, M., & Muttaqi, K. M. (2019). A Modified DC chopper for limiting the fault current and controlling the DC-Link voltage to enhance fault ride-through capability of doubly-fed induction-generator-based wind turbine. IEEE Transactions on Industry Applications, 55(2), 2021–2032. https://doi.org/10.1109/TIA.2018.2877400
Article
Google Scholar
Darvish Falehi, A., & Rafiee, M. (2017). Fault ride-through capability enhancement of DFIG-based wind turbine using novel dynamic voltage restorer based on two switches boost converter coupled with quinary multi-level inverter. Energy Systems Springer, 9(4), 1071–1094. https://doi.org/10.1007/s12667-017-0249-5
Article
Google Scholar
Vidal, J., Abad, G., Arza, J., & Aurtenechea, S. (2013). Single-phase DC crowbar topologies for low voltage ride through fulfillment of high-power doubly fed induction generator-based wind turbines. IEEE Transactions on Energy Conversion, 28(3), 768–781. https://doi.org/10.1109/TEC.2013.2273227
Article
Google Scholar
Justo, J. J., & Bansal, R. C. (2018). Parallel R-L configuration crowbar with series R-L circuit protection for LVRT strategy of DFIG under transient-state. Electric Power Systems Research, 154, 299–310. https://doi.org/10.1016/j.epsr.2017.09.002
Article
Google Scholar
Yang, J., Fletcher, J. E., & O’Reilly, J. E. (2010). A Series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions. IEEE Transactions on Energy Conversion, 25(2), 422–432. https://doi.org/10.1109/TEC.2009.2037970
Article
Google Scholar
Tohidi, S., & Mohammadi-ivatloo, B. (2016). A comprehensive review of low voltage ride through of doubly fed induction wind generators. Renewable and Sustainable Energy Reviews, 57, 412–419. https://doi.org/10.1016/j.rser.2015.12.155
Article
Google Scholar
Shen, Y., Ke, D., Sun, Y., Kirschen, D. S., Qiao, W., & Deng, X. (2016). Advanced auxiliary control of an energy storage device for transient voltage support of a doubly fed induction generator. IEEE Transactions on Sustainable Energy, 7(1), 63–76. https://doi.org/10.1109/TSTE.2015.2472299
Article
Google Scholar
Huang, P. H., El-Mousri, M. S., Xiao, W., & Kirtley, J. L., Jr. (2013). Novel fault ride-through configuration and transient management scheme for doubly fed induction generator. IEEE Transactions on Energy Conversion, 28(1), 86–94. https://doi.org/10.1109/TEC.2012.2222886
Article
Google Scholar
El-Mousri, M. S. (2011). Fault ride through capability enhancement for self-excited induction generator-based wind parks by installing fault current limiters. IET Renewable Power Generation, 5(4), 269–280. https://doi.org/10.1049/iet-rpg.2010.0123
Article
Google Scholar
Zhao, C., Wang, Z., Zhang, D., Zhang, J., Du, X., Guo, W., Xiao, L., & Lin, L. (2007). Development and test of a superconducting fault current limiter-magnetic energy storage (SFCL-MES) system. IEEE Transactions on Applied Superconductivity, 17(2), 2014–2017. https://doi.org/10.1109/TASC.2007.899825
Article
Google Scholar
Molinas, M., Suul, J. A., & Undeland, T. (2008). Low voltage ride through of wind farms with cage generators: STATCOM versus SVC. IEEE Transactions on Power Electronics, 23(3), 1104–1117. https://doi.org/10.1109/TPEL.2008.921169
Article
Google Scholar
Qiao, W., Venayagamoorthy, G. K., & Harley, R. G. (2009). Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators. IEEE Transactions on Industry Applications, 45(1), 98–107. https://doi.org/10.1109/TIA.2008.2009377
Article
Google Scholar
Rauf, A. M., & Khadkikar, V. (2015). An enhanced voltage Sag compensation scheme for dynamic voltage restorer. IEEE Transactions on Industrial Electronics, 62(5), 2683–2692. https://doi.org/10.1109/TIE.2014.2362096
Article
Google Scholar
