Yang, X., Das, N., & Islam, S. (2014). Analysis of IEC 61850 for a reliable communication system between substations. In *2013 Australasian universities power engineering conference (AUPEC)*, 2014, no. October (pp. 1–6). https://doi.org/10.1109/aupec.2013.6725482.

Mathebula, V. C., & Saha, A. K. (2020). Mission critical safety functions in IEC-61850 based substation automation system: A reliability review. *International Journal of Engineering Research in Africa,* *48*, 149–161. https://doi.org/10.4028/www.scientific.net/jera.48.149

Article
Google Scholar

Brand, K. P., Ostertag, M., & Wimmer, W. (2003). Safety related, distributed functions in substations and the standard IEC 61850. In *2003 IEEE Bologna PowerTech—conference proceedings*, 2003 (Vol. 2, No. July, pp. 260–264). https://doi.org/10.1109/PTC.2003.1304319.

Magro, M. C., Pinceti, P., & Rocca, L. (2016). Can we use IEC 61850 for safety related functions? In *EEEIC 2016—international conference on environment and electrical engineering* (pp. 1–6). https://doi.org/10.1109/EEEIC.2016.7555402.

Caserza Magro, M., Pinceti, P., Rocca, L., & Rossi, G. (2019). Safety related functions with IEC 61850 GOOSE messaging. *International Transactions On Electrical Energy Systems,* *104*, 515–523. https://doi.org/10.1016/j.ijepes.2018.07.033

Article
Google Scholar

Lloyd, M. H., & Reeve, P. J. (2009). IEC 61508 and IEC 61511 assessments—some lessons learned. In *4th IET international conference on systems safety 2009. incorporating the SaRS annual conference*. IET, London. https://doi.org/10.1049/cp.2009.1540.

Zhang, Y., Sprintson, A., & Singh, C. (2012). An integrative approach to reliability analysis of an IEC 61850 digital substation. *IEEE Power and Energy Society General Meeting*. https://doi.org/10.1109/PESGM.2012.6345699

Article
Google Scholar

Mathebula, V. C., & Saha, A. K. (2020). Reliability and availability of multi-channel IEC-61850 substation communication networks for mission-critical applications. *International Journal of Engineering Research in Africa,* *51*, 199–216. https://doi.org/10.4028/www.scientific.net/JERA.51.199

Article
Google Scholar

De Klerk, M. L., & Saha, A. K. (2020). A review of the methods used to model traffic flow in a substation communication network. *IEEE Access,* *8*, 204545–204562. https://doi.org/10.1109/access.2020.3037143

Article
Google Scholar

Bukowski, J. V., & Chalupa, R. (2010). Calculating an appropriate multiplier for βλ when modeling common cause failure in triplex systems. In *Proceedings—annual reliability and maintainability symposium (RAMS). San Jose, CA, USA*. https://doi.org/10.1109/RAMS.2010.5447996.

Belland, J. R. (2017). Modeling common cause failures in diverse components with fault tree applications. In *2017 Proceedings—annual reliability and maintainability symposium (RAMS)*. IEEE, Orlando, FL, USA. https://doi.org/10.1109/RAM.2017.7889659

Xing, L., & Wang, W. (2008). Probabilistic common-cause failures analysis. In *2008 Proceedings—annual reliability and maintainability symposium*. IEEE, Las Vegas, NV, USA. https://doi.org/10.1109/RAMS.2008.4925821.

Kumar, D., Pahuja, G. L., & Quamara, J. K. (2018). Chemical reactor safety system reliability under common cause failure. In *2018 3rd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT) *(pp. 2534–2537). IEEE, Bangalore, India, India. https://doi.org/10.1109/RTEICT42901.2018.9012319.

Kumar, M., Kabra, A., Karmakar, G., & Marathe, P. P. (2015). A review of defences against common cause failures in reactor protection systems. In *2015 4th international conference on reliability, Infocom technologies and optimization: trends and future directions, ICRITO 2015 *(pp. 1–6). IEEE, Noida, India. https://doi.org/10.1109/ICRITO.2015.7359232.

Muhammad, Q., Amjad, N., & Zubair, M. (2014) Modeling of common cause failures (CCFs) by using beta factor parametric model. IEEE, Islamabad, Pakistan. https://doi.org/10.1109/ICESP.2014.7347004.

