Bhubaneswari, P, Iniyan, S, & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 15(3), 1625–1636. doi:10.1016/j.rser.2010.11.032.
Article
Google Scholar
Liu, C, Wu, B, & Cheung, R. (2004). Advanced algorithm for MPPT control of photovoltaic systems. Montreal: Canadian Solar Buildings Conference.
Google Scholar
Majhi, R, Panda, G, Majhi, B, & Sahoo, G. (2009). Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques. Expert Systems with Applications, 36, 10097–10104. doi:10.1016/j.eswa.2009.01.012.
Article
Google Scholar
Kamejima, T, Phimmasone, V, Kondo, Y, & Miyatake, M. (2011). The optimization of control parametersof PSObased MPPT for photovoltaics. IEEE. doi:10.1109/PEDS.2011.6147358.
Google Scholar
Zhang, H, & Cheng, S. (2011). A New MPPT algorithm based on ANN in solar PV systems. Advances in Computer, Communication, Control and Automation, 121, 77–84. doi:10.1007/978-3-642-25541-0_11.
Article
Google Scholar
Nabulsi, AA, & Dhaouadi, R. (2012). Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE, 8(3), 573–584. doi:10.1109/TII.2012.2192282.
Google Scholar
Shaw, B, Banerjee, A, Ghoshal, SP, & Mukherjee, V. (2011). Comparative seeker and bio-inspired fuzzy logic controllers for power system stabilizers. International Journal of Electrical Power & Energy Systems, 33(10), 1728–1738. doi:10.1016/j.ijepes.2011.08.015.
Google Scholar
Sundareswaran, K, Kumar, VV, & Palani, S. (2015). Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Renewable Energy, 75, 308–317. doi:10.1016/j.renene.2014.09.044.
Article
Google Scholar
Qin, L, & Lu, X. (2012). Matlab/simulink-based research on maximum power point tracking of photovoltaic generation. Physics Procedia, 24(A), 10–18. doi:10.1016/j.phpro.2012.02.003.
Article
Google Scholar
Algazar, MM, AL-Monier, H, EL-Halim, H, & Salem, MEEK. (2012). Maximum power point tracking using fuzzy logic control. International Journal of Electrical Power & Energy System, 39(1), 21–28. doi:10.1016/j.ijepes.2011.12.006.
Article
Google Scholar
El-Khozondar, HJ, El-Khozondar, RJ, Matter, K, & Suntio, T (2016). A review study of photovoltaic array maximum power tracking algorithms. Renewables: Wind, Water, and Solar, 3, 3. doi:10.1186/s40807-016-0022-8.
Article
Google Scholar
Mohanty, P, Bhuvaneswari, G, Balasubramanian, R, & Dhaliwal, NK (2014). MATLAB based modeling to study the performance of different MPPT techniques used for solar PV system under various operating conditions. Renewable and Sustainable Energy Reviews, 38, 581–593. doi:10.1016/j.rser.2014.06.001.
Article
Google Scholar
Ahmad, A, & Loganathan, R (2013). Real-time implementation of solar inverter with novel MPPT control algorithm for residential applications. Energy and Power Engineering, 5, 427–435. doi:10.4236/epe.2013.56046.
Article
Google Scholar
RezaReisi, AR, Moradi, MH, & Jamas, S (2013). Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renewable and Sustainable Energy Reviews, 19, 433–443. doi:10.1016/j.rser.2012.11.052.
Article
Google Scholar
Bendib, B, Krim, F, Belmili, H, Almi, MF, & Boulouma, S (2014). Advanced fuzzy MPPT controller for a stand-alone PV system. Technologies and Materials for Renewable Energy, Environment and Sustainability, 50, 383–392. doi:10.1016/j.egypro.2014.06.046.
Google Scholar
Ahmed, J, & Salam, Z (2015). An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Applied Energy, 150, 97–108. doi:10.1109/TII.2015.2489579.
Article
Google Scholar
Tajuddin, MFN, Arif, MS, Ayob, SM, & Salam, Z (2015). Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review. International Journal of Energy Research, 39(9), 1153–1178. doi:10.1002/er.3289.
Article
Google Scholar
Oshaba, AS, Ali, ES, & Elazim, SMA (2015). MPPT control design of PV system supplied SRM using BAT search algorithm. Sustainable Energy, Grids and Networks, 2, 51–60. doi:10.1016/j.segan.2015.04.002.
Article
Google Scholar
Das, S, Biswas, A, Dasgupta, S, & Abraham, A (2009). Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Foundations of Computational Intelligence, 3, 23–55. doi:10.1007/978-3-642-01085-9_2.
Google Scholar
Jasmin, ER, & James, J (2014). Implementation of fuzzy logic based maximum power point tracking in photovoltaic system. Proc. of Int. Conf. on Control, Communication and Power Engineering, CCPE (pp. 547–556).
Google Scholar
Noman, A, Addoweesh, K, & Mashaly, H (2012). A fuzzy logic control method for MPPT of PV systems. IEEE. doi:10.1109/IECON.2012.6389174.
Google Scholar
Othman, AM, El-arini, MMM, Ghitas, A, & Fathy, A (2012). Realworld maximum power point tracking simulation of PV system based on fuzzy logic control. National Journal of Astronomy and Geophysics, 1, 186–194. doi:10.1016/j.nrjag.2012.12.016.
Article
Google Scholar
Cao, N, & Cao, Y (2013). Modeling and Analysis of Grid-Connected Inverter for PV Generation. Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, ICCSEE (pp. 2954–2957).
Google Scholar
Kadri, R, Gaubert, J, & Champenois, G (2011). An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control. IEEE Transactions on Industrial Electronics, 58(1), 66–75. doi:10.1109/TIE.2010.2044733.
Article
Google Scholar