Lasseter, R. H. (2002). Microgrids. In *Proceedings of the IEEE POWER ENGINEERING SOCIETY WINTER MEETING* (pp. 305–308).

Lasseter, R., Akhil, A., Marnay, C., Stephens, J., Dagle, J., Guttromson, R., Meliopoulos, A., Yinger, R., & Eto, J. (2017).

Martin-Martínez, F., Sánchez-Miralles, A., & Rivier, M. (2016). A literature review of Microgrids: A functional layer-based classification. *Renewable and Sustainable Energy Reviews,* *62*, 1133–1153.

Article
Google Scholar

Lin, P., Zhao, T., Wang, B., Wang, Y., & Wang, P. (2020). A semi-consensus strategy toward multi-functional hybrid energy storage system in DC microgrids. *IEEE Transactions on Energy Conversion,* *35*(1), 336–346. https://doi.org/10.1109/TEC.2019.2936120

Article
Google Scholar

Luo, S. (2005). A review of distributed power systems part I: DC distributed power system. *IEEE Aerospace and Electronic Systems Magazine,* *20*, 5–16.

Article
Google Scholar

Fulwani, D. K., & Singh, S. (2016). *Mitigation of negative impedance instabilities in DC distribution systems: A sliding mode control approach*. Springer.

Google Scholar

Du, W., Zhang, J., Zhang, Y., & Qian, Z. (2013). Stability criterion for cascaded system with constant power load. *IEEE Transactions on Power Electronics,* *28*, 1843–1851.

Article
Google Scholar

Grigore, V., Hatonen, J., Kyyra, J., & Suntio, T. (1998). Dynamics of a buck converter with a constant power load. In *Power electronics specialists Conf*. (29th Annual IEEE 1, 17–22).

Rim, C. T., Joung, G. B., & Cho, G. H. (1988). A state space modeling of non-ideal dc-dc converters. In *IEEE power electronics specialists conf. rec* (pp. 943–950).

Rivetta, C., & Williamson, G. A. (2004). Global behaviour analysis of a DC–DC boost power converter operating with constant power load. *Proceedings of International Symposium on Circuits and Systems,* *5*, 956–959.

Google Scholar

Rahimi, A. M., & Emadi, A. (2009). Active damping in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads. *IEEE Transactions on Industrial Electronics,* *56*, 1428–1439.

Article
Google Scholar

Arora, S., Balsara, P., & Bhatia, D. (2019). Input–output linearization of a boost converter with mixed load (constant voltage load and constant power load). *IEEE Transactions on Power Electronics,* *34*, 815–825.

Article
Google Scholar

Hassan, M. A., Li, E. P., Li, X., Li, T., Duan, C., & Chi, S. (2019). Adaptive passivity-based control of DC–DC buck power converter with constant power load in DC microgrid systems. *IEEE Journal of Emerging and Selected Topics in Power Electronics,* *7*, 2029–2040.

Article
Google Scholar

Kwasinski, A., & Onwuchekwa, C. N. (2011). Dynamic behavior and stabilization of DC microgrids with instantaneous constant-power loads. *IEEE Transactions on Power Electronics,* *26*, 822–834.

Article
Google Scholar

Lu, X., Sun, K., Guerrero, J. M., Vasquez, J. C., Huang, L., & Wang, J. (2015). Stability enhancement based on virtual impedance for DC microgrids with constant power loads. *IEEE Transactions on Smart Grid,* *6*, 2770–2783.

Article
Google Scholar

Liu, S., Su, P., & Zhang, L. (2018). A virtual negative inductor stabilizing strategy for DC microgrid with constant power loads. *IEEE Access,* *6*, 59728–59741.

Article
Google Scholar

Magne, P., Nahid-Mobarakeh, B., & Pierfederici, S. (2013). Active stabilization of DC microgrids without remote sensors for more electric aircraft. *IEEE Transactions on Industry Applications,* *49*, 2352–2360.

Article
Google Scholar

Mazumder, S. K., Nayfeh, A. H., & Boroyevich, D. (2001). Theoretical and experimental investigation of the fast- and slow-scale instabilities of a DC-DC converter. *IEEE Transactions on Power Electronics,* *16*, 201–216.