Wiik, J. A., Wijaya, F. D., & Shimada, R. (2009). Characteristics of the magnetic energy recovery switch (MERS) as a series facts controller. IEEE Transactions on Power Delivery, 24(2), 828–836. https://doi.org/10.1109/TPWRD.2008.2005879
Article
Google Scholar
Jayanti, N. G., Basu, M., Conlon, M. F., & Gaughan, K. (2009). Rating requirements of the unified power quality conditioner to integrate the fixed-speed induction generator-type wind generation to the grid. IET Renewable Power Generation, 3(2), 133–143. https://doi.org/10.1049/iet-rpg:20080009
Article
Google Scholar
Guo, W., Xiao, L., & Dai, S. (2013). Control and design of a current source united power quality conditioner with fault current limiting ability. IET Power Electronics, 6(2), 297–308. https://doi.org/10.1049/iet-pel.2012.0297
Article
Google Scholar
Zhang, Y., Muljadi, E., Kosterev, D., & Singh, M. (2015). Wind power plant model validation using synchrophasor measurements at the point of interconnection. IEEE Transactions on Sustainable Energy, 6(3), 984–992. https://doi.org/10.1109/TSTE.2014.2343794
Article
Google Scholar
Yang, L., Xu, Z., Ostergaard, J., Dong, Z. Y., & Wong, K. P. (2012). Advanced control strategy of DFIG wind turbines for power system fault ride through. IEEE Transactions on Power Systems, 27(2), 713–722. https://doi.org/10.1109/TPWRS.2011.2174387
Article
Google Scholar
Mohseni, M., Islam, S., & Masoum, M. A. S. (2011). Fault ride-through capability enhancement of doubly-fed induction wind generators. IET Renewable Power Generation, 5(5), 368–376. https://doi.org/10.1049/iet-rpg.2010.0154
Article
Google Scholar
Kazmierkowski, M. P., & Malesani, L. (1998). Current control techniques for three-phase voltage-source PWM converters: A survey. IEEE Transactions on Industrial Electronics, 45(5), 691–703. https://doi.org/10.1109/41.720325
Article
Google Scholar
Liang, J., Howard, D. F., Restrepo, J. A., & Harley, R. G. (2013). Feed-forward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances. IEEE Transactions on Industry Applications, 49(3), 1452–1463. https://doi.org/10.1109/TIA.2013.2253439
Article
Google Scholar
Riouch, T., & El-Bachtiri, R. (2014). Comparative study of fuzzy logic controller and sliding mode for enhancing the behavior of the DFIG under fault. In International conference on multimedia computing and systems (pp. 1602–1607), Marrakech, Morocco. https://doi.org/10.1109/ICMCS.2014.6911241
Li, X. M., Su, K., Zhang, X. Y., Wu, Y. J., & Lin, Z. W. (2018). Approximate error considered fuzzy proportional–integral control of DFIG with regional pole placement for FRT improvement. IET Generation, Transmission & Distribution, 12(2), 335–346. https://doi.org/10.1049/iet-gtd.2016.1825
Article
Google Scholar
Calle-Prado, A., Alepuz, S., Bordonau, J., Nicolas-Apruzzese, J., Cortes, P., & Rodriguez, J. (2015). Model predictive current control of grid-connected neutral- point-clamped converters to meet low-voltage ride-through requirements. IEEE Transactions on Industrial Electronics, 62(3), 1503–1514. https://doi.org/10.1109/TIE.2014.2364459
Article
Google Scholar
Ellabban, O., Abu-Rub, H., & Bayhan, S. (2016). Sensorless model predictive control scheme of wind-driven doubly fed induction generator in dc microgrid. IET Renewable Power Generation., 10(4), 514–521. https://doi.org/10.1049/iet-rpg.2015.0347
Article
Google Scholar
Zhou, Z., Peng, H., Liu, B., Wang, W., Niu, G., & Liu, C. (2022). Power decoupling control of DFIG rotor-side PWM converter based on auto-disturbance rejection control. Wind Energy, 25(1), 94–106. https://doi.org/10.1002/we.2662
Article
Google Scholar
Sobhy, A., & Lei, D. (2021). Model-assisted active disturbance rejection controller for maximum efficiency schemes of DFIG-based wind turbines. International Transactions on Electrical Energy Systems, 31(11), 1–21. https://doi.org/10.1002/2050-7038.13107
