ETIP Ocean (2019). Powering homes today, powering nations tomorrow. Ocean Energy Europe Available: https://www.oceanenergy-europe.eu/wp-content/uploads/2019/04/ETIP-Ocean-Integrated-Strategy-2019-LR.pdf.
Rodrigues, L. (2008). Wave power conversion Systems for Electrical Energy Production. Salamanca: ICREPQ.
Book
Google Scholar
Drew, B., Plummer, A. R., & Sahinkaya, M. N. (2009). A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers: Part A Journal Power Energy, 223(8), 887–902.
Article
Google Scholar
ON, E. pelamis Wave Power P2 Demonstration at EMEC. Scottish Power Renewables. (2004). [online]. Available: http://www.emec.org.uk/about-us/wave-clients/pelamis-wave-power/.
Brown, E. G. Cost of generation User’s guide version 3. California State Energy Commission Report. (2016). [online]. Available: https://ww2.energy.ca.gov/2016publications/CEC-200-2016-015/CEC-200-2016-015.pdf.
Delay, T. (2009). Building the Future, Today. The Carbon Trust, Report. Available: [online]. https://www.ukgbc.org/sites/default/files/Carbon%20Trust%20-%20Building%20the%20Future%20Today.pdf.
Shehata, A. S., Xiao, Q., Saqr, K. M., & Alexander, D. (2016). Wells turbine for wave energy conversion: A review. International Journal of Energy Research, 41, 6–38.
De, A., & F., & Falcao, O. (2010). Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899–948.
Article
Google Scholar
Eidsmoen, H. (1998). Tight-moored amplitude-limited heaving buoy wave-energy converter with phase control. Applied Ocean research, 20(3), 157–161.
Article
Google Scholar
Amundarain, M., Alberdi, M., Garrido, A. J., & Garrido, I. (2010). Control strategies for OWC wave power plants, (pp. 4319–4324). Baltimore: Proceedings of the 2010 American control conference.
Google Scholar
Bossoufi, B., Karim, M., & Lagrioui, A. (2014). Matlab and Simulink simulation with FPGA based implementation Adaptative and not Adaptative Back-stepping non-linear control of a permanent magnet synchronous machine drive. WSEAS Transaction System Control, 9, 86–100.
Google Scholar
Rusu, E., & Onea, F. (2018). A review of the technologies for wave energy extraction. Clean Energy, 2, 10–19.
Article
Google Scholar
McCormick, M., & E. (2007). Ocean wave energy conversion. Dover Publications, New York, ISBN-13: 978-0486462455.
Garrido, A. J., Garrido, I., Lekube, J., De la Sen, M., & Carrascal, E. (2016). Modelling of Oscillating Water Column Wave Energy Systems. World Automation Congress (WAC), Rio Grande, 1–6.
Penalba, M., & Ringwood, V. J. (2016). A review of wave-to-wire models for wave energy converters. Energies, 9, 506.
Article
Google Scholar
Mishra, S. K., Purwar, S., & Kishor, N. (2016). An optimal and non-linear speed control of oscillating water column wave energy plant with Wells turbine and DFIG. International Journal of Renewable Energy Resource, 6,(3), 95–1006.
Lin, H., & Chao, Q. (2010). Simulation study of modeling and control of direct drive wind turbine under grid fault. Power System Protection and Control, 38(21), 189–195.
Dominguez, X., & Imbaquingo, C. (2015). Vector control for an interior permanent magnet synchronous machine with maximum torque per ampere strategy. Revista Politécnica, 35(1), 1–5.
Google Scholar
Mahersi, E., Kheder, A., & Mimouni, M. F. (2013). The wind energy conversion system using PMSG controlled by vector control and SMC strategies. International Journal of Renewable Energy Research, 3, 41–50.
Google Scholar
Ayadi, M., & Derbel, N. (2017). Non-linear adaptive Back-stepping control for variable-speed wind energy conversion system-based permanent magnet synchronous generator. International Journal of Advanced Manufacturing Technology, 92, 39–46.
Article
Google Scholar
Mishra, S., & K., & Patel, A. (2017). Wells turbine Modelling and PI control scheme for OWC plant using Xilinx system generator, (pp. 1–6). Allahabad: 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES).
