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Abstract 

To extract strong correlations between different energy loads and improve the interpretability and accuracy for load 
forecasting of a regional integrated energy system (RIES), an explainable framework for load forecasting of an RIES is 
proposed. This includes the load forecasting model of RIES and its interpretation. A coupled feature extracting strat-
egy is adopted to construct coupled features between loads as the input variables of the model. It is designed based 
on multi-task learning (MTL) with a long short-term memory (LSTM) model as the sharing layer. Based on SHapley 
Additive exPlanations (SHAP), this explainable framework combines global and local interpretations to improve the 
interpretability of load forecasting of the RIES. In addition, an input variable selection strategy based on the global 
SHAP value is proposed to select input feature variables of the model. A case study is given to verify the effectiveness 
of the proposed model, constructed coupled features, and input variable selection strategy. The results show that the 
explainable framework intuitively improves the interpretability of the prediction model.
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1  Introduction
A regional integrated energy system (RIES) is defined as 
a region with various forms of energy supply, conversion 
and storage devices, where the consumption of differ-
ent energies such as electricity, cooling, and heating are 
coupled with each other. An RIES is generally a unified 
management area, such as industrial parks, commercial 
buildings, campuses, and other multi-energy joint opera-
tion systems, areas which allow for unified access and 
analysis of different energy data. Accurate and reliable 
load forecasting is the foundation for optimal dispatch-
ing and energy management of an RIES, as it is used to 

provide data support for developing energy trading plans, 
energy system security assessment, and demand-side 
management. Therefore, an effort to improve the accu-
racy of load forecasting is meaningful for the develop-
ment of an RIES.

Because of the strong correlation between different 
types of energy consumption, the planning and opera-
tion of an RIES are more complex than a traditional sin-
gle type of energy system [1, 2]. Two types of correlations 
exist in an RIES: intra-coupled relation (the correlations 
between load and its own power) and inter-coupled 
relation (the correlations between two different energy 
loads). This means that the demand for different types of 
loads is not only related to their own historical loads, but 
also to the coupling relations (the correlations and influ-
ences of two or more elements or systems) between other 
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energy type loads. This brings new challenges and ideas 
for load forecasting of different energy types.

For RIES load forecasting, traditional methods are 
mainly based on the forecasting methods of electric load 
such as wavelet neural networks [3], auto-regressive inte-
grated moving average (ARIMA) [3], Bayesian regression 
model [4], and Grey model [5], etc. However, these stud-
ies predict cold, heat, and electric loads separately, and 
lack the exploration and utilization of the coupling rela-
tions between different load forecasting tasks. Therefore, 
the impact that changes in one type of energy demand 
exert on other types of energy demand cannot be deter-
mined, and this has a negative impact on the accuracy 
of load forecasting for the RIES. In recent years, deep 
learning has been widely used in load forecasting with 
its strong learning capability and data feature extraction 
ability [6], with techniques such as convolutional neu-
ral networks (CNNs) [7, 8], long short-term memory 
(LSTM) [9, 10], recurrent neural networks (RNNs) [11], 
and deep belief networks (DBNs) [12], etc.

To extract the coupling relations between load features, 
reference [8] uses a CNN to excavate and fuse the load 
features in high-dimensional space, and feeds the fused 
features into LSTM in a time-series manner. A dynamic 
time series feature extraction method based on LSTM 
is proposed to excavate the relevance among the series 
in different times by reconstructing the input sequence 
through the encoder-decoder model in [10]. Experimen-
tal results of the methods proposed in [8] and [10] show 
that the prediction accuracy can be improved by using 
coupling information between different energy loads. 
However, these methods usually build the model based 
on original features (OFRs) obtained from the histori-
cal load data directly as the input of the load forecasting 
model, but rarely consider the internal coupling relations 
between OFRs. The load forecasting model is then unable 
to make full use of the intrinsic relations at the feature 
level to obtain better performance. To fully extract and 
quantify the coupling relations, a method of construct-
ing coupled feature representation (CFR) is proposed to 
quantify the global dependence of continuous features 
in [13]. In [14], coupled features of different image data 
based on CFR are proposed for multi-modal Alzheimer’s 
disease diagnosis. This achieves higher diagnostic accu-
racy than existing methods. Inspired by these studies and 
considering the continuity of loads data and strong corre-
lations between cold, heat, and electric loads, this paper 
introduces CFR to extract the intrinsic relations between 
OFRs.

To extract coupling relations between different load 
forecasting tasks, attention is mainly paid to MTL, which 
puts multiple related tasks together to learn and realize 
information sharing to make use of the coupling relations 

between different tasks. Both [15] and [16] achieve good 
prediction results based on MTL, and this proves the 
advantage of MTL in the field of multi-type load predic-
tion. However, deep learning’s opaque structure might 
hinder further analysis or improvement of the model.

