ETIP Ocean (2019). Powering homes today, powering nations tomorrow. *Ocean Energy Europe* Available: https://www.oceanenergy-europe.eu/wp-content/uploads/2019/04/ETIP-Ocean-Integrated-Strategy-2019-LR.pdf.

Rodrigues, L. (2008). *Wave power conversion Systems for Electrical Energy Production*. Salamanca: ICREPQ.

Book
Google Scholar

Drew, B., Plummer, A. R., & Sahinkaya, M. N. (2009). A review of wave energy converter technology. *Proceedings of the Institution of Mechanical Engineers: Part A Journal Power Energy*, *223*(8), 887–902.

Article
Google Scholar

ON, *E. pelamis* Wave Power P2 Demonstration at *EMEC*. Scottish Power Renewables. (2004). [online]. Available: http://www.emec.org.uk/about-us/wave-clients/pelamis-wave-power/.

Brown, E. G. Cost of generation User’s guide version 3. *California State Energy Commission* Report. (2016). [online]. Available: https://ww2.energy.ca.gov/2016publications/CEC-200-2016-015/CEC-200-2016-015.pdf.

Delay, T. (2009). Building the Future, Today. The Carbon Trust, Report. Available: [online]. https://www.ukgbc.org/sites/default/files/Carbon%20Trust%20-%20Building%20the%20Future%20Today.pdf.

Shehata, A. S., Xiao, Q., Saqr, K. M., & Alexander, D. (2016). Wells turbine for wave energy conversion: A review. *International Journal of Energy Research*, 41, 6–38.

De, A., & F., & Falcao, O. (2010). Wave energy utilization: A review of the technologies. *Renewable and Sustainable Energy Reviews*, *14*, 899–948.

Article
Google Scholar

Eidsmoen, H. (1998). Tight-moored amplitude-limited heaving buoy wave-energy converter with phase control. *Applied Ocean research*, *20*(3), 157–161.

Article
Google Scholar

Amundarain, M., Alberdi, M., Garrido, A. J., & Garrido, I. (2010). *Control strategies for OWC wave power plants*, (pp. 4319–4324). Baltimore: Proceedings of the 2010 American control conference.

Google Scholar

Bossoufi, B., Karim, M., & Lagrioui, A. (2014). Matlab and Simulink simulation with FPGA based implementation Adaptative and not Adaptative Back-stepping non-linear control of a permanent magnet synchronous machine drive. *WSEAS Transaction System Control*, *9*, 86–100.

Google Scholar

Rusu, E., & Onea, F. (2018). A review of the technologies for wave energy extraction. *Clean Energy*, *2*, 10–19.

Article
Google Scholar

McCormick, M., & E. (2007). Ocean wave energy conversion. *Dover Publications*, New York, ISBN-13: 978-0486462455.

Garrido, A. J., Garrido, I., Lekube, J., De la Sen, M., & Carrascal, E. (2016). Modelling of Oscillating Water Column Wave Energy Systems. *World Automation Congress (WAC)*, Rio Grande, 1–6.

Penalba, M., & Ringwood, V. J. (2016). A review of wave-to-wire models for wave energy converters. *Energies*, *9*, 506.

Article
Google Scholar

Mishra, S. K., Purwar, S., & Kishor, N. (2016). An optimal and non-linear speed control of oscillating water column wave energy plant with Wells turbine and DFIG. *International Journal of Renewable Energy Resource*, *6*,(3), 95–1006.

Lin, H., & Chao, Q. (2010). Simulation study of modeling and control of direct drive wind turbine under grid fault. *Power System Protection and Control*, *38*(21), 189–195.

Dominguez, X., & Imbaquingo, C. (2015). Vector control for an interior permanent magnet synchronous machine with maximum torque per ampere strategy. *Revista Politécnica*, *35*(1), 1–5.

Google Scholar

Mahersi, E., Kheder, A., & Mimouni, M. F. (2013). The wind energy conversion system using PMSG controlled by vector control and SMC strategies. *International Journal of Renewable Energy Research*, *3*, 41–50.

Google Scholar

Ayadi, M., & Derbel, N. (2017). Non-linear adaptive Back-stepping control for variable-speed wind energy conversion system-based permanent magnet synchronous generator. *International Journal of Advanced Manufacturing Technology*, *92*, 39–46.

Article
Google Scholar

Mishra, S., & K., & Patel, A. (2017). *Wells turbine Modelling and PI control scheme for OWC plant using Xilinx system generator*, (pp. 1–6). Allahabad: 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES).