Google Scholar
Yan, X., Li, J., & Wei, X. (2019). Research on control strategy of direct-drive permanent magnet synchronous wind turbine in full wind speed range. Power System Protection and Control, 47(23), 138–144.
Google Scholar
Shang, L., Guo, H., & Zhu, W. (2020). An improved MPPT control strategy based on incremental conductance algorithm. Protection and Control of Modern Power Systems, 5(14), 1–8.
Google Scholar
Mahersi, E., & Kheder, A. (2014). Sensorless control with an adaptive sliding mode flux observer applied to wind PMSG system. Hammamet: 15th International Conference on Sciences and Techniques of Automatic Control and computer Engenering.
Google Scholar
Amundarain, M., Alberdi, M., Garrido, A. J., & Garrido, I. (2011). Neural rotational speed control for wave energy converters. International Journal of Control, 84(2), 293–309.
Article
MathSciNet
MATH
Google Scholar
Brahmi, J., Krichen, L., & Ouali, A. (2009). A comparative study between three Sensorless control strategies for PMSG in wind energy conversion system. Applied Energy, 86(9), 1565–1573.
Article
Google Scholar
Lekube, J., Garrido, A. J., Garrido, I., Otaola, E., & Maseda, J. (2018). Flow control in Wells turbines for harnessing maximum wave power. Sensors, 18(2), 535.
Article
Google Scholar
Garrido, A. J., Garrido, I., Amundarain, M., Alberdi, M., & De la Sen, M. (2012). Sliding-mode control of wave power generation plants. IEEE Transactions on Industry Applications, 48(6), 2372–2381.
Article
Google Scholar
Yue, H., Rafael, W., Cecilia, B., Mikael, E., Jens, E., & Mats, L. (2014). Review on electrical control strategies for wave energy converting systems. Renewable and Sustainable Energy Reviews, 31, 329–342.
Article
Google Scholar
Mishra, S. K., Purwar, S., & Kishor, N. (2016). Fuzzy logic control of OWC wave energy Plant for Preventing Wells Turbine Stalling, (pp. 1–6). Bikaner: IEEE s Power India International Conference (PIICON).
Google Scholar
Khemiri, N., Akheder, N., Mimouni, M., & F. (2012). An adaptive non-linear Back-stepping control of DFIG driven by wind turbine. WSEAS Transactions on Environment and Development, 8(2), 60–71.
Google Scholar
El-Daoudi, S., Lazrak, L., & Ait Lafkih, M. (2020). Sliding mode approach applied to Sensorless direct torque control of cage asynchronous motor via multi-level inverter. Protection and Control of Modern Power Systems, 5(13), 1–10.
Google Scholar
Aubréea, R., Augera, F., Macé, M., & Loron, L. (2016). Design of an Efficient Small Wind Energy Conversion System with an adaptive Sensorless MPPT strategy. Renewable Energy, 86, 280–291.
Article
Google Scholar
Bakhtiari, F., & Nazarzadeh, J. (2020). Optimal estimation and tracking control for variable-speed wind turbine with PMSG. Journal of Modern Power Systems and Clean Energy, 8, 159–167.
Article
Google Scholar
Roch, N., Zhu, R., Ping, S., & Paul, C. (2012). On the efficiency of oscillating water column (OWC) devices in Converting Ocean wave energy to electricity under weakly non-linear waves, (pp. 659–666). Rio de Janeiro: Proceedings of ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Ocean Space Utilization; Ocean Renewable Energy.
Google Scholar
Alberdi, M., Amundarain, M., Garrido, A. J., Garrido, I., & Maseda, F. J. (2011). Fault-ride-through capability of oscillating water column based wave-power-generation plants equipped with doubly fed induction generator and airflow control. IEEE Transactions on Industrial Electronics, 58, 1501–1517.
Article
Google Scholar
Setoguchi, T., & Takao, M. (2006). Current status of self-rectifying air turbines for wave energy conversion. Energy Conversion and Management, 47, 2382–2396.
Article
Google Scholar
Falcão, A. F., Vieira, L. C., Justino, P. A. P., & Andre, J. M. C. S. (2003). By-pass air-valve control of an OWC wave power plant. Journal of Offshore Mechanics and Arctic Engineering, 125, 205–210.