The planning and operation of an RIES highly depend 
on accurate and reliable load forecasting. Interpretability 
means finding out the key features that affect the predic-
tion results and the basis of prediction decision. This can 
then provide a reference for the review of the prediction 
results and model improvement. Previous work on the 
interpretability of the deep learning model include sensi-
tivity analysis [17], surrogate model [18], and SHAP [19]. 
The sensitivity analysis and surrogate model are local 
interpretation methods, which can only interpret the 
output results of an individual sample. Thus, they pre-
vent analysis of the importance of input features to the 
model based on global samples. In addition, the effect 
of LIME is limited by the surrogate model itself, and the 
similarity between the surrogate model and target model 
is also difficult to measure. SHAP, proposed in [19], is an 
additive feature attribution method based on game the-
ory, and can be used for local and global interpretation 
of arbitrary models. Some studies on the interpretability 
of load forecasting have been carried out. For example, 
based on SHAP, an explainable framework is built in [20] 
to explain the random forest prediction model for fail-
ure modes of reinforced concrete members, while [21] 
establishes an attribution analysis framework for tran-
sient voltage stability evaluation. Experimental results 
show that the SHAP value can quantify the relationships 
between input features and output results, and facilitate 
the understanding of model decisions and complex non-
linear relationships in the model [20–22].

In this paper, for better performance and interpretabil-
ity of the load forecasting model of an RIES, an explain-
able framework is proposed which consists of two main 
parts: the load forecasting model and its interpretation. 
To extract the strong coupling relations between different 
energy loads at the feature level, CFR proposed in [13] 
is introduced. Its main idea is to quantify the coupling 
relations between OFRs by constructing the representa-
tion containing intra-coupled relation and inter-coupled 
relation as part of the input variables of the prediction 
model. The MTL model with LSTM as sharing layer 
(LSTM-MTL) is adopted as the base model to excavate 
coupling relations between different energy loads at the 
forecasting task levels. To improve the interpretability of 
the load forecasting model, SHAP is introduced to pro-
vide global and local interpretation. The global interpre-
tation can reveal the relationships between the values of 
features and prediction results, and measure the contri-
bution of features to the different load forecasting tasks. 
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This can provide a basis for selecting input features of 
the load forecasting model. For the local interpretation, 
it is used to provide details of the contributions of input 
feature variables to the load prediction of an individual 
sample.

Experiments based on load datasets provided by Ari-
zona State University Integrated Energy System validate 
the feasibility of the framework designed in this paper.

The main contributions of this paper are as follows:

(1)	 By introducing the calculation representation of the 
coupled features as the model input variables and 
constructing the LSTM-MTL model based on hard 
parameter sharing, the coupling relations between 
different energy loads can be excavated at the fea-
ture level and the forecasting task level, respectively.

(2)	 Global and local interpretation based on SHAP is 
proposed to analyze the difference in the contribu-
tion of each feature to prediction results and the 
relationships between input features and prediction 
results, so as to improve the interpretability of the 
load forecasting model of an RIES.

(3)	 An input variable selection strategy based on the 
global SHAP value is proposed to select input fea-
ture variables. This helps eliminate the overfitting 
and over-computation of the model by removing 
the input features that contribute less to the predic-
tion model.

The rest of this paper is organized as follows. In Sect. 2, 
the details of the CFR construction method and LSTM-
MTL load forecasting model are provided. The interpre-
tation method of the LSTM-MTL model and its input 
variable selection method based on SHAP are provided 
in Sect.  3, while Sect.  4 summarizes features selection 
and the experimental process of the explainable frame-
work. Results of the proposed explainable framework are 
presented in Sect.  5, where the implementation of the 
framework is discussed. Section  6 concludes the paper 
and discusses future directions.

2 � Proposed RIES load forecasting model
In order to extract the coupling relations between dif-
ferent energy loads in an RIES from the perspectives 
of input features and forecasting tasks, a coupled fea-
ture construction method based on CFR is intro-
duced to extract the feature-level intrinsic relations 
between input loads. It combines the representation 
of intra-coupled and inter-coupled relations as part of 

the input variables of the load forecasting model. The 
load prediction model based on LSTM-MTL is built to 
excavate the coupling relations between different fore-
casting tasks. Given that the LSTM model has a strong 
dynamic feature extraction ability of time series and the 
fully connected network is suitable for the final fitting 
of the model after feature extraction, LSTM is adopted 
as the sharing layer, and the fully connected network 
is used for each subtask in the LSTM-MTL model as 
shown in Fig. 1.

2.1 � Coupled features representation (CFR)
CFR can capture the global dependence of continuous 
features by constructing intra-coupled relations and 
inter-coupled relations [13]. In this paper, the coupled 
features between cold, heat, and electric loads are con-
structed based on CFR. The process of constructing 
coupled features is listed as follows (the superscripts 
C , H , and P represent cold, heat, and electric loads, 
respectively).

