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A novel out of step relaying algorithm based 
on wavelet transform and a deep learning 
machine model
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Abstract 

Out-of-step protection of one or a group of synchronous generators is unreliable in a power system which has 
significant renewable power penetration. In this work, an innovative out-of-step protection algorithm using wavelet 
transform and deep learning is presented to protect synchronous generators and transmission lines. The specific 
patterns are generated from both stable and unstable power swing, and three-phase fault using the wavelet trans-
form technique. Data containing 27,008 continuous samples of 48 different features is used to train a two-layer 
feed-forward network. The proposed algorithm gives an automatic, setting free and highly accurate classification for 
the three-phase fault, stable power swing, and unstable power swing through pattern recognition within a half cycle. 
The proposed algorithm uses the Kundur 2-area system and a 29-bus electric network for testing under different 
swing center locations and levels of renewable power penetration. Hardware-in-the-loop (HIL) tests show the hard-
ware compatibility of the developed out-of-step algorithm. The proposed algorithm is also compared with recently 
reported algorithms. The comparison and test results on different large-scale systems show that the proposed algo-
rithm is simple, fast, accurate, and HIL tested, and not affected by changes in power system parameters.
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1  Introduction
Power swing is a phenomenon that usually occurs 
because of the sudden disconnection of heavy loads or 
tripping of transmission lines because of faults in the 
system. Protective elements must accurately and quickly 
detect the power swing condition, while the conse-
quences of unstable power swings are mostly in the 
maloperation of transmission line distance relays, and 
damage to the generator and turbine-generator units. 
Unstable power swings can also cause cascade failure 
of numerous transmission lines, transformers, and gen-
erators. Thus, additional devices and functions, namely 

out-of-step protection systems, are usually augmented to 
avoid the consequences of unstable power swings.

The essential parts of out-of-step protection relay-
ing are the power swing blocking (PSB) function, the 
out-of-step (OOS) tripping function of the transmis-
sion line, and OOS protection of the synchronous gen-
erator. It is difficult to detect a symmetrical fault during 
a power swing [1], while the low frequency oscillation 
of the power system can result in a loss of stability or a 
blackout.

Low frequency oscillations in a power swing are 
detected in [2] by analyzing the Daubechies-4 (db4) 
wavelet, and compared with the Prony and Eigen-
value analysis. The proposed discrete wavelet trans-
form-(DWT) based approaches in [2] can identify the 
onset of the initial disturbance in the power system 
and the presented modes during low frequency power 
oscillation. The future scope of wavelets for blackout 
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prevention by avoiding unnecessary tripping using 
wavelet-based protection is described in [3], and dif-
ferent wavelet families are considered and compared. 
This shows that high accuracy can be achieved using 
the db4 mother wavelet. Reference [1] also projects that 
the transient energy can be captured in level d1 to d4 of 
the voltage waveform during the events, and the detail 
coefficient-9 (d9) of the current waveform can track the 
variation in current. The proposed algorithm in [1] thus 
uses detail coefficient-1 (d1) to coefficient-4 (d4) for 
the detection of the fault, and d9 as an indicator of the 
power swing. Some thresholds are also used for a final 
decision, though the identification of an unstable power 
swing using a detail coefficient is lacking in [1]. In addi-
tion, the calculation of such thresholds is not described.

The algorithm in [1] also uses some fixed settings to 
make it rigid but it needs close attention. The difficul-
ties of using only a few specific features and threshold 
settings are explained in Sect.  3 of this paper. In con-
trast, an optimized deep learning (DL) machine model 
is designed, which works on pattern recognition.

The blinder-based out-of-step relay for the synchro-
nous generator protection is typically designed using 
fixed settings. The work in [3] describes the impact 
of integrating solar and wind power generation on 
small-signal oscillation in the modern power system. 
Reference [4] proposes a protection scheme that dif-
ferentiates the type of fault from load change events. 
The harmonic magnitudes of the voltage signal and 
its fundamental part provide sufficient information to 
discriminate fault detection, location, classification, 
and zone identification. An artificial neural network 
(ANN) is used once the support vector machine (SVM) 
identifies the fault type. However, the two unique tech-
niques make the model complicated and inefficient for 
hardware. The algorithm in [4] cannot detect unsta-
ble power swings and is used only as a PSB relay. Fur-
thermore, the algorithm in [4] has not been validated 
in extensive scale systems with significant renewable 
power penetration.