Google Scholar

Yan, X., Li, J., & Wei, X. (2019). Research on control strategy of direct-drive permanent magnet synchronous wind turbine in full wind speed range. *Power System Protection and Control*, *47*(23), 138–144.

Google Scholar

Shang, L., Guo, H., & Zhu, W. (2020). An improved MPPT control strategy based on incremental conductance algorithm. *Protection and Control of Modern Power Systems*, *5*(14), 1–8.

Google Scholar

Mahersi, E., & Kheder, A. (2014). *Sensorless control with an adaptive sliding mode flux observer applied to wind PMSG system*. Hammamet: 15th International Conference on Sciences and Techniques of Automatic Control and computer Engenering.

Google Scholar

Amundarain, M., Alberdi, M., Garrido, A. J., & Garrido, I. (2011). Neural rotational speed control for wave energy converters. *International Journal of Control*, *84*(2), 293–309.

Article
MathSciNet
MATH
Google Scholar

Brahmi, J., Krichen, L., & Ouali, A. (2009). A comparative study between three Sensorless control strategies for PMSG in wind energy conversion system. *Applied Energy*, *86*(9), 1565–1573.

Article
Google Scholar

Lekube, J., Garrido, A. J., Garrido, I., Otaola, E., & Maseda, J. (2018). Flow control in Wells turbines for harnessing maximum wave power. *Sensors*, *18*(2), 535.

Article
Google Scholar

Garrido, A. J., Garrido, I., Amundarain, M., Alberdi, M., & De la Sen, M. (2012). Sliding-mode control of wave power generation plants. *IEEE Transactions on Industry Applications*, *48*(6), 2372–2381.

Article
Google Scholar

Yue, H., Rafael, W., Cecilia, B., Mikael, E., Jens, E., & Mats, L. (2014). Review on electrical control strategies for wave energy converting systems. *Renewable and Sustainable Energy Reviews*, *31*, 329–342.

Article
Google Scholar

Mishra, S. K., Purwar, S., & Kishor, N. (2016). *Fuzzy logic control of OWC wave energy Plant for Preventing Wells Turbine Stalling*, (pp. 1–6). Bikaner: *IEEE s Power India International Conference (PIICON)*.

Google Scholar

Khemiri, N., Akheder, N., Mimouni, M., & F. (2012). An adaptive non-linear Back-stepping control of DFIG driven by wind turbine. *WSEAS Transactions on Environment and Development*, *8*(2), 60–71.

Google Scholar

El-Daoudi, S., Lazrak, L., & Ait Lafkih, M. (2020). Sliding mode approach applied to Sensorless direct torque control of cage asynchronous motor via multi-level inverter. *Protection and Control of Modern Power Systems*, *5*(13), 1–10.

Google Scholar

Aubréea, R., Augera, F., Macé, M., & Loron, L. (2016). Design of an Efficient Small Wind Energy Conversion System with an adaptive Sensorless MPPT strategy. *Renewable Energy*, *86*, 280–291.

Article
Google Scholar

Bakhtiari, F., & Nazarzadeh, J. (2020). Optimal estimation and tracking control for variable-speed wind turbine with PMSG. *Journal of Modern Power Systems and Clean Energy*, *8*, 159–167.

Article
Google Scholar

Roch, N., Zhu, R., Ping, S., & Paul, C. (2012). *On the efficiency of oscillating water column (OWC) devices in Converting Ocean wave energy to electricity under weakly non-linear waves*, (pp. 659–666). Rio de Janeiro: Proceedings of ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Ocean Space Utilization; Ocean Renewable Energy.

Google Scholar

Alberdi, M., Amundarain, M., Garrido, A. J., Garrido, I., & Maseda, F. J. (2011). Fault-ride-through capability of oscillating water column based wave-power-generation plants equipped with doubly fed induction generator and airflow control. *IEEE Transactions on Industrial Electronics*, *58*, 1501–1517.

Article
Google Scholar

Setoguchi, T., & Takao, M. (2006). Current status of self-rectifying air turbines for wave energy conversion. *Energy Conversion and Management*, *47*, 2382–2396.

Article
Google Scholar

Falcão, A. F., Vieira, L. C., Justino, P. A. P., & Andre, J. M. C. S. (2003). By-pass air-valve control of an OWC wave power plant. *Journal of Offshore Mechanics and Arctic Engineering*, *125*, 205–210.