(1)	 Suppose that there are M samples includ-
ing cold, heat, and electric loads, and zij
(1 ≤ i ≤ M, j ∈ {C , H , P}) represents the OFR vec-
tor of the ith sample. The expansion matrix Z of the 
cold, heat, and electric loads is defined as:

LSTM sharing 
layer

Cold load 1

Heat load 
input

 Heat load 1 Electric load 1

 Cold load 2  Heat load 2 Electric load 2

Cold load 
prediction

Heat load 
prediction 

Electric load 
prediction 

Input layer

Sharing layer

Linear 
layer 1

Output 
result

Linear 
layer 2

Cold load 
input

Electric load 
input

Coupled 
features

 Other input 
features

Output layer

Fig. 1  LSTM-MTL model structure graph
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where ziC , ziH , and ziP represent the cold, heat, and 
electric load values of the ith sample, respectively. 
zeij represents the eth (e = 1, 2, · · ·,E) power of zij , 
e.g., z2ij represents the square of zij.E is the maximal 
expansion number.

(2)	 Calculate the intra-coupled relation of cold, heat, 
and electric loads, and the intra-coupled relation 
matrix is defined as (taking the cold load as an 
example):

where �C
e1e2

 is the Pearson’s correlation 
coefficient (PCC) between Z

e1
iC and Z

e2
iC . 

Ze
iC=[ze1C , z

e
2C , · · · , z

e
MC ]

T is the eth column vector 
of expansion matrix Z.

	 Suppose that there are M data pairs 
(

xi, yi
)

 . The PCC 
is calculated as:

where 
(

xi, yi
)

 represents (Ze1
iC ,Z

e2
iC) . ρ ∈ [−1, 1] . The 

closer the value of ρ2 is to 1, the stronger the cor-
relations between the two variables, and the posi-
tive and negative values of ρ represent positive and 
negative correlation, respectively.

(3)	 Calculate the inter-coupled relation between cold, 
heat, and electric loads, and the inter-coupled rela-
tion matrix is defined as (taking cold load as an 
example):

where �HC
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 is the PCC between Ze1
iH and Ze2

iC

(e1, e2 = 1, 2, · · ·,E) of expansion matrix Z.
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(4)	 For the cold load in the ith sample, its intra-coupled 
extension matrix is defined as:

(5)	  Its inter-coupled extension matrix with heat and 
electric loads is defined as:

(6)	 The coefficient matrix w is introduced to set the 
weights of PCC between different vectors. For the 
ith sample, w = [(1/1!), (1/2!), · · · , (1/E!)] and the 
CFR of cold load can be defined as:

where ⊙ is Hadamard product. ui(C) uses a Taylor-
like series to quantify the global dependency, since 
any analytic function can be approximated by a 
Taylor polynomial [13]. Although the above steps 
are illustrated for cold load, they can also be applied 
directly to heat load and electric load to get ui(H) 
and ui(P).

(7)	  The CFR of the ith sample can be represented as:

where ui includes 3× E coupled feature variables 
(CF). ui(C) , ui(H) , and ui(P) represent the CFR of 
cold load, heat load, and electric load, respectively.

The coupled feature construction algorithm has the fol-
lowing characteristics: (1) The algorithm is an unsuper-
vised learning method with strong generalization ability; 
(2) The robustness of the algorithm can be improved 
using global data; (3) The size of the power can be set 
flexibly according to the actual situation to extract the 
coupling relations; (4) The coupled features have physi-
cal interpretability and can be quantified to provide data 
support for subsequent interpretability research.

Previous study has shown that the maximal expan-
sion number E = 3 or 4 is large enough to capture the 
global couplings of attributes [13]. Thus, in the following 
experiments, the extended power E is taken as 3 to avoid 
excessive computation. A total of 9 coupled features are 
extracted, called CFR1-9. CFR1-3 mainly describe the 
coupling relations between cold load and other loads, 
while CFR4-6 and CFR7-9 describe the coupling rela-
tions of heat load and electric load, respectively.

2.2 � LSTM‑MTL model
A load forecasting model based on LSTM-MTL is pro-
posed to learn the complex coupling information 
between cold, heat, and electric load forecasting tasks. 
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The LSTM-MTL model adopts a hard parameter sharing 
mechanism, which is less prone to overfitting in the case of 
strong coupling of the loads in the RIES prediction model 
with many model parameters and complex structure [23]. 
The core concept of LSTM is gate structure, which decides 
whether data should be discarded, controls information to 
be added to the LSTM unit, and outputs unit state infor-
mation by introducing forget gate ft , input gate it , and out-
put gate ot , respectively [24]. The formulas involved are:

where the meanings of the relevant variables in (9–14) 
are described in [24].

In the LSTM-MTL load forecasting model, the input vec-
tor is considered as X = (x1, x2, · · ·, xt) , and is transmitted 
to the LSTM sharing layer, where the coupling relations 
among the three load prediction subtasks are captured 
through sharing underlying parameters. Then, the output 
vector H = (h1, h2, · · ·, ht) is connected to the linear layer 
of the three subtasks and the output result is defined as:

where Relu is the activation function, W  is the weight 
matrix, and b is the bias. yki  is the kth (k = 1, 2, and 3 
represents cold, heat, and electric load forecasting task, 
respectively) subtask output result, and the different top-
level parameters can be obtained through the linear layer 
of each subtask.