ANN offers more prompt responses and requires a 
quarter of the fault signal cycle to identify the type of 
fault [5]. Thus, an ANN-based distance relay can provide 
fast and precise operation [6]. Nevertheless, reference [6] 
does not address the other distance relay problems, such 
as maloperation of a distance relay during a power swing 
and for a system with large renewable integration.

In [1–6], once the power swing is initially identified 
from the fault, further identification is lacking. However, 
this is the most important part in a modern power sys-
tem. Stable power swings can be damped by advanced 
power system controllers and there is no need for rapid 
disconnection of affected elements. However, advanced 

power system controllers cannot damp out unstable 
power swings, so rapid and correct detection is required.

Reference [7] proposes the use of voltage and current 
signals for feature extraction for the machine model, 
and recommends avoiding the Fast Fourier Transform 
(FFT) signal in order to reduce hardware complexity. The 
ANN model in [8] uses multi-layered perception with a 
back-propagation algorithm. It describes the neural net-
work structure and shows that the use of ANN for online 
power system dynamic security and vulnerability assess-
ment is quite realistic. ANN also improves performance 
in terms of adaptiveness and relay coordination [9]. The 
two significant areas of wavelet transform are power sys-
tem protection and power quality. Reference [10] chooses 
db5 as a mother wavelet for detecting a short dura-
tion and fast decaying fault-generated transient signal, 
and uses both high and low frequency approximations 
to avoid confusion between fault and non-fault events. 
It also shows some limitations, such as specific system 
structure and the algorithm requiring more adjustment, 
indicating the non-adaptability of the method.

With incorrect input data, the proposed method in [11] 
produces dubious output and lacks information, and thus 
user intervention is necessary. The process can be used 
for significant system fault section identification as it 
does not depend on the size of the electric network. The 
identification of a failed device helps to restore the sys-
tem quickly after faults. A multilayer perceptron neural 
network is used to solve failed device identification prob-
lem in [12]. However, the proposed network only handles 
32 alarms, so the ANN needs to be developed further to 
deal with complex system emergencies. Reference [13] 
uses multivariate analysis and data mining techniques 
for synchronous generator islanding protection, while a 
phasor measurement unit (PMU)-based adaptive out-of-
step protection algorithm is presented in [14]. The use of 
a PMU increases the accuracy and reliability of the out-
of-step protection, but at the expense of increased overall 
protection cost.

Reference [15] presents an adaptive concentric power 
swing blocker with two concentric circles. It shows that 
the current signal’s static phasor estimation error can be 
used to find the first pair of concentric circle locations. 
However, the rate of change of impedance used in [15] 
depends on power system parameters such as voltage 
regulator, governor, fault type, and renewable power pen-
etration [18]. Furthermore, the conventional power swing 
blocking (CPSB) used in [15] may maloperate under 
renewable integration [16].

In the present work, the signal is analyzed up to the 
12th level using the db-4 mother wavelet. An algorithm 
is designed such that with modification of the appropri-
ate mother wavelet, it is sufficient to use for protective 
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relaying with other conditions such as topological 
change, loading, and fault locations. The MATLAB envi-
ronment is used for the testing and development of the 
proposed ANN-based algorithm using a PC with an Intel 
i5 processor, 8 GB of RAM, and a 64-bit operating system 
with 256 GB solid-state drive (SSD).

The rest of the paper is organized as follows. Sec-
tion 2 describes the system and power swing conditions. 
In Sect.  3, the uniqueness in the training data selection 
and data pre-processing is explained, and the unique 
mathematical modeling of the DL machine model and 
the final proposed algorithm are presented. Unknown 
disturbances are manually applied to test the proposed 
technique in Sect.  4. The development and large-scale 
validation results are presented in Sect.  5. Comparison 
of the proposed algorithm with recently reported algo-
rithms is provided in Sect. 6, with the results expressed 
in four categories: (1) results during training, testing, and 
validation, (2) results of testing with unknown distur-
bances, (3) hardware-in-loop (HIL) test results, (4) exten-
sive scale validation. Finally, Sect. 7 draws conclusions.

2 � Testing system and power swing conditions
The Kundur two-area system is considered for the wave-
let analysis of three-phase faults, and stable and unsta-
ble power swings, as shown in Fig.  1 [17]. The unstable 
power swing is produced by applying three-phase faults 
longer than the CCT (Critical clearing time) near the HV 
(high voltage) of the GTU (Generator transformer unit) 
of the G1 (generator-1). The three-phase current and 
voltage waveforms produced at bus B1 during an unsta-
ble power swing after the fault is removed are shown in 
Figs. 2 and 3, respectively.