Article
Google Scholar

Sabanovic, A., & Šabanović, N. (2008). Sliding modes applications in power electronics and electrical drives. https://doi.org/10.1007/3-540-45666-X_10.

Mishra, R., Hussain, M. N., & Agarwal, V. (2016). A sliding mode control based stabilization solution for multiple constant power loads with identical input filters interfaced with the DC bus of a ‘More Electric’ Aircraft. In *2016 IEEE international conference on power electronics, drives and energy systems (PEDES), Trivandrum*, 2016, (pp. 1–6). https://doi.org/10.1109/PEDES.2016.7914300.

Martínez-Treviño, B. A., Aroudi, A. E., & Martínez-Salamero, L. (2018). Synthesis of constant power loads using switching converters under sliding mode control. In *2018 IEEE international symposium on circuits and systems (ISCAS), Florence*, 2018 (pp. 1-5). https://doi.org/10.1109/ISCAS.2018.8351435

Zhao, Y., Qiao, W., & Ha, D. (2014). A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. *IEEE Transactions on Industry Applications,* *50*(2), 1448–1458. https://doi.org/10.1109/TIA.2013.2273751

Article
Google Scholar

Anderson Azzano, J. L., Moré, J. J., & Puleston, P. F. (2019). Stability criteria for input filter design in converters with CPL: Applications in sliding mode controlled power systems. *Energies,* *12*, 4048. https://doi.org/10.3390/en12214048

Article
Google Scholar

Zhang, M., Li, Y., Liu, F., Luo, L., Cao, Y., & Shahidehpour, M. (2017). Voltage stability analysis and sliding mode control method for rectifier in DC systems with constant power loads. *IEEE Journal of Emerging and Selected Topics in Power Electronics,* *5*, 1621–1630.

Article
Google Scholar

Bosich, D., Giadrossi, G., & Sulligoi, G. (2014). Voltage control solutions to face the CPL instability in MVDC shipboard power systems. In *Proceedings of AEIT Annual* (pp. 1–6).

Rahimi, A. M., Williamson, G. A., & Emadi, A. (2010). Loop-cancellation technique: A novel nonlinear feedback to overcome the destabilizing effect of constant-power loads. *IEEE Transactions on Vehicular Technology,* *59*, 650–661.

Article
Google Scholar

Wu, J., & Lu, Y. (2019). Adaptive backstepping sliding mode control for boost converter with constant power load. *IEEE Access,* *7*, 50797–50807.

Article
Google Scholar

Hassan, M. A., Li, T., Duan, C., Chi, S., & Li, E. P. (2017). Stabilization of DC-DC buck power converter feeding a mixed load using passivity-based control with nonlinear disturbance observer. In *Proceedings of IEEE conference on energy internet energy systems integration (EI2)* (pp. 1–6).

Gavagsaz-Ghoachani, R., Martin, J. P., Pierfederici, S., Nahid-Mobarakeh, B., & Davat, B. (2013). DC power networks with very low capacitances for transportation systems: dynamic behavior analysis. *IEEE Transactions on Power Electronics,* *28*, 5865–5877.

Article
Google Scholar

Saublet, L. M., Gavagsaz-Ghoachani, R., Martin, J. P., Nahid-Mobarakeh, B., & Pierfederici, S. (2016). asymptotic stability analysis of the limit cycle of a cascaded DC–DC converter using sampled discrete-time modeling. *IEEE Transactions on Industrial Electronics,* *63*, 2477–2487.

Article
Google Scholar

Xia, C., Song, P., & Shi, T. (2013). Chaotic dynamics characteristic analysis for matrix converter. *IEEE Transactions on Industrial Electronics,* *60*, 78–87.

Article
Google Scholar

Aroudi, A. E., Orabi, M., Haroun, R., & Martinez-Salamero, L. (2011). Asymptotic slow-scale stability boundary of PFC AC–DC power converters: Theoretical prediction and experimental validation. *IEEE Transactions on Industrial Electronics,* *58*, 3448–3460.

Article
Google Scholar

Orabi, M., & Ninomiya, T. (2003). Nonlinear dynamics of power-factor-correction converter. *IEEE Transactions on Industrial Electronics,* *50*, 1116–1125.