Finally, the loss function of the kth subtask is defined as 
Lk(θ share, θk) , where θ share and θk represent the sharing 
parameters among subtasks and the unique parameters of 
the kth subtask, respectively. The integral optimization loss 
function of LSTM-MTL is defined as:

where T = 3 represents that the model has three subtasks 
in total, and ak is the weight coefficient of the kth subtask.

Finding the suitable value of ak to balance the contribu-
tion of each task is the key to MTL. The three prediction 

(9)ft = σ(Wt · [ht−1, xt ]+ bt)

(10)it = σ(Wi · [ht−1, xt ]+ bt)

(11)c̃t = tanh(Wc · [ht−1, xt ]+ bt)

(12)ct = ft · ct−1 + it · c̃t)

(13)ot = σ(Wo · [ht−1, xt ]+ bo)

(14)ht = ot · tanh(ct)

(15)yki = Relu(WH + b)

(16)min

T
∑

k=1

akLk(θ share, θk)

tasks of cold, heat, and electric are strongly coupled, 
and the goal of all the three prediction tasks is to mini-
mize the prediction error with the same evaluation index 
MAE, which makes the three prediction tasks similar. In 
the following experiments, the goal is to minimize the 
overall prediction error of the three tasks, and we pre-
set the ak of each task to 0.4, 0.2, and 0.4, respectively, 
according to the peak ratio of the three loads in the RIES. 
In addition, the prediction errors are compared by setting 
different weights as shown in Table  6 in the Appendix. 
By training the model, the optimal parameters θ share and 
θk are obtained, which helps extract the coupling rela-
tions between different subtasks and learn the differences 
between subtasks, respectively.

To summarize, CFR is introduced to extract the fea-
ture-level intrinsic relations between input loads, and the 
prediction model based on LSTM-MTL is built to deter-
mine the complex coupling information between cold, 
heat, and electric load forecasting tasks. Therefore, the 
coupling relations between loads can be extracted from 
the perspectives of input features and forecasting tasks to 
improve the model performance.

3 � Explainable framework
The LSTM-MTL model of RIES load forecasting 
described above is a complex integrated model, and its 
lack of interpretability can lead to user distrust in model 
prediction results and hinder further analysis or improve-
ment of the model. To improve the interpretability of the 
prediction model, this section uses SHAP to provide an 
explainable framework for the LSTM-MTL prediction 
model, and an input variable selection strategy based on 
the global SHAP value is proposed to avoid overfitting 
and over-computation.

3.1 � SHAP (Shapley additive explanation)
SHAP was proposed by Lundberg and Su-In Lee in 
2017 based on cooperative game theory to describe the 

Input 
features

LSTM-MTL 
model

Prediction 
result

SHAP Explanation

Select input 
features

Fig. 2  Overview of how to use SHAP to interpret the predictions of 
the LSTM-MTL model
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contribution of a feature to the machine-learning model 
by calculating the average of the marginal contributions. 
An overview of how to use SHAP to interpret the pre-
dictions of the LSTM-MTL model is shown in Fig. 2. The 
process of calculating the SHAP value is as follows.

Supposing x = (x1, x2, · · ·xM) is the input variable vec-
tor of the prediction model, where M is the number of 
input variables, an explanation model (linear and addi-
tive model) g

(

x
′
)

 is applied to fit the original model (the 
cold, heat, and electric load forecasting model based on 
LSTM-MTL) f (x) as:

where φ0 is the average of the explanation model, and φi 
is the SHAP value of the ith feature. x′ ∈ {0, 1}M is the 
coalition vector (simplified features), which is the binary 
mapping variable of the input features. Inputs x and x′ 
are related through a mapping function x=h(x′), where 
the presence of 1 or 0 at the ith position of x′ means the 
presence or absence of the ith feature of x , respectively. 
For example, there are five features of a, b, c, d, and e 
in input feature vector x1 , which can be represented as 
x
′

1 = [1, 1, 1, 1, 1], while there are only three features of a, 
d, and e in feature vector x2 , which can be represented as 
x
′

2 = [1,0,0,1,1] by function h(x′).
The linear and additive model g

(

x
′
)

 is fitted by opti-
mizing the loss function L as:

where X is the set of coalition vector x′.
There may be more than one valid feature in the input 

feature x′ . This will affect the evaluation of the contri-
bution of an individual feature. In order to reduce this 
impact, the weight of loss function L is defined as:

where 
∣

∣x
′
∣

∣ represents the number of valid input features 
in x′.

The details of calculating the SHAP value of input fea-
tures x are shown below.

(1)	 Create the training data set X in random ways, 
X is the set of coalition vectors x′k ∈ {0, 1}M , 
k ∈ {1, 2, · · ·,K } . K  represents the number of coali-
tion vectors x′ in X.

(2)	 Convert each x′k to original feature space using 
xk=h(x′k), and obtain the prediction using 
f (h(x′k).