The process of developing the proposed relay is 
explained in four steps: (1) Training data selection and 
pre-processing; (2) Design of the mathematical structure 
of the deep learning neural network; (3) Design of the 

proposed relaying algorithm; (4) Training, validation, and 
testing.

3 � Development of the proposed algorithm
3.1 � Training data selection and pre‑processing
The fault events are transients, which are reflected in 
voltage and current waveforms by the change in their fre-
quency and magnitude. The wavelet transform of a sig-
nal gives information about both frequency and time of 
the transient event. However, it is challenging to detect 
three-phase faults during a power swing as it provides a 
minimal reflection at the transient stage of the voltage 
signal. These changes depend on the location of the fault, 
type of fault, and instant of fault, while the frequency of 
a transient is much higher than the nominal frequency 
of the system. Further, during ground faults, the phase-
to-ground voltage magnitude of the faulty phase is near 
zero, while the current increases considerably. Hence, 
the wavelet scale covering the fault frequency has higher 
energy than the scale covering the current wave’s nomi-
nal frequency, whereas the power swing has a relatively 
low frequency ranging from 3 to 7 Hz [18]. The energy 
distribution up to the 12th level during the three-phase 
fault, stable power swing, and unstable power swing are 
shown in Table  1 using the current waveform and in 
Table 2 using the voltage waveform.

The wavelet scales must be selected such that they 
cover the lower frequency, which detects patterns of 
the low energy levels, and high frequency, which sees 
patterns of high energy levels. The db4 wavelet decom-
poses the current/voltage signals up to the 12th level 

Fig. 1  The Kundur two-area system for testing

Fig. 2  Three-phase current waveform during unstable power swing

Fig. 3  Three-phase voltage waveform during unstable power swing
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with a sampling rate of 20  kHz, which gives enough 
resolution of time–frequency variation in current and 
voltage during events.

During the three-phase faults, the minor energy lies in 
the current wave from 302 to 646 Hz, reflected in detail 
coefficient d5, which is absent in a power swing for the 
same ranges. Further, the minor energy lies in the volt-
age waveform in the range of 302  Hz and 646  Hz for 

a three-phase fault and is absent for a power swing in 
the same range. Analysis of detail coefficients at levels 
3 to 5, 9 and 10 shows the unique patterns of unstable 
and stable power swings, and a three-phase fault. Fig-
ure 4 shows the significant pattern differences between 
the three-phase fault and power swing in the level 5 
current signal’s detailed resolution. Similarly, the time–
frequency resolution of the voltage waveform at level 9 
shows the significant pattern differences between stable 
and unstable swing, as shown in Fig. 5. A minor pattern 
difference at each level between fault, stable swing and 
unstable swing also exist, as shown in Tables  1 and 2. 
The minor pattern difference is also useful for training 
the machine model and should not be ignored.

Further analysis of all features verifies that the mean 
and median value of d7 and a12 coefficients of the cur-
rent signals can differentiate between a three-phase fault 
and a power swing, as shown in Table 3. The stable and 
unstable swings can be classified using mean and median 
values a1 and d12 of the voltage waveform, as shown in 
Table  4. First, a few selected details and approximate 
coefficients of the voltage and current waveforms are 
used to train the DL algorithm using Tables  3 and 4. 
However, it has been observed that a few selected coef-
ficients are not able to classify all the events, and some 
chosen variable feature extraction techniques have no 
significant difference between the stable and unstable 
power swings. Thus, more coefficients using Tables 1 and 
2 are used and tried with the feature extraction method. 
This shows improvement of the pattern and some dis-
tinct differences in each pattern of fault and power swing.

Finally, in this work, the patterns of the detailed coef-
ficients from d1 to d12 and approximate coefficients a1 
to a12 are considered. The input vector gives the unique 
pattern for a 3-phase fault, and stable and unstable power 
swings. This pattern can differentiate them completely.