Article
Google Scholar
Takao, M., Setoguchi, T., Kaneko, K., Kim, T. H., Maeda, H., & Inoue, M. (2002). Impulse turbine for wave power conversion with airflow rectification system. International Journal of Offshore and Polar Engineering, 12(2), ISOPE-02-12-2-142.
Justino, P. A. P., & Falcão, A. F. (1999). Rotational speed control of an OWC wave power plant. Journal of Offshore Mechanics and Arctic Engineering, 121, 65–70.
Gato, L. M. C., Warfield, V., & Thakker, A. (1996). A performance of a high-solidity Wells turbine for an OWC wave power plant. Jounal of Energy Resource Technology, 118, 263–268.
Article
Google Scholar
Sarmento, A., Falcão, A., & F. (1985). Wave generation by an oscillating surface-pressure and its application in wave energy extraction. Journal of Fluid Mechanics, 150, 467–485.
Article
MATH
Google Scholar
M’zoughi, F., Bouallègue, S., Garrido, A. J., Garrido, I., & Ayadi, M. (2020). Water cycle algorithm-based airflow control for oscillating water column-based wave energy converters. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 234(1), 118–133.
Google Scholar
Narayanan, V., Murthy, B., Bose, K., Sridhara, S., & Rao, G. (1996). Dynamic analysis of a grid connected induction generator driven by a wave-energy turbine. In Proceedings of 1996 international conference on drives and energy Systems for Industrial Growth, (p. 4338).
Google Scholar
Lekube, J., Garrido, A., & Garrido, I. (2018). Variable speed control in Wells turbine-based oscillating water column devices: Optimum rotational speed. IOP Conference Series: Earth and Environmental Science, 136(1), 012017.
Google Scholar
Justino, P., A, P., & Falcão, A. F. (1995). Control simulation of an OWC wave power plant. In Second European Wave Power Conference, (pp. 268–272).
Google Scholar
Falcão, A. F., De, O., & Justino, P. A. P. (1995). OWC wave energy converters with valve constrained airflow. 2nd European wave power conference, (pp. 187–194).
Google Scholar
Sarmento, A., Brito-Melo, A., & Neumann, F. (2006). Results from sea trials in the OWC European wave energy Plant at Pico, Azores. Florence: Invited Paper for WREC-IX.
Google Scholar
Boake, C. B., Whittaker, T. J., Folley, M., & Ellen, H. (2002). Overview and initial operational experience of the LIMPET wave energy plant, Proceedings of the 12th international offshore and polar engineering conference (pp. 586–594).
Google Scholar
Voith Hydro Wave Gen., Ltd., Islay Wave cam, (2013). [online] Available: https://tethys.pnnl.gov/organization/voith-hydro.
Heath, T., Whittaker, T. J. T., & Boake, C. B. (2000). The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). 4th European Wave Energy Conference, (pp. 49–55).
Google Scholar
Rashid, H. (2004). Power electronics: Circuits, devices, and applications Pearson/ Prentice Hall.
Google Scholar
Wilfred, P. J. (2006). Control system for wave energy devices. U.S. Patent, (p. GB2424042) A.
Google Scholar
Rao, S., R., S., & Murthy, B. K. (2005). Control of induction generator in a Wells turbine based wave energy system. In International Conference on Power Electronics and Drives Systems (PEDS), 2, (pp. 1590–1594).
Google Scholar
Munoz-Garcia, A., Lipo, T., & A., & Novotny, D., W. (1998). A new induction motor V/F control method capable of high-performance regulation at low speeds. IEEE Transactions on Industry Applications, 34, 813–821.
Article
Google Scholar
Rezaei, M. M. (2018). A non-linear maximum power point tracking technique for DFIG-based wind energy conversion Systems. Engineering Science and Technology, an International Journal, 21(5), 901–908.
Article
Google Scholar
Benakcha, M., Benalia, L., Ammar, A., & Bourek, A. (2018). Wind energy conversion system based on dual stator induction generator controlled by non-linear Back-stepping and PI controllers. International Journal of Systems Assurance Engineering and Management, 10, 1–11.
Google Scholar
Matraji, I., Al-Durra, A., & Errouissi, R. (2018). Design and experimental validation of enhanced adaptive second-order SMC for PMSG-based wind energy conversion system. International Journal of Electrical Power & Energy Systems, 103, 21–30.
