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A dynamic‑model‑based fault diagnosis 
method for a wind turbine planetary gearbox 
using a deep learning network
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Abstract 

The planetary gearbox is a critical part of wind turbines, and has great significance for their safety and reliability. 
Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of 
large quantities of labeled data. However, the data collected from the diagnosed devices are always unlabeled, and 
the acquisition of fault data from real gearboxes is time-consuming and laborious. As some gearbox faults can be 
conveniently simulated by a relatively precise dynamic model, the data from dynamic simulation containing some 
features are related to those from the actual machines. As a potential tool, transfer learning adapts a network trained 
in a source domain to its application in a target domain. Therefore, a novel fault diagnosis method combining transfer 
learning with dynamic model is proposed to identify the health conditions of planetary gearboxes. In the method, a 
modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration 
signal, while an optimized deep transfer learning network based on a one-dimensional convolutional neural network 
is built to extract domain-invariant features from different domains to achieve fault classification. Various groups of 
transfer diagnosis experiments of planetary gearboxes are carried out, and the experimental results demonstrate the 
effectiveness and the reliability of both the dynamic model and the proposed method.

Keywords:  Wind turbine planetary gearbox, Lumped-parameter dynamic model, Intelligent fault diagnosis, 
Convolutional neural network, Transfer learning theory
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1  Introduction
Wind energy has become one of the vital energy sources 
in the world, while wind power generation systems 
have been widely studied and applied [1]. The planetary 
gearbox is one of the critical components in the 
transmission system of wind turbines (WTs) because of 
its advantages of compact structure, high power density 
and desirable transmission efficiency [2]. However, in 
operation, planetary gearboxes are prone to failure and 
have high maintenance costs under dynamic load and 
frequently changing operating conditions [3]. Therefore, 

accurate gearbox fault diagnosis is of great significance to 
improve the safety, reliability and economy of WTs [4].

In recent years, many intelligent methods have been 
investigated for gearbox fault diagnosis [5–9], while 
the proposed methods have two assumptions: (1) the 
training and testing data are derived from the same 
probability distribution; (2) enough labeled history data 
with fault information can be obtained [10]. However, 
in industrial applications, it is impractical to satisfy 
those two assumptions because of operating condition 
change, equipment wear degradation, and environmental 
noise interference, leading to differences of data in the 
probability distribution [11] and unlabeled data collected 
from the diagnosed devices [12].

Therefore, to solve the above two disadvantages, 
some studies have introduced transfer learning into 
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fault diagnosis of mechanical equipment [13–16]. The 
transfer learning tasks consist of two datasets, one from 
the source domain and the other from the target domain. 
The data in the target domain is distributed differently 
from the data in the source domain but contains relevant 
knowledge. Thus, the goal of transfer learning is to 
improve the property of the predictive model for the 
target domain by using the common knowledge of the 
source and target domains. With the theoretical research 
of deep learning, deep hierarchical models are applied to 
learn transferable features from the cross-domain data 
automatically [17–19].

Hence, transfer learning can use the learned common 
knowledge from the source domain to solve a related task 
in the target domain [20–22]. Accordingly, some transfer-
learning-based methods that mainly concentrate on the 
transfer tasks between different operation conditions are 
applied in [11, 23, 24]. Also, the transfer fault diagnoses 
among different devices have been studied. Reference 
[12] proposes a transfer learning method for bearing 
fault diagnosis, and its effectiveness is verified by the 
datasets acquired from three different machines. In [25], 
a transfer method is presented and the health conditions 
of bearings used in actual devices are classified with 
the help of the diagnosis knowledge from those used 
in the laboratory. Based on such methods, the fault 
diagnosis model trained with labeled data obtained from 
one machine can be generalized to the unlabeled data 
obtained from other similar machines. However, in the 
fault diagnosis of WT gearboxes, the above methods will 
encounter the following two problems:

(1)	 Labeled fault data from similar machines are hard 
to obtain. The planetary gearboxes in WTs will not 
be allowed to run to failure since such a fault could 
lead to the breakdown of a WT or even serious 
accidents. In addition, gearboxes often undergo a 
long degradation process from normal to failure. 
Therefore, the acquisition of fault data is time-
consuming and laborious.

(2)	 Experimental data acquisition of WT gearboxes 
is costly. WTs are usually large in size, so it is 
expensive to build experimental platforms similar 
to the actual ones, while in the laboratory, when 
the type and extent of the faults are changed, new 
components are required and this is costly.

Such problems lead to insufficient samples in the 
actual fault diagnosis task. As a result, the performance 
of the deep transfer learning models will deteriorate 
and even fail to complete the diagnostic task. To solve 
the problems, an easier method is needed to get signals 
containing actual fault features. To gain an insight into 

the signal characteristics of the gearboxes, various 
dynamic models have been presented, including multi-
body models and lumped parameter models [26–28]. 
Dynamic simulation of the planetary gearbox with 
different faults has been realized, and it proves that the 
dynamic model can show many features of the actual 
signals [29–33]. The above studies have a common 
approach of introducing the influences of gear faults 
into the dynamic models by changing the mesh stiffness 
function of the mesh pair. In order to get a more accurate 
vibration response, reference [32] constructs a vibration 
signal model that can express the effect of transmission 
path by using a modified Hamming function.