Article
Google Scholar

Sha, J., Xu, J., Bao, B., & Yan, T. (2014). Effects of circuit parameters on dynamics of current-mode-pulse-train-controlled buck converter. *IEEE Transactions on Industrial Electronics,* *61*, 1562–1573.

Article
Google Scholar

Pantic, Z., Bai, S., & Lukic, S. (2011). ZCS-compensated resonant inverter for inductive-power-transfer application. *IEEE Transactions on Industrial Electronics,* *58*, 3500–3510.

Article
Google Scholar

Xie, F., Zhang, B., & Yang, R. (2013). Detecting bifurcation types and characterizing stability in DC-DC switching converters by duplicate symbolic sequence and weight complexity. *IEEE Transactions on Industrial Electronics,* *60*, 3145–3156.

Article
Google Scholar

Dranga, O., Buti, B., & Nagy, I. (2003). Stability analysis of a feedback-controlled resonant DC–DC converter. *IEEE Transactions on Industrial Electronics,* *50*, 141–152.

Article
Google Scholar

Aroudi, A. E. (2017). A new approach for accurate prediction of subharmonic oscillation in switching regulators—Part II: Case studies. *IEEE Transactions on Power Electronics,* *32*, 5835–5849.

Article
Google Scholar

Aroudi, A. E., Rodríguez, E., Leyva, R., & Alarcón, E. (2010). A design-oriented combined approach for bifurcation prediction in switched-mode power converters. *IEEE Transactions on Circuits and Systems II: Express Briefs,* *57*, 218–222.

Article
Google Scholar

Gavagsaz-Ghoachani, R., Nahid-Mobarakeh, B., Pierfederici, S., Zandi, M., Davat, B., Martin, J. P., & Phattanasak, M. (2015). Estimation of the bifurcation point of a modulated-hysteresis current-controlled DC–DC boost converter: Stability analysis and experimental verification. *IET Power Electronics,* *8*, 2195–2203.

Article
Google Scholar

Wang, J., Bao, B., & Xu, J. (2013). Dynamical effects of equivalent series resistance of output capacitor in constant on-time controlled buck converter. *IEEE Transactions on Industrial Electronics,* *60*, 1759–1768.

Article
Google Scholar

Rahimi, A. M., & Emadi, A. (2009). An analytical investigation of DC/DC power electronic converters with constant power loads in vehicular power systems. *IEEE Transactions on Vehicular Technology,* *58*, 2689–2702.

Article
Google Scholar

Zadeh, M. K., Gavagsaz-Ghoachani, R., Martin, J. P., Pierfederici, S., Nahid-Mobarakeh, B., & Molinas, M. (2017). Discrete-time tool for stability analysis of DC power electronics-based cascaded systems. *IEEE Transactions on Power Electronics,* *32*, 652–667.

Article
Google Scholar

Gavagsaz-Ghoachani, R., Saublet, L. M., Phattanasak, M., Martin, J. P., Nahid-mobarakeh, B., & Pierfederici, S. (2018). Active stabilisation design of DC–DC converters with constant power load using a sampled discrete-time model: Stability analysis and experimental verification. *IET Power Electronics,* *11*, 1519–1528.

Article
Google Scholar

Saublet, L. M., Gavagsaz-Ghoachani, R., Martin, J. P., Nahid-Mobarakeh, B., & Pierfederici, S. (2016). Bifurcation analysis and stabilization of DC power systems for electrified transportation systems. *IEEE Transactions on Transportation Electrification,* *2*, 86–95.

Article
Google Scholar

Emadi, A., Khaligh, A., Rivetta, C. H., & Williamson, G. A. (2006). Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives. *IEEE Transactions on Vehicular Technology,* *55*, 1112–1125.