Pourali, M. (2014). Incorporating common cause failures in mission-critical facilities reliability analysis. *IEEE Transactions on Industry Applications,* *50*(4), 2883–2890. https://doi.org/10.1109/TIA.2013.2295472

Article
Google Scholar

Qin, J., Gu, R., & Li, G. (2017). Reliability modeling of incomplete common cause failure systems subject to two common causes. In *2017 IEEE international conference on industrial engineering and engineering management (IEEM)*. IEEE, Singapore, Singapore (pp. 1906–1910). https://doi.org/10.1109/IEEM.2017.8290223.

Hokstad, P., & Rausand, M. (2008). *Common cause failure modeling: Status and trends*. Springer.

Google Scholar

Zhang, A., Srivastav, H., Barros, A., & Liu, Y. (2021). Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state. *Reliability Engineering and System Safety*. https://doi.org/10.1016/j.ress.2020.107393

Article
Google Scholar

Shao, Q., Yang, S., Bian, C., & Gou, X. (2020). Formal analysis of repairable phased-mission systems with common cause failures. *IEEE Transactions on Reliability,* *10*, 1–12. https://doi.org/10.1109/tr.2020.3032178

Article
Google Scholar

Winkovich, T., & Eckardt, D. (2005). Reliability analysis of safety systems using Markov-chain modelling. In *2005 European conference on power electronics and applications*. IEEE, Dresden, Germany, Germany. https://doi.org/10.1109/epe.2005.219620.

Das, N., Islam, S. (2015). Analysis of power system communication architectures between substations using IEC 61850. In *5th Brunei international conference on engineering and technology (BICET 2014)* (pp. 1.06 (6 .)-1.06 (6 .)). https://doi.org/10.1049/cp.2014.1060.

Das, N., Ma, W., & Islam, S. (2015). Analysis of end-to-end delay characteristics for various packets in IEC 61850 substation communications system. In *2015 Australasian universities power engineering conference (AUPEC)*. IEEE, Wollongong, NSW, Australia. https://doi.org/10.1109/AUPEC.2015.7324831.

Wong, T. J., & Das, N. (2014). Modelling and analysis of IEC 61850 for end-to-end delay characteristics with various packet sizes in modern power substation systems. https://doi.org/10.1049/cp.2014.1073.

Kumar, S., Das, N., & Islam, S. (2014). Performance analysis of substation automation systems architecture based on IEC 61850. https://doi.org/10.1109/AUPEC.2014.6966532.

Khavnekar, A., Wagh, S., & More, A. (2015). Comparative analysis of IEC 61850 edition-I and II standards for substation automation. In *2015 IEEE international conference on computational intelligence and computing research*, no. Iccic (pp. 1–6). https://doi.org/10.1109/ICCIC.2015.7435756.

Suhail Hussain, S. M., Aftab, M. A., & Ali, I. (2016). A novel PRP based deterministic, redundant and resilient IEC 61850 substation communication architecture. *Perspectives in Science,* *8*, 747–750. https://doi.org/10.1016/j.pisc.2016.06.077

Article
Google Scholar

Araujo, J. Á., Lázaro, J., Astarloa, A., Zuloaga, A., & Gárate, J. I. (2015). PRP and HSR for high availability networks in power utility automation: A method for redundant frames discarding. *Journal of Research,* *6*(5), 2325–2332.

Google Scholar

Mnukwa, S., & Saha, A. K. (2020). SCADA and substation automation systems for the port of durban power supply upgrade. In *2020 international SAUPEC/RobMech/PRASA conference, SAUPEC/RobMech/PRASA 2020*. IEEE, Cape Town, South Africa, South Africa (2020). https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041078.

Albarakati, A. et al. (2019). Security monitoring of IEC 61850 substations using IEC 62351-7 network and system management. https://doi.org/10.1109/SmartGridComm.2019.8909710.

Pereira, A. T. A., Lisboa, L. A. C., & Lima, A. M. N. (2016). Strategies and techniques applied to IEC 61850 based DSAS architectures. https://doi.org/10.1049/cp.2016.0009.

Stark, J., Wimmer, W., & Majer, K. (2013). Switchgear optimization using IEC 61850-9-2.

S. Kumar, N. Das, and S. Islam, “High performance communication redundancy in a digital substation based on IEC 62439–3 with a station bus configuration,” 2015, doi: https://doi.org/10.1109/AUPEC.2015.7324838.