In this paper, a dynamic-model-based method for WT 
planetary gearbox fault diagnosis using a deep transfer 
learning network (DTLN) is proposed. A modified 
lumped-parameter dynamic model is established 
to simulate the vibration signals of a planetary gear 
train, and the resultant vibration response is analysed 
by considering the transmission path of the signals. 
Then, an optimized DTLN based on a one-dimensional 
deep convolutional neural network (1-D CNN) is 
built. The DTLN comprises three modules: health 
condition recognition module, domain classifier and 
distribution discrepancy metrics. With the proposed 
three modules, the DTLN can extract domain-invariant 
features from the simulation data and the actual data, 
and the fault classification of actual datasets is realized. 
The introduction of simulation datasets makes up for 
the possible influence of insufficient samples in fault 
diagnosis models. Finally, multiple transfer diagnosis 
experiments are performed to verify the feasibility of the 
proposed method.

The main insights and contributions of this paper are 
summarized as follows.

(1)	 A novel fault diagnosis method combining transfer 
learning with the dynamic model is proposed. This 
aims to remove the difficulty in obtaining enough 
labeled fault samples in applications. The cross-
domain-invariant features of the simulation signal 
and the actual signal are learned by a deep transfer 
learning network, so as to realize the fault diagnosis 
of the actual signals.

(2)	 The optimized DTLN comprises three parts: health 
condition recognition module, domain classifier 
and distribution discrepancy metrics. The health 
condition recognition module is based on a 1-D 
CNN built to learn the deep features of the input 
data, while the domain classifier and distribution 
discrepancy metrics are applied to help the network 
learn more domain-invariant features.



Page 3 of 14Li et al. Protection and Control of Modern Power Systems            (2022) 7:22 	

(3)	 The proposed diagnosis method is based on unsu-
pervised transfer learning theory. The labeled 
samples are not necessarily needed in the target 
domain. In practical applications of fault diagnosis, 
the data obtained from the devices to be diagnosed 
are always unlabeled. Therefore, it is appropriate for 
actual real-time diagnostic scenarios.

(4)	 A model and data-driven approach is proposed. 
The application of traditional artificial intelligence 
methods relies on a large number of labeled sam-
ples of devices to be diagnosed. Compared with 
the traditional artificial intelligence method which 
only relies on the data-driven, the proposed method 
requires only unlabeled samples to be diagnosed, 
and the required number of samples in the target 
domain is greatly reduced. Therefore, the require-

ment of the dataset is reduced and its value in prac-
tical application is increased.

The rest of this paper is organized as follows. The 
dynamic model is presented in Sect. 2, and the proposed 
fault diagnosis framework is described in Sect.  3. In 
Sect. 4, the proposed dynamic model is validated, and its 
feasibility is validated on various experimental scenarios. 
Section 5 draws the conclusions.

2 � Dynamic model of planetary gearbox
In this section, a modified lumped-parameter dynamic 
model is established. The model has the following char-
acteristics: (1) the horizontal and vertical displacements 
of ring, planet and carrier that have limited influence 
on the resultant vibration response are ignored, (2) the 
lumped virtual spring-damping units are adopted in the 
model, (3) the effects of planet gear faults are introduced 

into the model by modifying the mesh stiffness function 
of the mesh pairs.

2.1 � Lumped‑parameter model for a single stage planetary 
gear train

The lumped-parameter model is shown in Fig.  1. The 
system consists of one ring gear ‘r’, one sun gear ‘s’, one 
carrier ‘c’ and N equally spaced planet gears ‘pn’. Herein, 
Oxy is the coordinate system rotating at the speed of 
ωc with the x axis going through the center of p1. The 
sun gear has three degrees of freedom, i.e., two lateral 
motions (x, y) and one torsional motion (u). The other 
components have only torsional motion (u). According 
to Newton’s second law, the motion of a planetary gear 
train can be written as several second-order differential 
equations:
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Fig. 1  Dynamic model of a single stage planetary gear train
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with:

The second-order nonlinear differential equations of 
motion can be solved by a fourth-order variable-step 
Runge–Kutta method after nondimensionalization.

2.2 � Time‑varying mesh stiffness
Time-varying mesh stiffness is one of the main sources 
of vibration response in a dynamic system. When the 
gearbox is free of any defects, the meshing stiffness of 
the gear is a function of its angular displacement and 
can be approximated by a square waveform. If a tooth is 
defective, partial contact loss will occur when the faulty 
tooth engages, leading to a local reduction of the mesh 
stiffness function [27]. Four planetary gear conditions are 
considered, including normal condition (NC), chipped 
tooth fault (CTF), surface wear fault (SWF) and missing 
tooth fault (MTF). The mesh stiffness losses denoted as 
ΔK are different under diverse faults. As the meshing 
stiffness is periodic, the meshing stiffness can be written as 
a Fourier series defined by (6) and (7), and the effects of the 
fault gears can then be introduced into the system.