Table 1  Energy distributions in the current waveform

Bold shows the significant difference in % energy among three phase fault, 
stable swingand unstable swing

Levels Frequency
Range

3-Phase 
fault
Energy in %

Stable swing
Energy in %

Unstable 
swing
Energy 
in %

Level 1 5 kHz–10 kHz 0.00 0.00 0.00

Level 2 2.41 kHz–
5.19 kHz

0.00 0.00 0.00

Level 3 1.21 kHz–
2.58 kHz

0.00 0.00 0.00

Level 4 603 Hz–1.29 kHz 0.01 0.00 0.00

Level 5 302 Hz–646 Hz 0.02 0.00 0.00
Level 6 151 Hz–323 Hz 0.26 0.17 0.23

Level 7 75.4 Hz–162 Hz 14.95 15.57 19.05

Level 8 37.9 Hz–80.7 Hz 67.80 83.69 80.45

Level 9 19.2 Hz–40.3 Hz 3.15 0.21 0.09
Level 10 9.98 Hz–19.8 Hz 2.80 0.35 0.17

Level 11 4.44 Hz–10 Hz 3.75 0.00 0.00

Level 12 4.4 Hz–4.61 Hz 4.14 0.00 0.00

Approx.12 0 Hz–0.244 Hz 3.11 0.00 0.00

Table 2  Energy distributions in the voltage waveform

Bold shows the significant difference in % energy among three phase fault, 
stable swingand unstable swing

Levels Frequency
Range

3-Phase 
fault
Energy 
in %

Stable swing
Energy in %

Unstable 
swing
Energy 
in %

Level 1 5 kHz–10 kHz 0.01 0.00 0.00

Level 2 2.41 kHz–5.19 kHz 0.01 0.00 0.00

Level 3 1.21 kHz–2.58 kHz 0.02 0.00 0.00

Level 4 603 Hz–1.29 kHz 0.05 0.00 0.00

Level 5 302 Hz–646 Hz 0.11 0.00 0.00
Level 6 151 Hz–323 Hz 0.51 0.17 0.24

Level 7 75.4 Hz–162 Hz 18.31 15.58 19.72

Level 8 37.9 Hz–80.7 Hz 78.42 83.69 79.85

Level 9 19.2 Hz–40.3 Hz 1.66 0.21 0.04
Level 10 9.98 Hz–19.8 Hz 0.56 0.35 0.13

Level 11 4.44 Hz–10 Hz 0.15 0.00 0.00

Level 12 4.4 Hz–4.61 Hz 0.10 0.00 0.00

Approx.12 0 Hz–0.244 Hz 0.10 0.00 0.00

Fig. 4  Pattern difference at level 5 in detail resolution of current 
during the events
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3.2 � Design of the mathematical structure of deep learning 
neural network

The proposed deep learning machine model has a 
(48 × 1) input vector–matrix size, x1, x2, x3, and x4 to x48, 
as shown in Fig. 6.

The optimization in performance and training time 
uses a neural network of two hidden layers, one input 
layer and one output layer, and each hidden layer has ten 
neurons. The optimization is achieved by minimizing 

the cross-entropy by changing neurons at each layer. The 
input vector x(j) (at the jth sample) is weighted by respec-
tive weight and bias at the hidden layers, as shown in 
Fig. 6. The best possible weight and bias are determined 
such that they minimize the loss function. The proposed 
deep learning machine model uses a scale conjugate 
descent method for parameter estimation. The forward-
ing pass uses a linear combination with non-linear activa-
tion repetitively to each layer to get the prediction. Once 
a prediction is reached, the next job is to find the loss.

The loss is propagated in the reverse direction to cal-
culate the gradient concerning the direct connections 
to the output layer. It then applies the chain rule of the 
derivative successively to find the losses at intermediate 
levels. The proposed deep learning model uses an adap-
tive learning rate. This gives faster convergence than the 
classical machine learning algorithm. The loss function 
used is the non-convex type, and hence the proposed 
model uses a momentum-based strategy. It applies an 
early stopping technique, so the machine model stops 
early when generalization stops improving during train-
ing. Each unit of neuron has two parts of activation:

(1)	 Linear combination
(2)	 Non-linear activation

The linear function at the first hidden layer for the ith 
neuron and the jth sample is given by:

where bi is the bias at the ith neuron, wi is the weight at 
the ith neuron, and xji is the input vector at the ith neu-
ron for the jth sample.