(17)f (x) = g
(

x
′
)

= φ0 +

M
∑

i=1

φix
′
i

(18)L(f , g ,πx)
x
′∈X

=
∑

x
′∈X

πx(x
′)(f (h(x′))− g(x′))2

(19)πx(x
′) =

(M − 1)

C
|x′|
M (

∣

∣x
′
∣

∣)(M −
∣

∣x
′
∣

∣)

(3)	 Calculate the weight πx(x
′

k) of each xk using (19).
(4)	 Fit the explanation model g

(

x
′
)

 by optimizing the 
loss function L.

(5)	 Return φi (the SHAP value of the ith feature in x).

Compared with other methods, SHAP has a solid theo-
retical foundation, is fast, and has the advantage of local 
accuracy and consistency [29]. This indicates that the 
SHAP value of each feature is uniquely determined and 
can correctly reflect the contribution of features to the 
model. References [25–27] prove that the SHAP value 
is the only attribution method that satisfies all the above 
properties at the same time.

3.2 � Principles of interpretation
Applying SHAP to the interpretation of the cold, heat, 
and electric load forecasting model and fitting the load 
forecasting model with an interpretable linear model, the 
contribution of each feature variable to cold, heat, and 
electric load prediction results can be obtained based on 
the SHAP value. Using (17–19), the SHAP values in the 
kth (k = 1, 2, and 3 represents cold, heat, and electric load 
forecasting tasks, respectively) prediction subtask can be 
obtained as:

where yki  is the prediction value of the ith sample in the 
kth prediction subtask, ykbase is the average of the kth pre-
diction subtask, and M is the number of input features. xij 
is the jth feature of the ith sample and f k(xij) is its SHAP 
value, which indicates the contribution of the feature to 
the kth prediction subtask. f k(xij) > 0 indicates that the 
feature increases the prediction value, while f k(xij) < 0 
indicates that it decreases the prediction value.

(20)yki = ykbase +

M
∑

j=1

f k(xij)
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As shown in Fig.  3, the explainable framework of the 
load forecasting model for RIES includes two parts: loads 
prediction and interpretation. The left side of Fig. 3 shows 
the relationships between the SHAP model and the LSTM-
MTL model, while the SHAP value calculation is built on 
the basis of the LSTM-MTL model. The right side of Fig. 3 
shows the interpretability application based on SHAP, 
where the typical daily sample and the global sample are 
input into the SHAP model to obtain local interpretability 
and global interpretability, respectively.

3.2.1 � Global interpretation
The global interpretation is generated by analyzing the 
average contribution of input feature variables to the pre-
diction results based on the global samples and can be 
obtained by calculating the average SHAP value of each 
feature variable with global samples. Therefore, the SHAP 
value of the feature variables in the cold, heat, and electric 
load forecasting tasks can be calculated separately with 
global samples to measure the importance of each feature 
variable in different forecasting tasks. By weighting and 
summing the SHAP values of cold, heat, and electric loads 
at a certain proportion, the importance of feature vari-
ables to the whole prediction model can be obtained, and 
an input variable selection strategy based on the global 
SHAP value is proposed to improve the prediction model 
by removing the input features that contribute less to the 
prediction model.

3.2.2 � Local interpretation
The local interpretation is generated by analyzing the con-
tribution of input feature variables to the load prediction 
of an individual sample, and the local interpretation of the 
ith sample can be obtained using (20). In this paper, typi-
cal daily samples in winter and summer are selected to ana-
lyze the relationships between the SHAP distribution of the 
feature variables and the load prediction results in different 
seasons. This provides a further explanation of the decision 
basis of the prediction model and enhances the credibility 
of the load forecasting model.

4 � Experimental set‑up
In this section, the details of prediction and inter-
pretation are shown, including the selection of input 
variables for the LSTM-MTL prediction model, the 
evaluation method of the prediction model per-
formance, and the main experimental process of 

interpretable analysis and application for load forecast-
ing of RIES.

4.1 � Input variables of load forecasting model
Selecting rational feature variables is the key to obtain-
ing accurate RIES load prediction results. In addition to 
the historical loads and the constructed coupled feature 
variables (CF), load demand is also affected by other 
external factors such as season, week, hour, etc. Table 1 
shows the feature variables selected in this paper. The 
time window length of the LSTM-MTL model is a very 
important parameter in deciding the size of input fea-
tures. Considering the time series characteristics of 
the load, the time windows from 24 h, 48 h, 72 h, and 
96 h are chosen, as shown in Table 7 in the Appendix. 
According to the method shown in Fig.  4, the highest 
prediction accuracy is achieved when the time window 
is 72  h, and thus, it is set as the time window of the 
LSTM-MTL model, which predicts the load at the cur-
rent moment based on the input variables 72 h before.