Article
Google Scholar

Lin, P., Jiang, W., Wang, J., Shi, D., Zhang, C., & Wang, P. (2021). Toward large-signal stabilization of floating dual boost converter-powered DC microgrids feeding constant power loads. *IEEE Journal of Emerging and Selected Topics in Power Electronics,* *9*(1), 580–589. https://doi.org/10.1109/JESTPE.2019.2956097

Article
Google Scholar

Lin, P., Zhang, C., Zhang, X., Iu, H. H. C., Yang, Y., & Blaabjerg, F. (2021). Finite-time large signal stabilization for high power DC microgrids with exact offsetting of destabilizing effects. *IEEE Transactions on Industrial Electronics,* *68*(5), 4014–4026. https://doi.org/10.1109/TIE.2020.2987275

Article
Google Scholar

Nahata, P., Bella, A. L., Scattolini, R., & Ferrari-Trecate, G. (2020). Hierarchical control in islanded DC microgrids with flexible structures. In *IEEE transactions on control systems technology.* https://doi.org/10.1109/TCST.2020.3038495.

Chen, L., Yang, T., Gao, F., Bozhko, S., & Wheeler, P. (2018). DC microgrid control principles—Hierarchical control diagram. In DC Distribution Systems and Microgrids, vol. 115. T. Dragiˇcevi´c, P. Wheeler, and F. Blaabjerg, Eds. London: The Institution of Engineering and Technology, 2018, ch. 1 (pp. 1–21).

Vandoorn, T. L., Vasquez, J. C., De Kooning, J., Guerrero, J. M., & Vandevelde, L. (2013). Microgrids: Hierarchical control and an overview of the control and reserve management strategies. *IEEE Industrial Electronics Magazine,* *7*(4), 42–55. https://doi.org/10.1109/MIE.2013.2279306

Article
Google Scholar

Pragallapati, N., Ranade, S. J., & Lavrova, O. (2021). Cyber physical implementation of improved distributed secondary control of DC microgrid. In *2021 1st international conference on power electronics and energy (ICPEE)* (pp. 1–5). https://doi.org/10.1109/ICPEE50452.2021.9358705.

Wang, Y., et al. (2021). A distributed control scheme of microgrids in energy internet paradigm and its multisite implementation. *IEEE Transactions on Industrial Informatics,* *17*(2), 1141–1153. https://doi.org/10.1109/TII.2020.2976830

Article
Google Scholar

Li, R., Liu, S., Xia, M., & Liu, X. (2020). Analysis of effects of communication conditions on distributed secondary control for DC microgrids. In *2020 IEEE 9th international power electronics and motion control conference (IPEMC2020-ECCE Asia)* (pp. 2933–2938). https://doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9368071.

Saublet, L., Gavagsaz-Ghoachani, R., Martin, J., Nahid-Mobarakeh, B., & Pierfederici, S. (2016). Bifurcation analysis and stabilization of DC power systems for electrified transportation systems. *IEEE Transactions on Transportation Electrification,* *2*(1), 86–95. https://doi.org/10.1109/TTE.2016.2519351

Article
Google Scholar

Emadi, A., Khaligh, A., Rivetta, C. H., & Williamson, G. A. (2006). Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives. *IEEE Transactions on Vehicular Technology,* *55*(4), 1112–1125. https://doi.org/10.1109/TVT.2006.877483

Article
Google Scholar

Wu, H., & Pickert, V. (2014). Stability analysis and control of nonlinear phenomena in bidirectional boost converter based on the Monodromy matrix. *In Twenty-ninth annual IEEE applied power electronics conference and exposition* (pp. 2822–2827).

Cupelli, M., Zhu, L., & Monti, A. (2015). Why ideal constant power loads are not the worst case condition from a control standpoint. *IEEE Transactions on Smart Grid,* *6*, 2596–2606.

Article
Google Scholar

Pastore, S., Bosich, D., & Sulligoi, G. (2016). Influence of DC-DC load converter control bandwidth on small-signal voltage stability in MVDC power systems. In *International conference on electrical systems for aircraft railway ship propulsion and road vehicles & international transportation electrification conference* (pp. 1–6).

Pastore, S., Bosich, D., & Sulligoi, G. (2018). An analysis of the small-signal voltage stability in MVDC power systems with two cascade controlled DC–DC converters. In *IECON 2018—44th annual conference of the IEEE industrial electronics society* (pp. 3383–3388).

Pastore, S., Bosich, D., & Sulligoi, G. (2017). Analysis of small-signal voltage stability for a reduced-order cascade-connected MVDC power system. In *Industrial electronics society IECON 2017—43rd annual conference of the IEEE* (pp. 6771–6776).