The non-linear activation function used at the first 
layer is a tan-sigmoid transfer function, which for the ith 
neuron and jth sample is described as:

The linear function at the first hidden layer for the ith 
neuron and jth sample is:

(1)zi = bi +

i=n
∑

i=1

(

wix
j
i

)

(2)ai = F (z) =
2

1+ e−2zi
− 1

Fig. 5  Pattern difference at level 9 in detail resolution of voltage 
during the events

Table 3  d7 and a12 coefficients during the unstable, stable, and 
faulty conditions

Current 
signal 
during

Co-efficient Mean 
value

Median Max value Min 
value

Unstable 
swing

d7 0.020 − 0.010 6.346 − 7.298

Stable swing d7 0.008 − 0.008 2.287 − 2.311

3-Phase fault d7 59.74 262 4.431 × 104 4.2 × 104

Unstable 
swing

a12 0.037 0.02 0.1881 -0.008

Stable swing a12 0.062 0.035 0.3181 -0.007

3-Phase fault a12 1.2 × 104 8888 5.08 × 104 392

Table 4  d12 and a1 of voltage signal statistics during the 
unstable, stable, and faulty conditions

Voltage 
signal during

Co-efficient Mean 
value

Median Max value Min value

Unstable 
swing

d12 1.12e4 1.3 × 104 1.9 × 104 − 3108

Stable swing d12 − 1594 − 773.8 629.9 − 5065

3-Phase fault d12 − 7577 − 8803 − 2061 − 1.3 × 104

Unstable 
swing

a1 2632 5201 2.2 × 105 − 2.3 × 105

Stable swing a1 − 25.4 68.84 1.8 × 105 − 1.9 × 105

3-Phase fault a1 − 336.1 − 452.2 1.5 × 105 − 8.8 × 104

Fig. 6  DL neural network for the proposed algorithm
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Layer 2 has a non-linear activation function known as 
a SoftMax transfer function. The SoftMax transfer func-
tion for the ith neuron and jth sample is described as:

Finally, the output is given for the jth sample as:

where y(j) is the output at the jth sample.
y(j) has three sets of binary outputs, i.e., [1 0 0], [0 1 0], 

and [0 0 1] for unstable swing, stable swing and fault, 
respectively. The highest probability in the output set [y1, 
y2, y3] is considered equal to 1, while all other values are 
considered to be 0.

3.3 � Design of the proposed relaying algorithm
The detail and approximate coefficients are calculated 
with the input signals of voltage and current given by the 
current and voltage transformer respectively, as:

where CAl and CDl represent the approximation coef-
ficients and detail coefficients of the signal at level l.

The signals pass through a high pass filter (HPF) and a 
low pass filter (LPF), and the outputs from both filters are 
used to obtain the detail and approximation coefficients 
at level 1 (d1 and a1). The approximation coefficients are 
then sent to the second stage to repeat the procedure 
[2]. Finally, the signal decomposes at the 12th level, and 
the input vector is created. The training data is prepared 
using the input and output vectors given by:

where x(j) is a set of wavelet coefficients (d1(j) to d12(j), 
a1(j) to a12(j)) at the jth sample for voltage and current 
waveforms at a sampling rate of 20  kHz or higher, and 
y(j) ∈ (0, 1).

Figure  7 shows the flow chart of the proposed algo-
rithm. The previously trained pattern recognition 

(3)ni = bi +

i=n
∑

i=1

wiai

(4)
σ(ni) =

eni
∑K

j=1 e
nj

for i = 1, 2 . . . , K and n = (n1 . . . , nK) ∈ RK

(5)y(j) = bi +

i=n
∑

i=1

wiσi

(6)CAl(k) =
∑

n

{

h(2k − n)CAl−1(n)
}

(7)CDl(k) =
∑

n

{

g(2k − n)CDl−1(n)
}

(8)Training data =
(

x(j), y(j)
)

machine model senses the input x(j), and gives three 
binary outputs [1 0 0], [0 1 0] and [0 0 1] for unstable 
swing, stable swing and three-phase fault, respectively. If 
an unstable swing is classified, the trip signal is sent to the 
associate breaker at the point of separation. In the case of 
a stable power swing, the algorithm produces a PSB com-
mand and sends it to the transmission line distance relay. 
Once the PSB command is sent, the algorithm starts 
sampling the next data and continues until further iden-
tification. If the fault is classified, the tripping decision of 
the distance relay is allowed with its zone delay settings 
for transmission line protection.

3.4 � Training, validation, and testing
Table  5 shows the performance in terms of percentage 
error during training, validation, and testing. The 0% 
error indicates that no sample is miss-classified.