Because of the partial reduction of meshing stiffness, 
the amplitude and phase modulation effects appear in the 
vibration response spectrum in the form of sidebands, 
whose frequency locations depend on the fault location 
and fault type. These sidebands are also reflected in the 
vibration signals of actual planetary gearboxes. This is 
discussed in detail in Sect. 4.

2.3 � Resultant signal model
In a planetary gearbox, the mesh vibrations along the 
torsional motion action lines are the main vibration 

(2)
xspn = −xs sinψsn + ys cosψsn + us + upn − espn(t)

(3)xrpn = ur + upn − erpn(t)

(4)ψsn = ψn − αs

(5)ψn = 2π(n− 1)/N

(6)
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q
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(l)
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sources. Consequently, the mesh vibration acceleration 
signals of sun-planet and ring-planet mesh pairs are 
chosen to establish the resultant vibration signal model. 
The transmission path of a vibration signal is composed 
of two parts [29]: the first part is from the meshing 
vibration sources to the case, while the second part is 
the case to the transducer location. The influence of the 
first part on the vibration signals can be modeled by an 
attenuation coefficient, while the second part can be 
modeled by a modified Hamming function. Therefore, 
the resultant vibration signals of a planetary gearbox at 
the sensor location can be described as:

where the Hamming function 
Wn = 0.54–0.46cos(ωct + ψn). aspn and arpn are the 
acceleration signals of sun-planet and ring-planet mesh 
pairs, respectively, and Sspn and Srpn are the attenuation 
coefficients from the mesh pairs to the case. ξ is used to 
control the bandwidth of the Hamming function.

3 � Proposed fault diagnosis framework
In this section, the proposed fault diagnosis framework 
based on the dynamic model and DTLN are introduced 
in detail.

3.1 � Transfer learning problem definition
In order to clearly describe the problem, some concepts 
are introduced as follows. We take the source domain as 
DS = {(xS i,yS i)}, where xS i ∈ χS is a data sample and yS 
i ∈ YS is its corresponding label, and the target domain 
as DT = {(xT i)}, where xT i ∈ χT is a data sample. DS and 
DT are drawn from distribution PS(X) and PT(X), and 
PS(X) ≠ PT(X) because of the domain bias. The same label 
space is used in different domains, i.e., YT = YS. In fault 
diagnosis, the goal of transfer learning is to improve the 
probabilistic prediction function of the domain DT using 
the knowledge that can be learned in the domain DS.

In this fault diagnosis, the target domain samples are 
the data obtained from the equipment to be diagnosed. 
In practical application, these data are unlabeled. The 
source domain samples are the available failure experi-
mental data of similar equipment or the simulation data 
from the simulation model of the equipment to be diag-
nosed. These are labeled. The target task can be described 
as realizing the condition recognition of the target 
domain samples, that is, adding condition labels to the 
samples to be diagnosed.

(8)

a(t) =

N
∑

n

expξ( mod (ωc t+ψn)−π)2 Wn(Sspnaspn cos(αs − ωct − ψn)

+ Srpnarpn cos(αr + ωct + ψn))
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3.2 � Structure and training process of the DTLN
As shown in Fig. 2, the optimized DTLN consists of three 
parts: health condition recognition module, domain clas-
sifier and distribution discrepancy metrics. These are 
briefly described below.

3.2.1 � Health condition recognition module
The health condition recognition module is based on a 
1-D CNN, which has the function of feature extraction 
and condition classification. In the 14-layer 1-D CNN, 
the first 13 layers are used for feature extraction and 
collation, and the last layer can be regarded as the 
condition classifier. In the convolutional layer, feature 
extraction is carried out, where the rectified linear unit is 
used as an activation function. Then a maximum pooling 
operation is introduced to reduce the feature dimension 
and enhance the feature robustly. The full connected 
layer and softmax regression are used at the end of the 
network to perform classification tasks. In summary, the 
output of the health condition recognition module can be 
defined as the output probability of the softmax function:

where f2 is the output of the full connected layer FC2, wi 
denotes the weight matrix that concatenates to the ith 
output neuron, b is the bias vector, and K is the number 
of health condition categories of the dataset.

3.2.2 � Domain classifier
The domain classifier is a binary classifier that dis-
tinguishes source domains from target domains. As 
shown in Fig. 2, the domain classifier consists of a fully 
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connected layer and a binary output layer. The binary 
classifier setting with logistics regression is employed 
to distinguish between the source domain and target 
domain. The logistics regression is calculated as:

where wd is the weight matrix of the classifier, bd is the 
corresponding bias vector and f3 is the output of the layer 
FC3.