Article
Google Scholar
Yang, C., Yang, X., & Shardt, Y. A. W. (2018). An ADRC-based control strategy for FRT improvement of wind power generation with a doubly-fed induction generator. Energies, 11(5), 1–19. https://doi.org/10.3390/en11051150
Article
Google Scholar
Beltran-Pulido, A., Cotres-Romero, J., & Coral-Enriquez, H. (2018). Robust active disturbance rejection control for LVRT capability enhancement of DFIG-based wind turbines. Control Engineering Practice, 77, 174–189. https://doi.org/10.1016/j.conengprac.2018.06.001
Article
Google Scholar
Zheng, W., Luo, Y., Chen, Y. Q., & Wang, X. (2021). Synthesis of fractional order robust controller based on Bode’s ideas. ISA Transactions, 111(6), 290–301. https://doi.org/10.1016/j.isatra.2020.11.019
Article
Google Scholar
Zaihidee, F. M., Mekhilef, S., & Mubin, M. (2019). Application of fractional order sliding mode control for speed control of permanent magnet synchronous motor. IEEE Access, 7, 101765–101774. https://doi.org/10.1109/ACCESS.2019.2931324
Article
Google Scholar
Ren, H. P., Wang, X., Fan, J. T., & Kaynak, O. (2019). Fractional order sliding mode control of a pneumatic position servo system. Journal of the Franklin Institute, 356(12), 6160–6174. https://doi.org/10.1016/j.jfranklin.2019.05.024
Article
MathSciNet
MATH
Google Scholar
Gomaa Haroun, A., & Yin-Ya, L. (2019). A novel optimized fractional-order hybrid fuzzy intelligent PID controller for interconnected realistic power systems. Transactions of the Institute of Measurement and Control, 41(11), 3065–3080. https://doi.org/10.1177/0142331218820913
Article
Google Scholar
Li, H., Luo, Y., & Chen, Y. (2010). A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Transactions on Control Systems Technology, 18(2), 516–520. https://doi.org/10.1109/TCST.2009.2019120
Article
Google Scholar
Gao, Z. (2015). Active disturbance rejection control for nonlinear fractional-order systems. International Journal of Robust and Nonlinear Control, 26(4), 876–892. https://doi.org/10.1002/rnc.3344
Article
MathSciNet
MATH
Google Scholar
Kumar, P., & Chaudhary, S.K. (2017). Stability analysis and fractional order controller design for control system. International Journal of Applied Engineering Research, 12(20), 10298–10304. https://doi.org/10.13140/RG.2.2.36590.72004
Chen, P., Luo, Y., Zheng, W., Gao, Z., & Chen, Y. (2021). Fractional order active disturbance rejection control with the idea of cascaded fractional order integrator equivalence. ISA Transactions, 114(1), 359–369. https://doi.org/10.1016/j.isatra.2020.12.030
Article
Google Scholar
Trivedi, R., & Padhy, P. K. (2021). Design of indirect fractional order IMC controller for fractional order processes. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(3), 968–972. https://doi.org/10.1109/TCSII.2020.3013404
Article
Google Scholar
Li, D., Ding, P., & Gao, Z. (2016). Fractional active disturbance rejection control. ISA Transactions, 62, 109–119. https://doi.org/10.1016/j.isatra.2016.01.022
Article
Google Scholar
Fang, H., Yuan, X., & Liu, P. (2019). Active–disturbance–rejection– control and fractional–order– proportional–integral–derivative hybrid control for hydroturbine speed governor system. Measurement and Control, 51(5–6), 192–201. https://doi.org/10.1177/0020294018778312
Article
Google Scholar
Li, B., & Zhu, L. (2021). A new active disturbance controller based on an improved fraction-order extended state observer. In 4th international conference on robotics, control and automation engineering (RCAE) (pp. 1–7), Wuhan, China. https://doi.org/10.1109/RCAE53607.2021.9638913
Zhang, Z., Yang, Z., Zhou, G., Liu, S., Zhou, D., Chen, S., & Zhang, X. (2021). Adaptive fuzzy active-disturbance rejection control-based reconfiguration controller design for aircraft anti-skid braking system. Actuators, 10(8), 1–21. https://doi.org/10.3390/act10080201