The cross-entropy needs to be minimized during train-
ing, validation, and testing. The development stops when 
the plots of training, validation, and testing intersect at 
minimum cross-entropy. After 614 epochs, the best vali-
dation is achieved. This gives a cross-entropy of 0.00013, 
as shown in Fig. 8.

The confusion matrix presented in Fig.  9 shows the 
performance in terms of the output class matrix to the 
target class. As seen, the output class and target class 
completely match during training, validation, and testing 
in the confusion matrix. If the algorithm is confused, the 
value is shown in the off-diagonal place; otherwise, it is 
placed at a diagonal location in the confusion matrix.

4 � Performance validation by unknown events
The signals that are used for the swing center arise at 
the HV terminal of GTU of G1 during machine model 
development. After developing the proposed algorithm 
with the required performance, many unknown signal 
data of stable swing, unstable swing, and three-phase 
fault are considered. The modified Kundur two-area 
system is used to find the effect of different renewable 
penetration levels on the proposed out-of-step relay. 
Four identical DFIGs (Doubly Fed Induction Genera-
tors) are connected at buses BG1, BG2, BG3, BG4 such that 
the total power flow remains the same from area 1 to 
area 2 in Fig. 1 [16].

4.1 � Test using unknown data of different fault locations
The following test cases produce strange signals for 
testing:

1.	 Swing center arises at HV terminal of GTU of G2
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2.	 Swing center appears at HV terminal of GTU of G3
3.	 Renewable power penetration at a different level
4.	 Swing center appears at the middle of the transmis-

sion line

An unknown input vector of features from the whole 
bunch of extensive sampled signal data is applied to the 
algorithm. The output of the algorithm is rounded to its 
closest prediction using the following condition:

(1)	 if the binary output is fractional value < 0.9, then 
consider 0

(2)	 if the binary output is fractional value ≥ 0.9, then 
consider 1

If the same binary result continues for a half cycle, it 
indicates its final prediction. It is worth noting that the 
same algorithm can also be expanded for fault classifica-
tion. Table 6 shows the list of test cases to verify the pro-
posed algorithm for the unknown input data.

4.2 � Hardware‑in‑the‑loop test of the proposed out of step 
relay

The hardware-in-the-loop (HIL) test is an essential step 
before committing to the relay’s final hardware design. 
Simulink with the Waijung open-source Simulink pack-
age is the desktop software for generating both C (Com-
piler) and HDL (Hardware Description Language) code 
used for real-time testing. The real-time hardware system 
(Arm Cortex-M4) is used as a hardware relay for running 
code from Simulink models using Simulink Real-Time 
[19].

The Simulink relay consists of an input vector (48 × 1) 
applied to the DL machine model. This generates the 
binary output.

Fig. 7  A flow chart of the proposed algorithm

Table 5  Performance of the developed machine model on the 
Kundur two-area and the 29-bus systems

System Process Samples %error

Kundur two-area system Training 18,906 0

Validation 4051 0

Testing 4051 0

The 29-bus system Training 12,603 1.4%

Validation 2700 1.3%

Testing 2700 1.3%

Fig. 8  Cross-entropy reduction after each epoch
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The hardware relay only consists of the coded DL 
machine model using Simulink real-time. The data trans-
mitter and receiver are connected at the PD8 and PD9 
pins of the hardware relay, respectively. The sampling 
time for data transmission is 0.005 s.

Figure 10 compares the outputs between the developed 
Simulink-based and hardware-based relays. The tripping 
command of the hardware relay is delayed by 0.005  s 
because of the sampling time set in data transmission. If 
this delay is considered, the software and hardware relays 
have the same instantaneous response once the event has 
been confirmed after continuous same binary output for 
a half cycle. Figure 11 shows the hardware setup used for 
real-time HIL testing.

5 � Development and performance validation 
of the proposed algorithm on a 29‑bus system

Figure  12 shows the 29-bus, 7-power plant network 
model based on the Canadian Hydro-Quebec (QUE) 
system. It has transmission lines at 735  kV and 26,200 
MVA power capacity [20]. The 735 kV transmission lines 
are series and shunt compensated with fixed capacitors 
(Cs) and inductors (Ls). The network contains seven 
hydro power plants with regulators and power system 
stabilizers [20]. A sampling rate of 50  µs is considered 
in the simulation. The 3-phase faults are applied at the 
MTL (Montreal) bus with shorter and longer durations 
than the critical clearing time to generate a set of train-
ing data. The DL model on the 29-bus large-scale system 
is developed to verify the accuracy of the development 
steps. The continuous 18,003 samples of three different 
patterns having the vector dimension of 48 × 1 are used 
for training, testing, and validation.