Article
Google Scholar
Ezzat, M., De Leon, J., Gonzalez, N., & Glumineau, A. (2010). Observer-controller scheme using high order sliding mode techniques for Sensorless speed control of permanent magnet synchronous motor. In 49th IEEE conference on decision and control (CDC), (pp. 4012–4017).
Chapter
Google Scholar
Hamida, M. A., De Leon, J., & Glumineau, A. (2014). High order sliding mode observer and optimum integral Back-stepping control for Sensorless IPMSM drive. International Journal of Control, 87, 2176–2193.
MathSciNet
MATH
Google Scholar
Zhang, Z. Z., Zou, J. X., Zheng, G., & Xu, H. B. (2012). Observer-based Backstepping control of the half-direct permanent magnet wind power generation system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(4), 441–450.
Google Scholar
Shotorbani, A. M., Mohammadi-Ivatloo, B., Wang, L., Marzband, M., & Sabahi, M. (2019). Application of finite-time control Lyapunov function in low-power PMSG wind energy conversion Systems for Sensorless MPPT. International Journal of Electrical Power & Energy Systems, 106, 169–182.
Article
Google Scholar
Fantino, R., Solsona, J., & Busada, C. (2016). Non-linear observer-based control for PMSG wind turbine. Energy, 113, 248–257.
Article
Google Scholar
Errami, Y., Ouassaid, M., & Maaroufi, M. (2015). A performance comparison of a non-linear and a linear control for grid connected PMSG wind energy conversion system. International Journal of Electrical Power & Energy Systems, 68, 180–194.
Article
Google Scholar
Bossoufi, B., Karim, M., Lagrioui, A., Taoussi, M., & Derouich, A. (2015). Observer Back-stepping control of DFIG-generators for wind turbines variable-speed: FPGA-based implementation. Renewable Energy, 81, 903–917.
Article
Google Scholar
Corradini, M. L., Lppoliti, G., & Orlando, G. (2013). Fully Sensorless robust control of variable-speed wind turbines for efficiency maximization. Automatica, 49(10), 3023–3031.
Article
MathSciNet
MATH
Google Scholar
Heath, T., & V. (2012). A review of oscillating water columns. Philosophical Transactions of the Royal Society, 370, 235–245.
Google Scholar
Bailey, H., Ortiz, J. P., Robertson, B., Buckhamn, B. J., & Nicoll, R. S. (2015). A methodology for wave-to-wire WEC simulations, Proceedings of the 2nd Marine Energy Technology Symposium, Seattle, WA, USA (pp. 15–18).
Google Scholar
Amundarain, M., Alberdi, M., Garrido, A. J., & Garrido, I. (2009). Neural control of the Wells turbine-generator module, (pp. 7315–7320). Shanghai: 48th IEEE Conference on Decision and Control (CDC), Chinese Control Conference.
Google Scholar
Takao, M., & Setoguchi, T. (2012). Air turbines for wave energy conversion. International Journal of Rotating Machinery, 12, 1–10.
Article
Google Scholar
O’Sullivan, D. L., & Lewis, A. W. (2011). Generator selection and comparative performance in offshore oscillating water Column Ocean wave energy converters. IEEE Transactions on Energy Conversion, 26(2), 603–614.
Article
Google Scholar
Mishra, S. K., Purwar, S., & Kishor, N. (2018). Maximizing output power in oscillating water column wave power plants: An optimization based MPPT algorithm. Technologies, 6, 15.
Article
Google Scholar
Barambones, O., & Gonzalez, de Durana, J., & Calvo, I. (2018). Adaptive sliding mode control for a double fed induction generator used in an oscillating water column system. Energies, 11(11), 2939.
Article
Google Scholar
Prasad, S., Purwar, S., & Kishor, N. (2019). Non-linear sliding mode control for frequency regulation with variable-speed wind turbine systems. International Journal of Electrical Power & Energy Systems, 107, 19–33.
Article
Google Scholar
Freeman, K., Dai, M., & Sutton, R. (2014). Control strategies for oscillating water column wave energy converters. Underwater Technology: International Journal of the Society for Underwater, 32(1), 3–13.
Article
Google Scholar
Garrido, I., Garrido, A., Alberdi, M., Amundarain, M., & Barambones, O. (2013). Performance of an ocean energy conversion system with DFIG Sensorless control. Mathematical Problems in Engineering, 6, 1–14.