3.2.3 � Distribution discrepancy metrics
In order to realize the extraction of domain-invariant 
features, a metric is required to represent the distribution 
difference between the features extracted from the source 
domain and those from the target domain. Here we use 
the Wasserstein distance to measure the distribution 
discrepancy between the two datasets. Let P(f2

(S)) and 
Q(f2

(T)) be the probability distributions where f2
(S) and 

f2
(T) are the features learned by 1-D CNN from the source 

domain and the target domain, respectively, according 
to the Kantorovich–Rubinstein dual theorem, The 
Wasserstein distance between the two distributions is 
computed as:

where ||G||L is the 1-Lipschitz function.
For the three components of the DTLN introduced 

above, each corresponds to an optimization object.

3.2.4 � Object 1
Minimize the health condition classification error of the 
softmax classifier on source data. The objective function 
can be defined as the regression loss of a standard 
softmax classifier, as:
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Fig. 2  Structural illustration of the DTLN
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where m is the batch size of the data samples, k is the 
number of health condition categories, wi denotes the 
weight matrix that concatenates to the ith output neuron, 
and I[·] is an indicator function.

3.2.5 � Object 2
Maximize the domain classification error on the source 
and target domain datasets. The loss function of the binary 
classifier can be represented as:

where li denotes the real domain label, and d(xi) is a 
function that represents whether xi comes from the 
source domain or the target domain. The objective 
function can be written as:

where f2(S) i and f2(T) j are the features learned from the 
source domain and the target domain, respectively.

3.2.6 � Object 3
Minimize the Wasserstein distance between features 
extracted from the source and target domain datasets. 
Considering the gradient penalty item, the calculation 
formula is given as:

where γ is the tradeoff parameter, ns and nt are the 
respective numbers of training samples from the source 
domain and target domain, and Ĥ is a uniform sampling 
from the feature representations.

In conclusion, in order to extract as many cross-domain-
invariant features as possible, the final optimization object 
can be combined as:

where λ and μ are the hyperparameters, θf, θc, and θd are 
the parameters of the feature extractor, health condition 
classifier, and domain classifier, respectively.
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Based on (16), in the back-propagation process, the 
parameters θf, θc, and θd are updated as:

where ε denotes the learning rate.
After training, the classifier can recognize the unla-

beled samples from the target domain even if the learned 
domain-invariant features have equivocal domain catego-
ries and domain discrepancy. As shown in Fig. 3, DTLN 
uses labeled samples from the source domain and unla-
beled samples from the target domain for training. The 
invariant features of the domain are learned first, and 
then the classifier determines the category based on the 
learned features. After the training, the trained network 
will be tested by the sample set from the target domain.

3.3 � Proposed fault diagnosis framework
The framework of the proposed method is illustrated in 
Fig.  4. As shown, the method includes three parts, as 
introduced below.

3.3.1 � Part 1: data acquisition and preprocessing
In this part, the source domain and target domain are 
constructed, where the target domain data samples are 
obtained from the gearbox to be diagnosed, and the 
source domain data samples are obtained by analyzing 
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Fig. 3  Flowchart of the proposed DTLN
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the dynamic model. It is worth noting that the relevant 
parameters of the dynamic model are taken from the 
device to be diagnosed. After acquiring the vibration 
signal, the samples are processed and the frequency-
domain samples are used as the input of the DTLN. This 
is because frequency-domain samples are more robust 
to noise than time-domain samples and contain more 
domain-invariant features. This will be demonstrated in 
detail in Sect. 4.

3.3.2 � Part 2: network training and fault classification
In order to extract more domain-invariant features 
of the source domain and target domain, frequency 
domain samples are used to train the DTLN, and the 
trained network can be obtained. The training process 
is based on (17–19). The trained network is tested by 
unlabeled testing samples from the target domain and 
outputs classified results.

3.3.3 � Part 3: output of the diagnostic results
The trained diagnostic model is applied to the fault 
diagnosis of experimental equipment to output the 
diagnosis results. In order to show the feasibility of the 
proposed method, the above classification results are 
analyzed visually.

According to the above fault diagnosis framework, 
the dynamic model is used to construct the source 
domain in the transfer learning method. This is helpful 
for fault diagnosis of true devices. In the following, the 
rationality and advantages of the proposed method are 
verified.

4 � Experimental results and comparisons
In this section, similarities between the simulation signal 
and the actual signal are analyzed. Multiple experiments 
are performed to validate the network and fault diagnosis 
framework.

4.1 � Validation and analysis of the simulation model
4.1.1 � Planetary gearbox fault experiment
The gearbox dataset is collected from the drivetrain 
dynamic simulator (DDS) shown in Fig. 5a. The planetary 

Fig. 4  Fault diagnosis framework of the proposed method

Motor

Motor 
controller

Planetary
Gearbox

Parallel
Gearbox

Brake
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(b)
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Fig. 5  Experimental setup for gearbox dataset. (a) DDS. (b) fault 
gears

Table 1  Parameters of the dynamic model

Nomenclature s p r c

Teeth number 20 40 100 –

Module (mm) 1 1 1 –

Pressure angle (deg) 20 20 20 –

Teeth width (mm) 10 10 10 –

Mass (kg) 0.069 0.057 0.422 0.709

Inertia (kg·mm2) 6.415 11.791 1417.482 364.756

Young’s modulus (G Pa) 206 206 206 206

Poisson’s ratio 0.3 0.3 0.3 0.3

Pitch diameter (mm) 20 40 100 –

Torsional bearing stiffness (N·mm−1) 0 0 1000 0
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gearbox has two stages, and the faults of planet gears in 
the first stage are studied. For vibration signal acquisi-
tion, an acceleration transducer is mounted. Experiments 
are carried out on planet gears in four healthy conditions, 
shown from left to right in Fig. 5b as NC, CTF, SWF and 
MTF, respectively. The sampling frequency of the trans-
ducer is set at 12 kHz.