This newly developed wavelet and deep learning-based 
machine model is tested with unknown power swings 
and three-phase fault signals. The results show that the 
proposed algorithm development procedure is a stand-
ard one and can be used to any scale of system. Also, the 
detection of power swings and three-phase faults are 
highly accurate with an unknown input vector. It is found 
that the overall accuracy is reduced by 1.4% during the 
training, testing, and validation process on the 29-bus 
system. The details of errors in each stage are shown in 
Table  5, and the training, testing, and validation results 
on the 29-bus system are shown using the confusion 
matrix in Fig. 13. The cross-entropy found on the 29-bus 

Fig. 9  Confusion matrix of the developed machine model

Table 6  Cases simulated to test relay logic for unknown data

Note: Tfault = fault clearing time; Tcr = Critical clearing time; LLLG = triple line to 
ground; LG = line to ground; TL-2 = Transmission line-2

Case No Type of event Power swing 
produced due to:

The 
output 
of the 
proposed 
relay

Swing center arises at HV of GTU of G2

1 Unstable power 
swing

LLLG fault (Tfault > Tcr) [1 0 0]

2 Stable power swing LLLG fault (Tfault < Tcr) [0 1 0]

3 Three-phase faults Not applicable [0 0 1]

4 Stable power swing Sudden load changes [0 1 0]

5 Unstable power 
swing

Sudden load changes [1 0 0]

6 Unstable power 
swing

LG fault (Tfault > Tcr) [1 0 0]

7 Stable power swing LG fault (Tfault < Tcr) [0 1 0]

Swing center arises at HV of GTU of G3

8 Unstable power 
swing

LLLG fault (Tfault > Tcr) [1 0 0]

9 Stable power swing LLLG fault (Tfault < Tcr) [0 1 0]

10 Three-phase faults Not applicable [0 0 1]

11 Stable power swing Sudden load changes [0 1 0]

12 Unstable power 
swing

Sudden load changes [1 0 0]

13 Unstable power 
swing

LG fault (Tfault > Tcr) [1 0 0]

14 Stable power swing LG fault (Tfault < Tcr) [0 1 0]

Renewable integration

15 Unstable power 
swing

50% level of integra-
tion

[1 0 0]

16 Stable power swing 7% level of integration [0 1 0]

17 Three-phase faults Not applicable [0 0 1]

Swing center arises at the middle of the TL-2

18 Unstable power 
swing

LLLG fault (Tfault > Tcr) [1 0 0]

19 Stable power swing LLLG fault (Tfault < Tcr) [0 1 0]

20 Three-phase faults Not applicable [0 0 1]
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system is 0.0127, which shows that the deep learning 
model is well fitted.

6 � Comparison between different algorithms
Comparisons of the proposed algorithm with the wave-
let-based algorithm in [1], and the SVM and ANN-based 
algorithms in [4] are summarized in Table 7.

Both PSB and OOS tripping are very important for a 
synchronous generator. The proposed algorithm can 
identify the type of power swing once a power swing is 
detected. This is not possible in the methods reported in 
[1] and [4]. Hence, the methods in [1] and [4] are suit-
able for power swing blocking (PSB) but not for OOS 
tripping. Further, it is imperative for out-of-step relay 
to be adaptive to the changes in system topology, power 
flow, and renewable power penetration level. The pro-
posed scheme is validated with different levels of renew-
able power penetration, whereas the methods in [1] 
and [4] are only tested on a minimal system (fewer than 
nine buses) without the integration of renewable power 
resources.

The proposed algorithm does not require the thresh-
old calculation that the method in [1] does. The method 
in [4] needs detection of the 3rd, 5th and 7th harmon-
ics, and a fault classifier for detecting the type of fault. 
These are more likely to mal-operate under renewable 
integration. The operating times of the method in [4] and 
the proposed one are the same, while the relay operating 
time is not fixed for the technique in [1] as it depends on 
the fault location.

The proposed DL model development steps are stand-
ard ones irrespective of the scale of the power system. 