Article
Google Scholar

Takao, M., Setoguchi, T., Kaneko, K., Kim, T. H., Maeda, H., & Inoue, M. (2002). Impulse turbine for wave power conversion with airflow rectification system. *International Journal of Offshore and Polar Engineering*, *12*(2), ISOPE-02-12-2-142.

Justino, P. A. P., & Falcão, A. F. (1999). Rotational speed control of an OWC wave power plant. *Journal of Offshore Mechanics and Arctic Engineering*, *121*, 65–70.

Gato, L. M. C., Warfield, V., & Thakker, A. (1996). A performance of a high-solidity Wells turbine for an OWC wave power plant. *Jounal of Energy Resource Technology*, *118*, 263–268.

Article
Google Scholar

Sarmento, A., Falcão, A., & F. (1985). Wave generation by an oscillating surface-pressure and its application in wave energy extraction. *Journal of Fluid Mechanics*, *150*, 467–485.

Article
MATH
Google Scholar

M’zoughi, F., Bouallègue, S., Garrido, A. J., Garrido, I., & Ayadi, M. (2020). Water cycle algorithm-based airflow control for oscillating water column-based wave energy converters. *Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering*, *234*(1), 118–133.

Google Scholar

Narayanan, V., Murthy, B., Bose, K., Sridhara, S., & Rao, G. (1996). Dynamic analysis of a grid connected induction generator driven by a wave-energy turbine. In *Proceedings of 1996 international conference on drives and energy Systems for Industrial Growth*, (p. 4338).

Google Scholar

Lekube, J., Garrido, A., & Garrido, I. (2018). Variable speed control in Wells turbine-based oscillating water column devices: Optimum rotational speed. *IOP Conference Series: Earth and Environmental Science*, *136*(1), 012017.

Google Scholar

Justino, P., A, P., & Falcão, A. F. (1995). Control simulation of an OWC wave power plant. In *Second European Wave Power Conference*, (pp. 268–272).

Google Scholar

Falcão, A. F., De, O., & Justino, P. A. P. (1995). *OWC wave energy converters with valve constrained airflow. 2nd European wave power conference*, (pp. 187–194).

Google Scholar

Sarmento, A., Brito-Melo, A., & Neumann, F. (2006). *Results from sea trials in the OWC European wave energy Plant at Pico, Azores*. Florence: Invited Paper for WREC-IX.

Google Scholar

Boake, C. B., Whittaker, T. J., Folley, M., & Ellen, H. (2002). *Overview and initial operational experience of the LIMPET wave energy plant*, *Proceedings of the 12th international offshore and polar engineering conference* (pp. 586–594).

Google Scholar

Voith Hydro Wave Gen., Ltd., Islay Wave cam, (2013). [online] Available: https://tethys.pnnl.gov/organization/voith-hydro.

Heath, T., Whittaker, T. J. T., & Boake, C. B. (2000). *The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). 4th European Wave Energy Conference*, (pp. 49–55).

Google Scholar

Rashid, H. (2004). *Power electronics: Circuits, devices, and applications* Pearson/ Prentice Hall.

Google Scholar

Wilfred, P. J. (2006). *Control system for wave energy devices. U.S. Patent*, (p. GB2424042) A.

Google Scholar

Rao, S., R., S., & Murthy, B. K. (2005). Control of induction generator in a Wells turbine based wave energy system. In *International Conference on Power Electronics and Drives Systems (PEDS), 2*, (pp. 1590–1594).

Google Scholar

Munoz-Garcia, A., Lipo, T., & A., & Novotny, D., W. (1998). A new induction motor V/F control method capable of high-performance regulation at low speeds. *IEEE Transactions on Industry Applications*, *34*, 813–821.

Article
Google Scholar

Rezaei, M. M. (2018). A non-linear maximum power point tracking technique for DFIG-based wind energy conversion *Systems*. *Engineering Science and Technology, an International Journal*, *21*(5), 901–908.

Article
Google Scholar

Benakcha, M., Benalia, L., Ammar, A., & Bourek, A. (2018). Wind energy conversion system based on dual stator induction generator controlled by non-linear Back-stepping and PI controllers. *International Journal of Systems Assurance Engineering and Management*, *10*, 1–11.

Google Scholar

Matraji, I., Al-Durra, A., & Errouissi, R. (2018). Design and experimental validation of enhanced adaptive second-order SMC for PMSG-based wind energy conversion system. *International Journal of Electrical Power & Energy Systems*, *103*, 21–30.