Javaid, U., Christe, A., Freijedo, F. D., & Dujic, D. (2017). Interactions between bandwidth limited CPLs and MMC based MVDC supply. In *IEEE energy conversion congress and exposition (ECCE)* (pp. 2679–2685).

Pastore, S., Bosich, D., & Sulligoi, G. (2018). A frequency analysis of the small-signal voltage model of a MVDC power system with two cascade DC-DC converters. In *IEEE international conference on electrical systems for aircraft railway ship propulsion and road vehicles & international transportation electrification conference* (pp. 1–6).

Ma, Y., Corzine, K., Maqsood, A., Gao, F., & Wang, K. (2019). Stability assessment of droop controlled parallel buck converters in zonal ship DC microgrid. In* 2019 IEEE electric ship technologies symposium (ESTS), Washington, DC, USA* (pp. 268–272). https://doi.org/10.1109/ESTS.2019.8847795

Jia, L., Du, C., Zhang, C., & Chen, A. (2017). An improved droop control method for reducing current sensors in DC microgrid. In *2017 Chinese automation congress (CAC), Jinan* (pp. 4645–4649). https://doi.org/10.1109/CAC.2017.8243599

Korompili, A., & Monti, A. (2017). Analysis of the dynamics of dc voltage droop controller of DC–DC converters in multi-terminal dc grids. In *2017 IEEE second international conference on DC microgrids (ICDCM), Nuremburg*, 2017 (pp. 507–514). https://doi.org/10.1109/ICDCM.2017.8001094.

Liu, Y., Han, Y., Lin, C., Yang, P., & Wang, C. (2019). Design and implementation of droop control strategy for DC microgrid based on multiple DC/DC converters. In *2019 IEEE innovative smart grid technologies—Asia (ISGT Asia), Chengdu, China*, 2019 (pp. 3896–3901). https://doi.org/10.1109/ISGT-Asia.2019.8881129

Gao, F., & Bozhko, S. (2016). Modeling and impedance analysis of a single DC bus-based multiple-source multiple-load electrical power system. *IEEE Transactions on Transportation Electrification,* *2*, 335–346.

Article
Google Scholar

Gao, F. (2017). Comparative stability analysis of droop control approaches in voltage source converters-based dc microgrids. *IEEE Transactions on Power Electronics,* *32*, 2395–2415.

Article
Google Scholar

Gao, F., Bozhko, S., Costabeber, A., Asher, G., & Wheeler, P. (2017). Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft. *IEEE Transactions on Industrial Electronics,* *64*, 9271–9281.

Article
Google Scholar

Wu, H., Pickert, V., Ma, M., Ji, B., & Zhang, C. (2020). Stability study and nonlinear analysis of DC–DC power converters with constant power loads at the fast timescale. *IEEE Journal of Emerging and Selected Topics in Power Electronics,* *8*(4), 3225–3236. https://doi.org/10.1109/JESTPE.2020.2966375

Article
Google Scholar

Xu, Q., Yan, Y., Zhang, C., Dragicevic, T., & Blaabjerg, F. (2020). An offset-free composite model predictive control strategy for DC/DC buck converter feeding constant power loads. *IEEE Transactions on Power Electronics,* *35*(5), 5331–5342. https://doi.org/10.1109/TPEL.2019.2941714

Article
Google Scholar

Rahimi, A. M., Khaligh, A., & Emadi, A. (2006). Design and Implementation Of An Analog Constant Power Load For Studying Cascaded Converters. In *IECON 2006—32nd annual conference on IEEE industrial electronics*, 2006 (pp. 1709–1714). https://doi.org/10.1109/IECON.2006.347635.

Arora, S., Balsara, P. T., & Bhatia, D. K. (2016). Digital implementation of constant power load (CPL), active resistive load, constant current load and combinations. *IEEE Dallas Circuits and Systems Conference (DCAS),* *2016*, 1–4. https://doi.org/10.1109/DCAS.2016.7791138

Article
Google Scholar

Bengston. T. R. (1997) Constant power load needs only a few parts. Available http://electronicdesign.com/power/constant-powerload-needs-only-few-parts.