Yunus, B., Musa, A., Ong, H. S., Khalid, A. R., Hashim, H. (2008). Reliability and availability study on substation automation system based on IEC 61850. https://doi.org/10.1109/PECON.2008.4762462.

Rahat, R. M., Imam, M. H., & Das, N. (2019). Comprehensive analysis of reliability and availability of sub-station automation system with IEC 61850. https://doi.org/10.1109/ICREST.2019.8644416.

Kanabar, M. G., & Sidhu, T. S. (2009). Reliability and availability analysis of IEC 61850 based substation communication architectures. In *2009 IEEE power and energy society general meeting* (pp. 1–8). https://doi.org/10.1109/PES.2009.5276001.

Ngo, H. et al. (201). An improved high-availability seamless redundancy (HSR) for dependable substation automation system.pdf. https://doi.org/10.1109/ICACT.2014.6779094.

Mekkanen, M., Virrankoski, R., Elmusrati, M., & Antila, E. (2013). Reliability evaluation and comparison for next-generation substation function based on IEC 61850 using Monte Carlo simulation. https://doi.org/10.1109/ICCSPA.2013.6487306.

Andersson, L., Brand, K. P., Brunner, C., & Wimmer, W. (2005). Reliability investigations for SA communication architectures based on IEC 61850. In *2005 IEEE Russia Power Tech, PowerTech* (pp. 1–7). https://doi.org/10.1109/PTC.2005.4524707.

Mathebula, V. C., & Saha, A. K. (2021). Multi-state IEC-61850 substation communication network based on markov partitions and symbolic dynamics. *Sustainable Energy Grids and Networks*. https://doi.org/10.1016/j.segan.2021.100466

Article
Google Scholar

Mathebula, V. C., & Saha, A. K. (2021). Impact of imperfect repairs and diagnostic coverage on the reliability of multi-channel IEC-61850 substation communication network. *IEEE Access,* *9*, 2758–2769. https://doi.org/10.1109/ACCESS.2020.3047781

Article
Google Scholar

Mathebula, V. C., & Saha, A. K. (2021). Responsiveness of multi-channel IEC-61850 substation communication network reliability performance to changes in repair factors. *IEEE Access,* *9*, 789–800. https://doi.org/10.1109/ACCESS.2020.3046950

Article
Google Scholar

Mathebula, V. C., & Saha, A. K. (2021). Sensitivity and elasticity of multi-channel IEC-61850 substation communication networks to imperfect repairs. *Sustainable Energy Grids and Networks,* *26*, 20. https://doi.org/10.1016/j.segan.2021.100443

Article
Google Scholar

Ding, L., Wang, H., Jiang, J., & Xu, A. (2017). SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram. *Reliability Engineering and System Safety,* *165*(114), 170–187. https://doi.org/10.1016/j.ress.2017.03.005

Article
Google Scholar

Billinton, R., & Allan, R. N. (1984). *Reliability evaluation of power systems* (2nd ed.). Plenum Publishing Corporation.

Book
Google Scholar

Mo, H., Wang, W., Xie, M., & Xiong, J. (2017). Modeling and analysis of the reliability of digital networked control systems considering networked degradations. *IEEE Transactions on Automation Science and Engineering,* *14*(3), 1491–1503. https://doi.org/10.1109/TASE.2015.2443132

Article
Google Scholar

Belusso, C. L. M., Sawicki, S., Roos-frantz, F., & Frantz, R. Z. (2016). A study of petri nets, Markov chains and queueing theory as mathematical modelling languages aiming at the simulation of enterprise application integration solutions: a first step. *Procedia Comput. Sci.,* *100*, 229–236. https://doi.org/10.1016/j.procs.2016.09.147

Article
Google Scholar

Meadows, D. H. (2009). *Thinking in systems*. Earthscan.

Google Scholar

Mkandawire, B. O., Ijumba, N. M., & Saha, A. K. (2015). Component risk trending based on systems thinking incorporating Markov and Weibull inferences. *IEEE Systems Journal,* *9*(4), 1185–1196. https://doi.org/10.1109/JSYST.2014.2363384

Article
Google Scholar

Smith, R., Modarres, M. (2020). A physics of failure approach to common cause failure considering component degradation. In *2020 Proceedings—annual reliability and maintainability symposium*. IEEE, Palm Springs, CA, USA (pp. 1–6). https://doi.org/10.1109/RAMS48030.2020.9153651.