Article
Google Scholar

Ezzat, M., De Leon, J., Gonzalez, N., & Glumineau, A. (2010). Observer-controller scheme using high order sliding mode techniques for Sensorless speed control of permanent magnet synchronous motor. In *49*^{th} *IEEE conference on decision and control (CDC)*, (pp. 4012–4017).

Chapter
Google Scholar

Hamida, M. A., De Leon, J., & Glumineau, A. (2014). High order sliding mode observer and optimum integral Back-stepping control for Sensorless IPMSM drive. *International Journal of Control*, *87*, 2176–2193.

MathSciNet
MATH
Google Scholar

Zhang, Z. Z., Zou, J. X., Zheng, G., & Xu, H. B. (2012). Observer-based Backstepping control of the half-direct permanent magnet wind power generation system. *Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering*, *226*(4), 441–450.

Google Scholar

Shotorbani, A. M., Mohammadi-Ivatloo, B., Wang, L., Marzband, M., & Sabahi, M. (2019). Application of finite-time control Lyapunov function in low-power PMSG wind energy conversion Systems for Sensorless MPPT. *International Journal of Electrical Power & Energy Systems*, *106*, 169–182.

Article
Google Scholar

Fantino, R., Solsona, J., & Busada, C. (2016). Non-linear observer-based control for PMSG wind turbine. *Energy*, *113*, 248–257.

Article
Google Scholar

Errami, Y., Ouassaid, M., & Maaroufi, M. (2015). A performance comparison of a non-linear and a linear control for grid connected PMSG wind energy conversion system. *International Journal of Electrical Power & Energy Systems*, *68*, 180–194.

Article
Google Scholar

Bossoufi, B., Karim, M., Lagrioui, A., Taoussi, M., & Derouich, A. (2015). Observer Back-stepping control of DFIG-generators for wind turbines variable-speed: FPGA-based implementation. *Renewable Energy*, *81*, 903–917.

Article
Google Scholar

Corradini, M. L., Lppoliti, G., & Orlando, G. (2013). Fully Sensorless robust control of variable-speed wind turbines for efficiency maximization. *Automatica*, *49*(10), 3023–3031.

Article
MathSciNet
MATH
Google Scholar

Heath, T., & V. (2012). A review of oscillating water columns. *Philosophical Transactions of the Royal Society*, *370*, 235–245.

Google Scholar

Bailey, H., Ortiz, J. P., Robertson, B., Buckhamn, B. J., & Nicoll, R. S. (2015). *A methodology for wave-to-wire WEC simulations*, *Proceedings of the 2nd Marine Energy Technology Symposium, Seattle, WA, USA* (pp. 15–18).

Google Scholar

Amundarain, M., Alberdi, M., Garrido, A. J., & Garrido, I. (2009). *Neural control of the Wells turbine-generator module*, (pp. 7315–7320). Shanghai: 48th IEEE Conference on Decision and Control (CDC), Chinese Control Conference.

Google Scholar

Takao, M., & Setoguchi, T. (2012). Air turbines for wave energy conversion. *International Journal of Rotating Machinery*, *12*, 1–10.

Article
Google Scholar

O’Sullivan, D. L., & Lewis, A. W. (2011). Generator selection and comparative performance in offshore oscillating water Column Ocean wave energy converters. *IEEE Transactions on Energy Conversion*, *26*(2), 603–614.

Article
Google Scholar

Mishra, S. K., Purwar, S., & Kishor, N. (2018). Maximizing output power in oscillating water column wave power plants: An optimization based MPPT algorithm. *Technologies*, *6*, 15.

Article
Google Scholar

Barambones, O., & Gonzalez, de Durana, J., & Calvo, I. (2018). Adaptive sliding mode control for a double fed induction generator used in an oscillating water column system. *Energies*, *11*(11), 2939.

Article
Google Scholar

Prasad, S., Purwar, S., & Kishor, N. (2019). Non-linear sliding mode control for frequency regulation with variable-speed wind turbine systems. *International Journal of Electrical Power & Energy Systems*, *107*, 19–33.

Article
Google Scholar

Freeman, K., Dai, M., & Sutton, R. (2014). Control strategies for oscillating water column wave energy converters. *Underwater Technology: International Journal of the Society for Underwater*, *32*(1), 3–13.

Article
Google Scholar

Garrido, I., Garrido, A., Alberdi, M., Amundarain, M., & Barambones, O. (2013). Performance of an ocean energy conversion system with DFIG Sensorless control. *Mathematical Problems in Engineering*, *6*, 1–14.