4.1.2 � Simulation parameters
The basic design parameters are listed in Table  1. The 
planetary gearbox has three planet gears (N = 3) with 
a fixed ring gear. The mesh damping of sun-planet pair 
and ring-planet are set as 242.6 N·s/m and 410.3 N·s/m, 
respectively. The bearing stiffness and damping of sun 
gear are assumed to be 15  N·mm−1 and 9.2  N·s·m−1, 
respectively. The constant torque acting on the carrier is 
1.26 Nm, and the sampling frequency of the simulation 
signal is 12 kHz. In the resultant signal model, according 

to the structure of DDS, Sspn and Srpn are set as 0.4 and 
0.9, while ξ is −1.

To simplify the analysis, the order spectra are 
represented by normalizing with rotational frequency of 
the carrier. The mesh order Hm = Zr denotes the mesh 
frequency fm (Hm = fm/fc = Zrfc/fc = Zr, where Zr is the 
teeth of ring gear). The rotation period of the carrier Tc 
is equal to ZrTm, where Tm is the mesh period. For the 
planetary gear train, Zr = 100, fm = 100fc, Tc = 100Tm. 
With the above settings, the vibration response can be 
determined.

4.1.3 � Spectrum analysis of simulation signal
As described in Sect.  2, modulation effects appear in 
vibration response because of the partial reduction 
of meshing stiffness, in the form of sidebands in the 
vibration spectrum. Therefore, the frequency spectra are 
analyzed.

Fig. 6  Frequency spectra of vibration signals from dynamic model (above) and DDS (below). (a) NC. (b) SWF. (c) CTF. (d) MTF
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When planet gear faults occur, fault features will 
appear near the meshing frequency, while the frequency 
locations depend on the fault location and type. As 
shown in Fig. 6a, when working under NC, the sidebands 
locate at fm ± nfc (n is an integer) because of the modu-
lation of the transmission path. After introducing fail-
ures of the planet, some impulsive signals appear. As a 
result, the spectrum contains some additional frequency 
components. As shown in Fig. 7c and d, when the planet 
gear has local faults such as CTF and MTF, these side-
bands are at the locations of fm ± mfp ± nfc (m is an inte-
ger), which also exist in the actual signal. This signifies 
that the signals are modulated by the fault of planet gear 
and the transmission path. It is worth noting that MTF 
causes more characteristic frequencies than CTF in both 

simulation and experiment. As shown in Fig.  6b, the 
global fault causes the characteristic frequency fs of the 
sun gear. The amplitudes of the order spectrum locate 
at the fm ± kfs ± nfc (k is an integer). As seen, the simula-
tion and experimental results are consistent. From the 
above analyses, it is verified that the simulation results of 
the dynamic model contain some features of the actual 
signals. This is the basis for the applicability of trans-
fer learning theory, i.e., the source domain and target 
domain contain common diagnostic knowledge. In addi-
tion, fault features can be detected from the order spec-
trum. Therefore, the fault identification of frequency 
domain signals can help the overall diagnosis decision.

4.2 � Transfer fault diagnosis experiments
The three datasets required for validation and 16 
diagnosis experiments are described in this section.

(1)	 A: Experimental Planetary Gearbox Dataset The 
dataset is collected from DDS, which contains four 
working conditions with various motor speeds and 
a certain load: 1200r/min (A1), 1800r/min (A2). 
Each health condition, i.e., NC, CTF, MTF and 
SWF, has 800 samples. Thus, this dataset has a 
total of 3200 samples, each of which has 2000 data 
points.

(2)	 B: Planetary Gearbox Dataset Used by Another 
Group The dataset is collected from a similar 
planetary gearbox under different working 
conditions. This was provided by Yan’s group [34]. 
Four healthy conditions in the dataset are selected, 
and the working conditions are investigated with 
the rotating speed system load set at 20  Hz–0  V 
(B1) and 30 Hz–2 V (B2). Similarly, 800 samples for 
each condition are intercepted, and each sample 
contains 2,000 points.

(3)	 C: Dataset Acquired by Simulation The dataset 
is acquired by dynamic simulation, and rotation 
frequencies of the sun gear are set at 20  Hz (C1) 
and 30 Hz (C2), each of which also has four healthy 
conditions. The conditions and properties of the 
samples are the same as those of datasets A and B.