Table 1  Input variables of RIES load forecasting model

Type Cycle Temperature Holiday CF Load

Feature variables Month, Week, Day, Hour Temperature Holiday CFR1 -CFR9 Cold, Heat, Electric

Fig. 4  RIES load prediction and interpretable analysis process
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4.2 � Evaluation metric for forecasting accuracy
Mean absolute percentage error (MAPE) and root 
mean square error (RMES) are used as error evaluation 
metrics to evaluate the prediction method described 
above. The relevant formulas are:

where xi and yi are the true value and prediction value, 
respectively, and n is the number of samples.

In this paper, the RIES studied is located in the hot 
Phoenix, where the cold load and electric load demand 
is higher than the heat load demand. Thus, the impor-
tance of cold, heat, and electric loads is weighted to 0.4, 
0.2, and 0.4, respectively, according to the ratio of cold, 
heat, and electric peak loads. The overall errors of the 
RIES load forecasting model are:

4.3 � Prediction and interpretable analysis process
This section introduces the main experimental process 
of cold, heat, and electric load prediction of RIES and 
its interpretable analysis. Since the training time of the 
LSTM-MTL model is long, the experimental process is 
divided into two parts: offline training and online appli-
cation as shown in Fig. 4.

4.3.1 � Offline training

Step 1 Collect historical data of cold, heat, and elec-
tric loads and other external data in Table 1 as part 
of the input variable set.
Step 2 Construct the coupled features by using 
(1–8).
Step 3 Build the LSTM-MTL load forecasting 
model, and determine some hyperparameters 
such as learning rate, optimizer, time window, and 
weight based on experience and task characteris-
tics.
Step 4 Train the model until the number of iterations 
reaches the preset value or the accuracy improve-
ment is less than the preset value.

(21)MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

xi − yi

xi

∣

∣

∣

∣

× 100

(22)
RMES =

√

√

√

√

√

n
∑

i=1

(xi − yi)2

n

(23)

{

MAPER = 0.4MAPEC + 0.2MAPEH + 0.4MAPEP

RMESR = 0.4RMESC + 0.2RMESH + 0.4RMESP

Step 5 Repeat Step 4 and update the hyperparam-
eters in step 3 according to the prediction accuracy.
Step 6 Fit the explanation model and obtain the 
SHAP value to provide local interpretation, global 
interpretation, and input variable selection strategy 
for the prediction model.

4.3.2 � Online application

Step 7 Obtain the RIES real-time data and calculate 
the coupled features.
Step 8 Input the feature variables into the improved 
model to obtain the load prediction results of RIES 
and provide explainable analysis for the prediction 
results.

5 � Results and discussion
5.1 � Data set
The load data is collected by the campus of Arizona State 
University in Tempe, USA, where the minimum daily 
average heat load in summer is about 60% of the annual 
average heat load, and the minimum daily average cold 
load in winter is 24% of the annual average cold load. The 
units of cold load, heat load, and electric load are Ton/h, 
mmBtu/h, and kW, respectively, and their unit conver-
sion formula is:

The temporal granularity of this data set is 1 h, i.e., the 
daily load curve includes 24 points and spans from Jan-
uary 1, 2019 to July 15, 2020, totaling 562 days. For the 
modeling part, the training, validation, and test datasets 
account for 70, 15 and 15%, respectively. The tempera-
ture data is obtained from the actual data at the Phoenix 
weather station [28].

(24)1kW = 0.284Ton/h = 0.0034mmBtu/h

Table 2  PCC between coupled features and loads

PCC Cold load Heat load Electric load

CFR1 0.978 −0.919 0.876

CFR2 0.978 −0.912 0.884

CFR3 0.977 −0.907 0.890

CFR4 −0.978 0.940 −0.848

CFR5 −0.976 0.945 −0.840

CFR6 -0.975 0.949 −0.833

CFR7 0.969 −0.903 0.900

CFR8 0.970 −0.901 0.902

CFR9 0.970 −0.899 0.904
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5.2 � Coupled feature extraction and load prediction results
Table  2 shows the CF extraction results and the PCC 
between coupled features and cold, heat, and electric loads. 
The prediction results of the LSTM-MTL model with CF 
(CF-LSTM-MTL) for RIES load prediction are shown in 
Fig. 5, and the distribution of the hourly MAPE values is 
shown in Fig. 6. By comparing the prediction errors of the 
prediction model with or without CF and MTL, the advan-
tages of the coupled features and prediction model con-
structed in this paper are verified as shown in Table 3.

As shown in Fig.  6, most MAPE values of the CF-
LSTM-MTL prediction model for cold, heat, and elec-
tric loads are less than 5%. From Table 3, the prediction 
accuracy of both heat and electric loads are improved 
significantly after adding CF into the LSTM model 
(CF-LSTM) and the prediction accuracy of all the three 
loads is significantly improved after introducing MTL 
and CF together. From the results, we can conclude:

(1)	 The construction of coupled features and the multi-
task learning model can improve the accuracy of 
the prediction model and avoid modeling the three 
loads simultaneously. This greatly improves the 
practical value.