Article
Google Scholar

Bektache, A., & Boukhezzar, B. (2018). Non-linear predictive control of a DFIG-based wind turbine for power capture optimization. *International Journal of Electrical Power & Energy Systems*, *101*, 92–102.

Henriques, J. C. C., Gato, L. M. C., Lemos, J. M., Gomes, R., & Falcao, A. (2016). Peak-power control of a grid-integrated oscillating water column wave energy converter. *Energy*, *109*, 378–390.

Article
Google Scholar

Amundarain, M., Alberdi, M., Garrido, A., & J., & Garrido, I. (2011). Modelling and simulation of wave energy generation plants: Output power control. *IEEE Transactions on Industrial Electronics*, *58*, 105–117.

Article
MATH
Google Scholar

Young, I., & R. (1999). *Wind Generated Ocean waves*. Oxford: Elsevier.

Google Scholar

Brooke, J. (2003). *Wave energy conversion*. Oxford: Elsevier.

Google Scholar

Chadwick, A., Morfett, J., & Borthwick, M. (2004). *Hydraulics in civil and environmental engineering*. UK: Spon Press.

Book
Google Scholar

Mzoughi, F., Bouallegue, S., & Ayadi, M. (2015). Modelling and SIL simulation of an oscillating water column for ocean energy conversion. In *International renewable energy congress*, (pp. 1–6).

Google Scholar

Ruud, K., Frank, K., & N. (2014). *Future energy: Improved, sustainable and clean options for our planet*, (pp. 357–382). Amsterdam: Elsevier.

Google Scholar

Song, S., & Park, J. (2015). *Modelling and control strategy of an oscillating water column-wave energy converter with an impulse turbine module*, (pp. 1983–1988). Busan: 15th international conference on control, automation and systems (ICCAS).

Google Scholar

Akabane, M., Suzuki, H., & Yamauchi, K. (1984). *On the cross-flow turbine for wave power plant*. Japan: 1st Symposium on Wave Energy Utilization.

Google Scholar

Novotny, D., W., & Lipo, Thomas, A. (1996). Vector Control and Dynamics of AC Drives. *Oxford University Press*, USA, ISBN 13: 9780198564393.

Zhao, Y., Wei, C., Zhang, Z., & Qiao, W. (2013). A review on position/speed Sensorless control for permanent-magnet synchronous machine based wind energy conversion systems. *IEEE Journal of Emerging and Selected Topics in Power Electronics*, *1*(4), 203–216.

Article
Google Scholar

Rub, H., A., Iqbal, A., & Guzinski, J. (2012). High performance control of AC drives with MATLAB/Simulink models, Wiley ISBN: 978-0-470-97829-0.

Vas, P. (1998). *Sensorless vector and direct torque control*. Oxford University Press ISBN: 0-19-856465-1.

Trabelsi, R., Khedher, A., Mimouni, M. F., Sahli, F. M., & Masmoudi, A. (2010). Rotor flux estimation based on non-linear feedback integrator for Back-stepping controlled induction motor drives. *Electromotion Journal*, *17*, 163–172.

Google Scholar

Zhou, J., & Wang, Y. (2005). Real-time non-linear adaptive Back-stepping speed control for a PM synchronous motor. *Control Engineering Practice*, *13*(10), 1259–1269.

Article
Google Scholar

Mansour, M., Mansouri, M. N., & Mmimouni, M. F. (2011). Study and control of a variable-speed wind-energy system connected to the grid. *International Journal of Renewable Energy Research*, *1*(2), 96–104.

Google Scholar

Rabelo, B., & Hofmann, W. (2001). *Optimal active and reactive power control with the doubly-fed induction generator in the MW-class wind turbines*, *IEEE 4th International Conference on Power Electronics and Drive Systems, 1* (pp. 53–58).

Google Scholar

Yilmaz, U., Sezgin, M., & Go, M. (2020). A model predictive control for microgrids considering battery aging. *Journal of Modern Power Systems and Clean Energy*, *8*, 296–304.

Article
Google Scholar

Hua, C. C., & Cheng, C. H. (2010). Design and Implementation of Power Converters for Wind Energy Conversion System, *Power Electronics International Conference*, Sapporo, Japan, 323–328.

Lekube, J., Garrido, A., & J., & Garrido, I. (2017). Rotational speed optimization in oscillating water column wave power plants based on maximum power point tracking. *IEEE Transactions on Automation Science and Engineering*, *14*, 681–691.