Sixteen transfer fault diagnosis experiments are shown 
in Table  2. Taking the task A1 → B1 for example, A1 
is the source domain, and B1 is the target domain. The 
standard assessment protocol for unsupervised transfer 
learning missions is adopted. In each transfer task, the 
training dataset consists of all labeled data samples from 
the source domain and half of the unlabeled data sam-
ples from the target domain, while the testing dataset is 
composed of the other half of samples from the target 
domain. Among the 16 experiments, the groups of Class 
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Fig. 7  Penalty parameter and loss of the proposed DTLN. (a) Penalty 
parameter. (b) Training and testing loss

Table 2  Virous transfer task

Class Transfer task Source 
domain

Target 
domain

Healthy 
conditions

1 A1 → B1, 
B1 → A1

1200 rpm 1200 rpm NC,
CTF,
MTF,
SWF

A2 → B2, 
B2 → A2

1800 rpm 1800 rpm

2 A1 → B2, 
B1 → A2

1200 rpm 1800 rpm

B2 → A1, 
A2 → B1

1800 rpm 1200 rpm

3 C1 → A1, 
C1 → B1

1200 rpm 1200 rpm

C2 → A2, 
C2 → B2

1800 rpm 1800 rpm

4 C1 → A2, 
C1 → B2

1200 rpm 1800 rpm

C2 → A1, 
C2 → B2

1800 rpm 1200 rpm
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1 are the transfer diagnosis from one machine to another 
under similar working conditions, while those in Class 
2 are under different working conditions. Class 3 is the 
transfer fault diagnosis between dynamic model and 
actual machines at the same speed, while Class 4 is the 
diagnostic experiments of the proposed method at differ-
ent rotational speeds.

The detailed parameters of the DTLN can be found in 
Table 3, in which 64 × 1 conv denotes the size of the con-
volutional kernel, 2 × 1 max-pool stands for the size of 
max-pooling operation, and 16-[2000 × 1] represents 16 
feature maps of size 2000 × 1. In order to restrain noise 
and extract useful knowledge, a wide kernel is used in C1. 
As shown in Fig. 7a, the hyperparameters λ and μ in (16) 
are set to gradually increase from 0 to 1, and the calcula-
tion formula is 2/(1 + exp(-10 × p))−1, where p denotes 
the training progress. In order to minimize the loss func-
tion, the Adam is used as an optimization algorithm and 

the learning rate is set as 0.001. The batch size is set as 
512, and the epoch of the training is 3000. Taking the 
experiment C1 → A1 for example, the loss function dur-
ing the training process is drawn in Fig. 7b. It is clear that 
the loss function converges after about 1500 steps.

To reduce contingency and particularity of results, 
each transfer fault diagnosis experiment is carried out 10 
times, and the results are shown in Table  4. It is worth 
noting that DTLN-T indicates that the input of the net-
work is time-domain samples, while DTLN-F indicates 
that the input is frequency-domain samples. The fig-
ures in Table  4 represent the average accuracy rate and 
standard deviation of 10 repeated classification experi-
ments. The accuracy rate reflects the reliability of the 
method, and the standard deviation reflects the stability 
of the method. In the transfer experiments between dif-
ferent devices, i.e., A → B, B → A, the diagnostic accura-
cies of the proposed method are over 91%. In addition, in 
the transfer experiments from dynamic model to actual 
devices, i.e., C → A, C → B, the average diagnostic accu-
racy of Class 3 is 90.9%, which indicates that the pro-
posed method is feasible.

4.3 � Results comparison and visual analysis
In order to demonstrate the effectiveness and the feasi-
bility of the proposed method, two other networks are 
chosen for comparison. Among them, the basic convolu-
tional network has the same structure and parameters as 
the 1-D CNN introduced above, and uses source data for 
training and then tries to classify target data. In addition, 
a domain adversarial neural network (DANN) which is a 
commonly used transfer learning method is also tested, 
and its parameter setting refers to [35]. The learning rate 
of the CNN is 0.01, and is 2 × 10–4 for the DANN. The 
Adam algorithm is used as optimization algorithm in 
both methods. It is worth noting that the inputs of the 
CNN, DANN and DTLN-F are all frequency-domain 

Table 3  Architecture of the 1-D CNN

Layer Parameters Stride Output size

Input / / 2000 × 1

C1 64 × 1 conv 1 16-[2000 × 1]

P1 2 × 1 max-pool 2 16-[1000 × 1]

C2 16 × 1 conv 1 32-[1000 × 1]

P2 2 × 1 max-pool 2 32-[500 × 1]

C3 16 × 1 conv 1 32-[500 × 1]

P3 2 × 1 max-pool 2 32-[250 × 1]

C4 5 × 1 conv 1 64-[250 × 1]

P4 2 × 1 max-pool 2 64-[125 × 1]

C5 5 × 1 conv 1 64-[125 × 1]

P5 2 × 1 max-pool 2 64-[62 × 1]