(2)	 Nine coupled features are extracted and the PCC 
between coupled features and loads are very high 
(PCC > 0.8), which satisfies the requirements of the 
traditional input variable selection method based 
on correlation. Excess coupled features may lead to 
overfitting and over-computation in load predic-
tion and reduce the prediction accuracy. An input 
variable selection strategy based on SHAP value is 
proposed in a later experiment to improve the pre-
diction model.

5.3 � Global interpretation
The results of the global SHAP value distribution of 
RIES load forecasting and the contribution of differ-
ent features to the prediction of cold, heat, and electric 
loads are shown in this section.

The global SHAP values of feature variables are 
ranked from large to small as shown in Fig.  7, where 
each point in the scatter plot represents a sample, the 
horizontal coordinate represents the SHAP value, and 
the darker color of the sample point represents the 
larger feature value.

As shown in Fig. 7, the feature variables have different 
contributions in different forecasting tasks, and the top 
six important features of cold, heat, and electric load 
forecasting are shown in Table 4. The following conclu-
sions can be drawn:
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(1)	 In all three load predictions, the SHAP values of 
their own loads are large, indicating that their own 
loads have significant effects on the self-prediction 
results.

(2)	 There are some coupled features with high SHAP in 
all three load predictions. Taking heat load predic-
tion as an example, the SHAP values of coupled fea-
tures such as CFR6 and CFR1 are larger than those 
of cold and electric loads. This indicates that some 
coupled features contribute highly to the prediction 
results and validate the effectiveness of the coupled 
features.

(3)	 Month has a significant effect on the cold and heat 
load predictions. Taking the cold load prediction as 
an example, the SHAP values of ‘large’ months (July, 
August, and September) are positive. This promotes 
the growth of cold load prediction results, whereas 

the SHAP values of ‘small’ months (January, Febru-
ary, etc.) are negative. These decrease cold load pre-
diction results. These are consistent with the actual 
situation that local cold load level is low in cold 
months and high in hot months.

(4)	 In heat load prediction, SHAP values of tempera-
ture and hour are small and many external factors 
have no significant effect on heat load prediction. 
This is caused by the fact that Arizona’s overall tem-
perature is high and its heat load remains stable.

In summary, global SHAP value distribution can visu-
alize the relationships between the distribution of SHAP 
value and input features. These are consistent with objec-
tive understanding and laws, and validate the effective-
ness of the constructed coupled features.

Table 3  Comparison of prediction performance

load LSTM-MTL CF-LSTM CF-LSTM-MTL

MAPE (%) RMSE/MW MAPE (%) RMSE/MW MAPE (%) RMSE/MW

Cold load 4.5 1.725 4.7 2.109 4.1 1.633

Heat load 7.1 0.135 5.4 0.092 5.5 0.099

Electric load 5.6 1.359 3.3 0.966 2.9 0.774

weighted 5.4 1.260 4.2 1.248 3.9 0.983

Fig. 7  Global SHAP values distribution. (a) Cold load prediction. (b) Heat load prediction. (c) Electric load prediction

Table 4  Top six features affecting the cold, heat, and electric load forecasting

Load Type Cold load Heat load Electric load

Top six features Hour, CFR2, cold, month, heat, and tem-
perature

Heat, CFR6, month, CFR1, CFR4, and electric Electric, hour, CFR8, CFR9, week, and CFR7
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5.4 � Local interpretation
The global interpretation mainly shows the contribu-
tion of each feature to different forecasting tasks based 
on the global sample. In this section, we further explain 
the basis of an individual sample prediction and analyze 
the contributions of different features to different predic-
tion samples. Considering the limited space available in 
the paper, typical daily samples in summer and winter are 
selected for comparison and analysis.

Figures 8, 9 and 10 show the local interpretation results 
of the cold, heat, and electric loads, respectively. In these 
figures, the length of arrow represents the absolute SHAP 
value of the corresponding feature, the red arrow rep-
resents a positive SHAP value that drives predictions 
higher, and the blue arrow represents a negative SHAP 
value that makes predictions lower.

Local SHAP value distribution shows that there are sig-
nificant seasonal differences in the contribution of each 
feature to the prediction results of cold, heat, and electric 
loads. Taking temperature and historical load as exam-
ples, we make the following analysis:

(1)	 For the influence of historical load in the prediction 
of cold load, the SHAP value of heat load is a large 
negative value in both summer and winter as shown 
in Fig.  8. Similarly, in the prediction of heat load, 
the SHAP value of cold load is also a large negative 
value as shown in Fig. 9. These indicate that there is 
a strong negative correlation between the cold and 
heat loads, which is consistent with the existence of 
the strong complementarity between the energy use 
curves of cold and heat loads.

(2)	 For the influence of temperature in summer, the 
SHAP value of temperature is positive in the pre-
diction of both cold and electric loads as shown in 
Figs.  8a and 10a. This indicates that higher tem-
perature can contribute to a higher load predic-
tion value. In winter, the SHAP of temperature is 
negative in both heat and electric load predictions, 
which indicates that higher temperature can con-
tribute to lower load prediction value. In terms of 
physical significance, high summer temperatures 
lead to higher cooling load demand and frequent 
use of electric cooling equipment, while low winter 
temperatures lead to higher heat load demand and 
frequent use of electric heating equipment.