However, in [1] and [4], the algorithms have not been 
tested at larger scales for development standardization. 
Similarly, the out-of-step relay performance in series 
and shunt compensated lines needs to be evaluated. This 
is lacking in [1] and [4], whereas the proposed method 
works correctly under this condition as verified on the 
29-bus system. In addition, the proposed algorithm 
works independently while the method in [1] uses the 
conventional scheme, and [4] uses the fault classifier.

The proposed algorithm works on patterns, so protec-
tion engineers do not need to study the system topology, 
system parameters, source nature, and fault location. 
However, the methods in [1] and [4] are more complex, 
as the threshold settings fluctuate with fault location [1], 
and the Kalman filter design changes under increased 
harmonic injection by non-linear loads or unknown 
renewable sources [4].

In addition, HIL test results of the proposed algorithm 
are provided to show the hardware suitability and actual 
operation speed where the methods in [1] and [4] have 
not been tested for HIL.

7 � Discussion
The proposed pattern recognition machine model using 
wavelet transform gives favorable results during devel-
opment. Tests using events that are not a part of the 
algorithm’s development are carried out. Table  6 shows 
all the different unknown event cases, including stable 
power swing, unstable power swing, three-phase faults, 
and sudden load change. The proposed algorithm cor-
rectly identifies each class of power swing and three-
phase fault for all the unexplained events, and only needs 

Fig. 10  Tripping signals of the hardware relay during HIL test
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half a cycle or less to decide the type of power swing. The 
training time of the algorithm using the high-end proces-
sor is almost a fraction of a second, while the total time 
required for training, validation, and testing is around 
2 s. The proposed algorithm’s sampling time can handle 
a higher rate depending on the processor in which it is 
deployed. When the proposed algorithm is applied in a 
hardware relay, it gives detection and tripping within 
0.01  s with high accuracy. HIL tests confirm that the 
developed relaying algorithm is ready for the hardware 
production stage and provides the same response as the 
Simulink-based model. The proposed algorithm’s accu-
racy on the 29-bus system is reduced slightly during 
training, testing, and validation.

8 � Conclusion
The detail and approximate coefficients captured using 
the db4 wavelet up to the 12th level of resolution dur-
ing unstable and stable power swings, and three-phase 
fault provide a unique pattern of each event with an input 
vector of d1 to d12 and a1 to a12 of current and voltage 
in the given order. The deep learning machine model is 
designed to recognize the pattern and to discriminate 
stable and unstable swings, and three-phase fault events 
automatically with high accuracy. The proposed algo-
rithm is not affected by strange circumstances as it does 

not use signal features while the pattern’s nature remains 
the same.

The proposed algorithm is based on wavelet trans-
form with the DL machine model. This can detect any 
uncommon power swings that are due to the impact of 
renewable power integration, while strange power swings 

Fig. 11  HIL test setup to test the proposed algorithm

Fig.12  Diagram of the 29-bus, 7-power plant network system 
(Hydro-Quebec)

Fig. 13  Confusion matrix of the developed machine model on the 
29-bus system

Table 7  Comparison of the proposed algorithm with existing 
methods

Point of comparison The 
proposed 
algorithm

The wavelet-
based [1]

SVM and 
ANN based 
[4]

PSB Yes Yes Yes

Out of Step (OOS) tripping Yes No No

3 phase faults during 
power swing

Yes Yes Yes

Use of threshold settings No Yes No

Adaptive quality Yes No No

Accuracy Excellent Very Good Very Good

Simplicity of usage Yes Needs care-full 
settings

Required 
filter design 
and fault 
classifier

Relay operating time Half cycle Not fixed Half cycle

HIL tested Yes No No

Standardization Standard Not verified Not verified

Tested for compensated 
transmission line

Yes No No

Tested under significant 
renewable integration

Yes No No

Dependent on another 
scheme

No Yes Yes
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cannot be classified correctly using the blinder-based and 
other recently reported algorithms. The HIL tests con-
firm that the proposed relay gives the same response in 
the hardware system as the simulation model. The pro-
posed out-of-step relaying algorithm has a minimal train-
ing time and rapid response time. It achieves an accuracy 
of 98.6% on the 29-bus Hydro-Quebec system, which is 
reduced by 1.4% compared to the kundur 2-area system 
because of the increased system complexity. The com-
parison of the proposed algorithm with recently reported 
algorithms concludes that the proposed out-of-step relay 
is more accurate, simple, fast, and adaptive in modern 
power system conditions.
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