FC1 Flatten / 3968 × 1

FC2 Fully-connected / 256 × 1

FO Softmax / 4 × 1

Table 4  Recognition result of experiments

Method CNN DANN DTLN-T DTLN-F Method CNN DANN DTLN-T DTLN-F

A1 → B1 0.413 ± 0.028 0.888 ± 0.012 0.962 ± 0.009 0.961 ± 0.009 A1 → B2 0.314 ± 0.024 0.77 ± 0.022 0.919 ± 0.022 0.911 ± 0.011

B1 → A1 0.411 ± 0.015 0.885 ± 0.020 0.953 ± 0.015 0.964 ± 0.008 B1 → A2 0.337 ± 0.031 0.798 ± 0.042 0.915 ± 0.023 0.906 ± 0.030

A2 → B2 0.410 ± 0.015 0.879 ± 0.018 0.952 ± 0.010 0.951 ± 0.007 B2 → A1 0.332 ± 0.031 0.781 ± 0.025 0.889 ± 0.018 0.918 ± 0.006

B2 → A2 0.406 ± 0.016 0.891 ± 0.010 0.959 ± 0.016 0.949 ± 0.011 A2 → B1 0.339 ± 0.019 0.783 ± 0.027 0.890 ± 0.014 0.906 ± 0.008

Average 0.410 0.886 0.957 0.956 Average 0.331 0.783 0.903 0.910

C1 → A1 0.318 ± 0.027 0.723 ± 0.042 0.826 ± 0.010 0.904 ± 0.013 C1 → A2 0.285 ± 0.030 0.658 ± 0.049 0.767 ± 0.017 0.892 ± 0.016

C1 → B1 0.313 ± 0.031 0.702 ± 0.045 0.836 ± 0.008 0.914 ± 0.013 C1 → B2 0.293 ± 0.023 0.656 ± 0.047 0.737 ± 0.027 0.882 ± 0.019

C2 → A2 0.336 ± 0.027 0.688 ± 0.032 0.818 ± 0.011 0.899 ± 0.018 C2 → A1 0.287 ± 0.025 0.673 ± 0.049 0.768 ± 0.027 0.898 ± 0.021

C2 → B2 0.336 ± 0.029 0.676 ± 0.025 0.820 ± 0.016 0.918 ± 0.008 C2 → B2 0.288 ± 0.028 0.696 ± 0.049 0.748 ± 0.032 0.885 ± 0.013

Average 0.326 0.697 0.825 0.909 Average 0.288 0.671 0.755 0.889
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samples. The accuracies and standard deviations on the 
16 transfer fault diagnosis experiments are shown in 
Table 4. Classification accuracies of average tenfold cross 

validation on the subclass in Table 2 are shown in Fig. 8. 
Taking the task C1 → A1, for example, the classification 
accuracy and standard deviation of various methods 
are compared in Fig.  9. By comparing the results, three 
observations can be made:

(1)	 For the transfer fault diagnosis missions where 
unlabeled data are retrievable in the target domain, 
the networks based on transfer learning are 
superior. It suggests that transfer learning can be 
an effective instrument to facilitate the practical 
application of intelligent diagnostics. Additionally, 
compared with DANN, DTLN obtains higher 
classification accuracies and lower standard 
deviations, as shown in Fig.  10. It indicates that 
DTLN reduces the distribution discrepancy 
between different domains more effectively and is 
relatively stable.

(2)	 Compared with experiments where the networks 
are trained by data from machines, the accuracies 
of experiments that replace the actual labeled data 
with the simulation data are reduced. This indicates 
that the fault signals of similar equipment contain 
more domain-invariant features, but the simulated 
signals contain fewer. However, compared with the 
time-domain samples, the classification accuracy 
obtained when the frequency-domain samples 
are used as the input is higher, as shown in Fig. 8. 
Therefore, it can be inferred that when the samples 
are in the frequency domain, it is more favorable 
for the DTLN to extract the domain-invariant 
features. Therefore, the method proposed in this 
paper adopts the frequency-domain samples as 
the input. As a result, the transfer experiments 
from simulation model to actual devices can realize 
relatively high accuracy. When the set speed of the 
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dynamic model is the same as the actual speed, 
the average classification accuracy is 90.9%. Under 
different speed settings, the average classification 
accuracy is 88.9%. This proves that the diagnosis 
method combining the dynamic model with 
a deep transfer learning network has practical 
value. In similar cross-domain transfer diagnosis 
experiments, an 84.32% recognition rate for bearing 
faults in mechanical equipment is achieved in [25], 
while reference [12] achieves an 86.3% diagnosis 
accuracy. Therefore, compared with the existing 
research results, the proposed method has certain 
advantages.

(3)	 The accuracies obtained from the transfer learning 
between datasets under similar working conditions 
are higher. This is exemplified by the fact that the 
accuracy of Class 2 is lower than that of Class 1, 
and Class 4 is lower than that of Class 3. Therefore, 
the working condition is one of the important 
influencing factors of transfer learning in practical 
application. In order to improve the accuracy of 
diagnosis, the rotational speed of the dynamic 
model can be adjusted to be the same as that of the 
actual equipment to be diagnosed, so as to obtain 
more accurate fault discrimination.