Article
Google Scholar
Bektache, A., & Boukhezzar, B. (2018). Non-linear predictive control of a DFIG-based wind turbine for power capture optimization. International Journal of Electrical Power & Energy Systems, 101, 92–102.
Henriques, J. C. C., Gato, L. M. C., Lemos, J. M., Gomes, R., & Falcao, A. (2016). Peak-power control of a grid-integrated oscillating water column wave energy converter. Energy, 109, 378–390.
Article
Google Scholar
Amundarain, M., Alberdi, M., Garrido, A., & J., & Garrido, I. (2011). Modelling and simulation of wave energy generation plants: Output power control. IEEE Transactions on Industrial Electronics, 58, 105–117.
Article
MATH
Google Scholar
Young, I., & R. (1999). Wind Generated Ocean waves. Oxford: Elsevier.
Google Scholar
Brooke, J. (2003). Wave energy conversion. Oxford: Elsevier.
Google Scholar
Chadwick, A., Morfett, J., & Borthwick, M. (2004). Hydraulics in civil and environmental engineering. UK: Spon Press.
Book
Google Scholar
Mzoughi, F., Bouallegue, S., & Ayadi, M. (2015). Modelling and SIL simulation of an oscillating water column for ocean energy conversion. In International renewable energy congress, (pp. 1–6).
Google Scholar
Ruud, K., Frank, K., & N. (2014). Future energy: Improved, sustainable and clean options for our planet, (pp. 357–382). Amsterdam: Elsevier.
Google Scholar
Song, S., & Park, J. (2015). Modelling and control strategy of an oscillating water column-wave energy converter with an impulse turbine module, (pp. 1983–1988). Busan: 15th international conference on control, automation and systems (ICCAS).
Google Scholar
Akabane, M., Suzuki, H., & Yamauchi, K. (1984). On the cross-flow turbine for wave power plant. Japan: 1st Symposium on Wave Energy Utilization.
Google Scholar
Novotny, D., W., & Lipo, Thomas, A. (1996). Vector Control and Dynamics of AC Drives. Oxford University Press, USA, ISBN 13: 9780198564393.
Zhao, Y., Wei, C., Zhang, Z., & Qiao, W. (2013). A review on position/speed Sensorless control for permanent-magnet synchronous machine based wind energy conversion systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(4), 203–216.
Article
Google Scholar
Rub, H., A., Iqbal, A., & Guzinski, J. (2012). High performance control of AC drives with MATLAB/Simulink models, Wiley ISBN: 978-0-470-97829-0.
Vas, P. (1998). Sensorless vector and direct torque control. Oxford University Press ISBN: 0-19-856465-1.
Trabelsi, R., Khedher, A., Mimouni, M. F., Sahli, F. M., & Masmoudi, A. (2010). Rotor flux estimation based on non-linear feedback integrator for Back-stepping controlled induction motor drives. Electromotion Journal, 17, 163–172.
Google Scholar
Zhou, J., & Wang, Y. (2005). Real-time non-linear adaptive Back-stepping speed control for a PM synchronous motor. Control Engineering Practice, 13(10), 1259–1269.
Article
Google Scholar
Mansour, M., Mansouri, M. N., & Mmimouni, M. F. (2011). Study and control of a variable-speed wind-energy system connected to the grid. International Journal of Renewable Energy Research, 1(2), 96–104.
Google Scholar
Rabelo, B., & Hofmann, W. (2001). Optimal active and reactive power control with the doubly-fed induction generator in the MW-class wind turbines, IEEE 4th International Conference on Power Electronics and Drive Systems, 1 (pp. 53–58).
Google Scholar
Yilmaz, U., Sezgin, M., & Go, M. (2020). A model predictive control for microgrids considering battery aging. Journal of Modern Power Systems and Clean Energy, 8, 296–304.
Article
Google Scholar
Hua, C. C., & Cheng, C. H. (2010). Design and Implementation of Power Converters for Wind Energy Conversion System, Power Electronics International Conference, Sapporo, Japan, 323–328.
Lekube, J., Garrido, A., & J., & Garrido, I. (2017). Rotational speed optimization in oscillating water column wave power plants based on maximum power point tracking. IEEE Transactions on Automation Science and Engineering, 14, 681–691.