Article
Google Scholar
Luo, J., Wang, L., & Liu, B. (2021). Low-speed control of PMSM based on ADRC + FOPID. Systems Science & Control Engineering, 9(1), 73–87. https://doi.org/10.1080/21642583.2020.1863279
Article
Google Scholar
Liu, B., Hong, J., & Wang, L. (2019). Linear inverted pendulum control based on improved ADRC. Systems Science & Control Engineering, 7(3), 1–12. https://doi.org/10.1080/21642583.2019.1625081
Article
Google Scholar
Meng, Y., Liu, B., & Wang, L. (2019). Speed control of PMSM based on an optimized ADRC controller. Mathematical Problems in Engineering, 2019, 1–18. https://doi.org/10.1155/2019/1074702
Article
Google Scholar
Zhu, D., Zou, X., Deng, L., Huang, Q., Zhou, S., & Kang, Y. (2017). Inductance-emulating control for DFIG-based wind turbine to ride-through grid faults. IEEE Transactions on Power Electronics, 32(11), 8514–8525. https://doi.org/10.1109/TPEL.2016.2645791
Article
Google Scholar
Zhu, D., Zou, X., Zhou, S., Dong, W., Kang, Y., & Hu, J. (2018). Feedforward current references control for DFIG-based wind turbine to improve transient control performance during grid faults. IEEE Transactions on Energy Conversion, 33(2), 670–681. https://doi.org/10.1109/TEC.2017.2779864
Article
Google Scholar
Huang, Q., Zou, X., Zhu, D., & Kang, Y. (2016). Scaled current tracking control for doubly fed induction generator to ride-through serious grid faults. IEEE Transactions on Power Electronics, 31(3), 2150–2165. https://doi.org/10.1109/TPEL.2015.2429153
Article
Google Scholar
Jiang, F., Tu, C., Shuai, Z., Cheng, M., Lan, Z., & Xiao, F. (2016). Multilevel cascaded-type dynamic voltage restorer with fault current-limiting function. IEEE Transactions on Power Delivery, 31(3), 1261–1269. https://doi.org/10.1109/TPWRD.2015.2474703
Article
Google Scholar
Vrionis, T. D., Koutiva, X. I., & Vovos, N. A. (2014). A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators. IEEE Transactions on Power Systems, 29(3), 1325–1334. https://doi.org/10.1109/TPWRS.2013.2290622
Article
Google Scholar
Ou, R., Xiao, X. Y., Zou, Z. C., Zhang, Y., & Wang, Y. H. (2016). Cooperative control of SFCL and reactive power for improving the transient voltage stability of grid-connected wind farm with DFIGs. IEEE Transactions on Applied Superconductivity, 26(7), 1–6. https://doi.org/10.1109/TASC.2016.2574344
Article
Google Scholar
Zou, Z. C., Xiao, X. Y., Liu, Y. F., Zhang, Y., & Wang, Y. H. (2016). Integrated protection of DFIG-based wind turbine with a resistive-type SFCL under symmetrical and asymmetrical faults. IEEE Transactions on Applied Superconductivity, 26(7), 1–5. https://doi.org/10.1109/TASC.2016.2574352
Article
Google Scholar
Wang, S., Chen, N., Yu, D., Foley, A., Zhu, L., Li, K., & Yu, J. (2015). Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration. Energy Conversion and Management, 93, 239–248. https://doi.org/10.1016/j.enconman.2015.01.022
Article
Google Scholar
Kasem, A. H., El-Saadany, E. F., El-Tamaly, H. H., & Wahab, M. A. A. (2008). An improved fault ride-through strategy for doubly fed induction generator-based wind turbines. IET Renewable Power Generation, 2(4), 201–214. https://doi.org/10.1049/iet-rpg:20070092
Article
Google Scholar
Campos-Gaona, D., Moreno-Goytia, E. L., & Anaya-Lara, O. (2013). Fault ride-through improvement of DFIG-WT by integrating a two-degrees-of-freedom internal model control. IEEE Transactions on Industrial Electronics, 60(3), 1133–1145. https://doi.org/10.1109/TIE.2012.2216234
Article
Google Scholar
Hossain, M. J., Saha, T. K., Mithulananthan, N., & Pota, H. R. (2013). Control strategies for augmenting LVRT capability of DFIGs in interconnected power systems. IEEE Transactions on Industrial Electronics, 60(6), 2510–2522. https://doi.org/10.1109/TIE.2012.2228141