In order to intuitively show the classification effect, a 
t-distributed stochastic neighbor embedding (t-SNE) 
algorithm is introduced. This can map the high-dimen-
sional features into 2-D space and the distribution of 
features can be plotted directly. Taking the task C1 → A1 
for example, the transferable features learned by CNN, 
DANN, DTLN-T and DTLN-F are shown in Fig.  10 via 
t-SNE. In addition, the confusion matrices for transfer 
results on dataset A1 can be explored. These are shown 
in Fig. 11.

From Fig. 10a, the features learned by CNN have clear 
distribution discrepancy. As a result, when CNN is 
trained with C1, its recognition for A1 is close to surmise. 
As for DANN, the cross-domain distribution discrepancy 
is amended to a certain extent as shown in Fig.  10b, so 
the accuracy of DANN for A1 is much higher than that of 
CNN. From Fig. 10c and d, the proposed DTLN is able to 
amend the distribution discrepancy between the learned 
features of different datasets. However, because of the 
difference in transferability between the subclass samples 
of the source domain and target domain, the distribution 
discrepancy of the subclass samples is corrected asym-
metrically. For example, in Fig. 10c, the distribution dis-
crepancy of the cross-domain samples with CTF is still 
severe after the correcting of DTLN-T. To illustrate with 
confusion matrices, shown in Fig. 11c and d, the classi-
fication effects of DTLN-T and DTLN-F are defective, 
whereas the classification of DTLN-F is better.

5 � Conclusion
In this paper, a dynamic-model-based transfer learning 
fault diagnosis method for WT planetary gearboxes is 
proposed. This method introduces a dynamic simulation 
dataset into the application of transfer learning and 
produces a diagnosis of unlabeled fault data obtained 
from actual machines. To verify the feasibility of the 
proposed method, spectrum analysis of the simulated 
and experimental signals is carried out, and 16 groups of 
transfer fault diagnosis experiments are completed. From 
the results, the following conclusions can be drawn.

(1)	 Through the spectrum analysis, the vibration 
response solved by the dynamic model contains 
some features of the actual fault vibration signal, 
i.e., domain-invariant features required by transfer 
learning.
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(2)	 The proposed DTLN can effectively realize the 
recognition of unlabeled fault data from the target 
domain. In the application of transfer fault diagno-
sis, the classification accuracy and stability of the 
DTLN are better than those of the DANN.

(3)	 The proposed method combining a dynamic model 
with the deep transfer learning network can identify 
four kinds of faults of the planetary gearbox. When 
the set speed of the dynamic model is the same as 
the actual speed, the average classification accuracy 
is 90.9%.

The results indicate that the proposed method that 
combines the transfer learning theory with dynamic 
model is feasible, whereas the dynamic model 
proposed can be further optimized. After introducing 
the dynamic model, varied labeled fault data can be 
obtained, and the fault setting is more independent and 
convenient. This leads to practical application value.

There has been rapid development of artificial 
intelligence algorithms. However, because of the 
operating environment, working condition, data 
acquisition difficulty etc., artificial intelligence methods 
in the field of fault diagnosis are developing slowly. 
Therefore, how to combine artificial intelligence 
methods with practical applications of condition 
recognition to achieve higher accuracy is the direction 
of future research.

List of symbols
ms: Mass of the sun gear.; xs, ys: Translational displacement of x-axis and y-axis 
for sun gear.; ui: Torsional displacements for each component (i = s,r,c,pn).; kij, cij: 
Supporting stiffness and damping for each component at different motions 
(j = x,y,u).; kspn(t), krpn(t): Stiffness function between sun-planet and ring-planet 
meshing pairs (n = 1,···,N).; cspn, crpn: Constant damping between sun-planet 
and ring-planet meshing pairs.; espn(t), erpn(t): Transmission errors of the nth 
sun-planet and ring-planet pairs.; xspn, xrpn: Relative displacements along the 
torsional motion action lines of sun-planet and ring-planet; Ii: Inertias of each 
component.; ri: Base circle radii of each component.; Ts(t), Tc(t): External torques 
on the sun gear and the carrier.; αs: Meshing angles of the sun-planet gear 
mesh.; ψn: Circumferential position angle of the nth planet gear.; q: Number 
of harmonic terms.; kspnm, krpnm: Mean values of time-varying mesh stiffness of 
sun-planet and ring-planet meshing pairs.; ωm: Mesh frequency.; γspn: Relative 
phase between the nth sun-planet mesh and the first sun-planet mesh; γrpn: 
Relative phase between the nth ring-planet mesh and the first sun-planet 
mesh.; φek: Phase difference between espn(t) and kspn(t), and between erpn(t) and 
krpn(t).; K(l) spna, K(l) spnb, K(l) rpna, K(l) rpnb: Harmonic coefficients of Fourier 
series.
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WT: Wind turbine; DTLN: Deep transfer learning network; 1-D CNN: One-
dimensional deep convolutional neural network; NC: Normal condition; CTF: 
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etrain dynamic simulator; DANN: Domain adversarial neural network; t-SNE: 
T-distributed stochastic neighbor embedding.
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