Mathebula, V. C. (2019). Application of bus transfer schemes of stabilise power supply in a coal fired power plant unit auxiliary reticulation, Durban, South Africa, SE-08, 2019. https://researchspace.ukzn.ac.za/handle/10413/17029.

Mathebula, V. C., Saha, A. K. (2019). Coal fired power plant in-phase bus transfer simulation of forced and induced draught fan motors. In *Proceedings—2019 Southern African universities power engineering conference/robotics and mechatronics/pattern recognition association of South Africa, SAUPEC/RobMech/PRASA 2019*. IEEE, Bloemfontein, South Africa (pp. 293–298). https://doi.org/10.1109/RoboMech.2019.8704820.

Mathebula, V. C., & Saha, A. K. (2019). Development of In-Phase Bus Transfer Scheme Using Matlab Simulink. In *Proceedings—2019 Southern African Universities power engineering conference/robotics and mechatronics/pattern recognition association of South Africa, SAUPEC/RobMech/PRASA 2019*, no. 6. IEEE, Bloemfontein, South Africa (pp. 275–280). https://doi.org/10.1109/RoboMech.2019.8704815.

Mkandawire, B. O., Ijumba, N., & Saha, A. K. (2015). Transformer risk modelling by stochastic augmentation of reliability-centred maintenance. *Electric Power Systems Research,* *119*, 471–477. https://doi.org/10.1016/j.epsr.2014.11.005

Article
Google Scholar

Yi, H., Cui, L., & Gao, H. (2020). Reliabilities of some multistate consecutive κ systems. *IEEE Transactions on Reliability,* *69*(2), 414–429. https://doi.org/10.1109/TR.2019.2897726

Article
Google Scholar

Bukowski, J. V., & Van Beurden, I. (2009). Impact of proof test effectiveness on safety instrumented system performance. In *Proceedings—annual reliability and maintainability symposium* (pp. 157–163). https://doi.org/10.1109/RAMS.2009.4914668.

Torres, E. S., Sriramula, S., Celeita, D., & Ramos, G. (2020). Reliability model and sensitivity analysis for electrical/electronic/programmable electronic safety-related systems. *IEEE Transactions on Industry Applications,* *56*(4), 3422–3430. https://doi.org/10.1109/TIA.2020.2990583

Article
Google Scholar

Caswell, H. (2019). *Sensitivity analysis: Matrix methods in demography and ecology*. Springer.

Book
Google Scholar

Caswell, H. (2013). Sensitivity analysis of discrete Markov chains via matrix calculus. *Linear Algebra and its Applications,* *438*(4), 1727–1745. https://doi.org/10.1016/j.laa.2011.07.046

Article
MathSciNet
MATH
Google Scholar

Spiegel, M. R. (1983). *Advanced mathematics for engineers and scientists*, S.I.ed. Singapore: Schaum’s Outline Series.

Mathebula, V. C., & Saha, A. K. (2021). Impact of quality of repairs and common cause failures on the reliability performance of intra-bay IEC 61850 substation communication network architecture based on Markov and linear dynamical systems. *IEEE Access,* *9*, 112805–112820. https://doi.org/10.1109/ACCESS.2021.3104020

Article
Google Scholar

Porras-Vázquez, A., & Romero-Pérez, J. A. (2018). A new methodology for facilitating the design of safety-related parts of control systems in machines according to ISO 13849:2006 standard. *Reliability Engineering and System Safety,* *174*, 60–70. https://doi.org/10.1016/j.ress.2018.02.018

Article
Google Scholar

Fukuda, T., Hirayama, M., Kasai, N., & Sekine, K. (2007) Evaluation of operative reliability of safety-related part of control system of machine and safety level. In *Proceedings of the SICE annual conference* (pp. 2480–2483). https://doi.org/10.1109/SICE.2007.4421406.

Lerévérend, P. (2008). Inside the standardization jungle: IEC 62061 and ISO 13849-1, complementary or competing? In *2008 5th petroleum and chemical industry conference Europe—electrical and instrumentation applications*. IEEE, Weimar, Germany. https://doi.org/10.1109/PCICEUROPE.2008.4563534.

Srivastav, H., Barros, A., & Lundteigen, M. A. (2020). Modelling framework for performance analysis of SIS subject to degradation due to proof tests. *Reliability Engineering and System Safety,* *195*, 106702. https://doi.org/10.1016/j.ress.2019.106702

Article
Google Scholar