Article
Google Scholar
Hu, J., Xu, H., & He, Y. (2013). Coordinated control of DFIG’s RSC and GSC under generalized unbalanced and distorted grid voltage conditions. IEEE Transactions on Industrial Electronics, 60(7), 2808–2819. https://doi.org/10.1109/TIE.2012.2217718
Article
Google Scholar
Lin, F. J., Huang, Y. S., Tan, K. H., Lu, Z. H., & Chang, Y. R. (2013). Intelligent-controlled doubly fed induction generator system using PFNN. Neural Computing and Applications, 22, 1695–1712. https://doi.org/10.1007/s00521-012-0965-7
Article
Google Scholar
Laghridat, H., Essadki, A., Annoukoubi, M., & Nasser, T. (2020). A novel adaptive active disturbance rejection control strategy to improve the stability and robustness for a wind turbine using a doubly fed induction generator. Journal of Electrical and Computer Engineering, 8, 1–14. https://doi.org/10.1155/2020/9847628
Article
Google Scholar
Girsang, I. P., Dhupia, J. S., Muljadi, E., Singh, M., & Pao, L. Y. (2014). Gearbox and drivetrain models to study dynamic effects of modern wind turbines. IEEE Transactions on Industry Applications, 50(6), 3777–3786. https://doi.org/10.1109/TIA.2014.2321029
Article
Google Scholar
Boukhriss, A., Essadki, A., Bouallouch, A., & Nasser, T. (2014). Maximization of generated power from wind energy conversion systems using a doubly fed induction generator with active disturbance rejection control. In Second world conference on complex systems (pp. 330–335), Agadir, Morocco. https://doi.org/10.1109/ICoCS.2014.7060907
Boukhriss, A., Nasser, T., & Essadki, A. (2013). A linear active disturbance rejection control applied for DFIG based wind energy conversion system. International Journal of Computer Science Issues, 10(2), 391–399.
Google Scholar
Han, J. (2009). From PID to auto disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621
Article
Google Scholar
Guo, B. Z., & Zhao, Z. L. (2016). Active disturbance rejection control for nonlinear systems: An introduction. John Wiley & Sons. https://doi.org/10.1002/9781119239932
Article
MATH
Google Scholar
Petras, I. (2011). Fractional-order nonlinear systems: Modeling. Springer. https://doi.org/10.1007/978-3-642-18101-6_4
Book
MATH
Google Scholar
Peng, N., Bai, Y., Luo, H., & Bai, J. (2013). Artillery position control through auto disturbance rejection controller based-on fuzzy control. In 5th international conference on intelligent human-machine systems and cybernetics (pp. 496–499), Hangzhou, China. https://doi.org/10.1109/IHMSC.2013.124
Abad, G., Lopez, J., Rodriguez, M. A., Marroyo, L., & Iwanski, G. (2011). Doubly fed induction machine: Modeling and control for wind energy generation. Wiley-IEEE Press. https://doi.org/10.1002/9781118104965
Book
Google Scholar
Abu-Rub, H., Malinowski, M., & Al-Haddad, K. (2014). Power electronics for renewable energy systems, transportation and industrial applications. John Wiley & Sons. https://doi.org/10.1002/9781118755525
Book
Google Scholar
Abad, G. (2017). Power electronics and electric drives for traction applications. John Wiley & Sons. https://doi.org/10.1002/9781118954454
Article
Google Scholar
Wessels, C., & Fuchs, F.W. (2010). Fault ride through of DFIG wind turbines during symmetrical voltage dip with crowbar or stator current feedback solution. In IEEE energy conversion congress and exposition (pp. 2771–2777), Atlanta, GA, USA. https://doi.org/10.1109/ECCE.2010.5618076
Song, J., Gao, K., Wang, L., & Yang, E. (2016). Comparison of linear and nonlinear active disturbance rejection control method for hypersonic vehicle. In 35th Chinese control conference (pp. 10759–10764), Chengdu, China. https://doi.org/10.1109/ChiCC.2016.7555064