In summary, local SHAP value distribution can visu-
alize the relationships between input features and indi-
vidual prediction results, and these visualizations are 
consistent with objective understanding and laws and 
improve the transparency of the prediction model and 
the credibility of the prediction results.

Fig. 8  Local SHAP value distribution of cold load prediction. (a) In 
summer. (b) In winter

Fig. 9  Local SHAP value distribution of heat load prediction. (a) In 
summer. (b) In winter

Fig. 10  Local SHAP value distribution of electric load prediction. (a) 
In summer. (b) In winter
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5.5 � Features selection
According to the ratio of cold, heat, and electric peak loads, 
the global SHAP value of features in cold, heat, and electric 
load predictions are weighted to 0.4, 0.2, and 0.4, respec-
tively, and the sum is shown in Fig. 11. It can be seen that 
the SHAP values of hour, historical load, CFR8, and CFR4 
are at high levels, while the SHAP values of CFR7, CFR3, 
and CFR5 are at very low levels, which indicates that the 
three coupled features have less contribution to the predic-
tion results. Then, an input variable selection strategy is 
applied to improve the model by removing the three cou-
pled features from the input features, and the errors of the 
original model and improved model are shown in Table 5.

By comparison, it can be seen that MAPE and RMSE are 
reduced after applying the input variable selection strategy, 
which shows the strategy is effective and can improve the 
prediction accuracy of the model. In addition, the strategy 
can reduce the data dimension, which helps reduce the mod-
eling effort and increase the practical value of the model.

6 � Conclusion
In this paper, a coupled feature construction method is 
introduced to construct CFR between loads. It constructs 
the representation of intra-coupled and inter-coupled 
relations, and integrates the representation by a Taylor-
like expansion as part of the input feature variables. It can 
extract and quantify the intrinsic relations between input 
loads. An LSTM-MTL loads prediction model is proposed 
to determine the coupling relations between different load 
forecasting tasks based on a hard parameter sharing mech-
anism. The coupling relations between loads in the RIES 

are then fully used from the perspectives of input features 
and forecasting tasks. In order to improve the interpret-
ability of the load forecasting model, global and local inter-
pretations are provided. The global interpretation can show 
the important features of the prediction model, and be used 
to analyze the relationships between the SHAP value and 
input features. Local interpretation is used to interpret the 
load prediction results of an individual sample, and show 
the prediction basis of the prediction model. In addition, 
an input variable selection strategy based on the global 
interpretation results is proposed to simplify the predic-
tion model and avoid overfitting and over-computation by 
selecting input features according to their importance.

The case study has shown that the proposed model and 
input variable selection strategy can effectively improve 
the accuracy of load forecasting in an RIES, and these 
methods can be extended to the application of the pre-
diction model in different scenarios. From the global and 
local SHAP value distributions of cold, heat, and electric 
load prediction, we can intuitively obtain the relationships 
among input features, SHAP value, and prediction results. 
The experiments show that the interpretation results are 
consistent with the characteristics of the load prediction. 
They can improve the credibility of the prediction results 
and provide a basis for users to undertake comprehensive 
energy optimization scheduling and management.

With the continuous development of RIES, main energy 
users will be extended to commercial areas, residential 
communities, office buildings, etc. As the objects of energy 
use become more diversified, the subsequent research 
needs more refined data support, including on the flow 
of customers in commercial areas, daily sales, residential 
area user types, etc. The data helps achieve a more three-
dimensional portrayal of the coupling relations between 
loads. Therefore, based on the proposed method in this 
paper, the load forecasting model and interpretation analy-
sis can be further extended to these areas in the future.

Appendix
See Tables 6, 7

Table 5  Prediction error before and after removing the three 
coupled features in CF- LSTM-MTL

Load Original model Improved model

MAPE (%) RMSE/MW MAPE (%) RMSE/MW

Cold load 0.041 1.633 0.029 1.183

Heat load 0.055 0.099 0.054 0.096

Electric load 0.029 0.774 0.028 0.761

Weighted 0.039 0.983 0.033 0.836

Table 6  The prediction errors by setting different weights

Cold: Heat: Electric 1:1:1 0.4:0.4:0.2 0.2:0.4:0.4 0.4:0.2:0.4

MAPE (%) RMSE (MW) MAPE (%) RMSE (MW) MAPE (%) RMSE (MW) MAPE (%) RMSE (MW)

Cold 7.72 3.433 8.48 3.341 12.9 5.21 4.12 1.633

Heat 3.72 0.688 4.85 0.862 3.41 0.067 5.50 0.099

Electric 4.24 1.489 3.55 1.465 3.54 1.31 2.91 0.774

Weighted 5.808 2.106 5.782 2.094 7.258 2.621 3.91 0.983
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