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System bias correction of short‑term 
hub‑height wind forecasts using the Kalman 
filter
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Abstract 

Wind energy is a fluctuating source for power systems, which poses challenges to grid planning for the wind power 
industry. To improve the short-term wind forecasts at turbine height, the bias correction approach Kalman filter (KF) is 
applied to 72-h wind speed forecasts from the WRF model in Zhangbei wind farm for a period over two years. The KF 
approach shows a remarkable ability in improving the raw forecasts by decreasing the root-mean-square error by 16% 
from 3.58 to 3.01 m s−1, the mean absolute error by 14% from 2.71 to 2.34 m s−1, the bias from 0.22 to − 0.19 m s−1, 
and improving the correlation from 0.58 to 0.66. The KF significantly reduces random errors of the model, showing the 
capability to deal with the forecast errors associated with physical processes which cannot be accurately handled by 
the numerical model. In addition, the improvement of the bias correction is larger for wind speeds sensitive to wind 
power generation. So the KF approach is suitable for short-term wind power prediction.
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1  Introduction
Wind energy is one of the most important sources of 
renewable energy, and over the last decade there has 
been rapid growth in wind energy production in China. 
Because of its stochastic nature, wind is inherently vary-
ing and wind energy is a fluctuating source for power sys-
tems [1]. Accurate wind power prediction can reduce the 
risk of uncertainty and lead to better grid planning and 
integration of wind energy. Thus, short-term wind power 
prediction, which has been discussed widely [2–5], is use-
ful in power system planning. According to the demands 
of the wind energy industry, 15-min wind speed forecast 
at turbine height with a forecast period of 24–72 h should 
be provided for short-term wind power prediction.

Numerical weather prediction (NWP) models can 
exhibit systematic errors in wind speed and ramp event 

forecasts [6–8], especially near the surface. This can be 
caused by many factors, such as shortcomings in the 
physical parameterization, inability to successfully han-
dle sub-grid phenomena, inaccurate initial and lateral 
boundary conditions, interpolations to areas not close 
to grid points or model levels, and smoothed orographic 
and landscape characteristics associated with the model 
horizontal resolution. To reduce the influence of these 
drawbacks in the final output of a NWP model, a vari-
ety of approaches based on statistical methods have been 
used [9–11], such as linear regression, moving aver-
age correction, partial least squares method, etc. These 
approaches are called model output statistics (MOS) 
methods, and employ postprocessing bias correction to 
improve the direct model outputs.

One of the most convenient postprocessing approaches 
is Kalman filter (KF) [12], which is a statistically optimal 
sequential estimation procedure for dynamic systems. 
Observations are recursively combined with recent fore-
casts using weights that minimize the corresponding 
biases. The KF approach carries minor computational 
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costs and can easily adapt to any alterations in observa-
tions. In addition, this recursive and adaptive method 
does not need an extensive database for training.

The KF method has been widely used for improving 
weather forecasts of continuous variables such as 2  m 
temperature, 10 m wind speed and ozone concentration 
etc. [13–17]. As a postprocessing bias correction method, 
the KF uses recent past observations and forecasts to 
estimate the model bias in future forecasts to correct the 
raw forecasts. The nonlinear formation of Kalman fil-
ter has been applied to improve short-term wind speed 
forecasts at turbine height [18] and to forecast wind 
speed and wind power at a wind farm site [19]. Reference 
[20] modifies the nonlinear Kalman Filter proposed in 
[18] and applies the method to improve the wind ramp 
event forecasts for wind power industry. As well as the 
MOS methods and the KF approach, many studies have 
employed various other approaches to improve short-
term wind speed and power forecasts, such as analog 
bias correction [21, 22], Gaussian process regression [23], 
machine learning techniques such as neural network [24, 
25] and random forests [21], analog ensemble [26] and 
time-dependent bias correction [27] for probability fore-
casting. Other related studies include data preprocessing 
technique [28] and circular-circular regression method 
for wind direction forecasts [29].

Reference [30] shows that in the lower atmosphere, 
forecast errors can be correlated for several days and 
contain strong diurnal variability. So in this paper, diur-
nal behavior of the forecast error is taken into consid-
eration and the KF is applied to Zhangbei wind farm in 
northeastern China to perform a detailed statistical anal-
ysis. The state-of-the-art MOS method is also employed 
as a comparison to evaluate the forecast skill of the KF 
approach. The discussion is focused on the capability of 
the KF to improve the raw forecasts, especially on sys-
tematic and random errors.

The rest of this paper is organized as follows. In Sect. 2, 
information on the wind farm, the WRF model and 
the experimental design is provided. Since the turbine 
height (60–100 m) is in the lower boundary layer, a spe-
cial Kalman filter for each hour of the day is presented in 
Sect. 3, so that the forecast error can be estimated from 
data with lags of multiple of 24-h. In Sect. 4 a case study 
on wind speed forecasts in Zhangbei wind farm over two 
years is illustrated. Finally, Sect. 5 draws conclusions.

2 � Wind speed datasets and numerical simulations
2.1 � The wind farm and observations
Zhangbebi wind farm is located northwest of Hebei 
Province in China. The farm consists of 66 wind tur-
bines with a total installed capacity of around 100 MW. 
The wind turbine height is 70  m, and the wind farm 

covers complex mountain terrain with the altitude 
ranging from 1600 to 1800 m (see Fig. 1).

Observational data comes from one mast situ-
ated at the wind farm, at latitude 41° 03′ N, longitude 
114° 29′ E and altitude 1660  m. Wind speed data was 
recorded by the anemometer with a sampling rate of 
5 min. The dataset used in the present study spans over 
2  years, from 07 November 2015 to 22 February 2018 
(839 days in total), and the measurements are averaged 
over 15 min in order to meet the demands of the wind 
power industry.

2.2 � The WRF model and experimental design
The WRF model is a nonhydrostatic compressible-
equation, mesoscale NWP model [31], and the pro-
posed bias correction methods have been applied to 
improve the hub-height wind speed forecasts provided 
by the WRF model.

In the present study, the WRF model is run over 
northeastern China with three nested domains cen-
tered on Zhangbei wind farm with 27-km, 9-km, and 
3-km horizontal grid increments. The forecast periods 
are 24-h, 48-h and 72-h, and the wind speeds are issued 
in 15-min increments. Vertical levels in the model have 
fine resolution around wind turbine height with 48 lev-
els in total and 6 levels in the lowest 100 m. The 70-m 
wind speed forecasts within the finest domain are bilin-
early interpolated to the observation location directly. 
The parameterizations chosen for these experiments 
include the Purdue Lin microphysics scheme, the Mel-
lor–Yamada–Janjic planetary boundary layer (PBL) 
scheme, the Eta scheme for the surface layer, the Kain–
Fritsch scheme for the convective processes (only in the 
two coarser domains), and the Noah land surface model 
for the land surface scheme.

Fig. 1  Location of Zhangbei wind farm (the black solid triangle 
denotes the observation station)
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3 � Bias correction procedure
3.1 � The Kalman filter (KF) approach
In numerical weather forecasts, the specific KF 
approach predicts the future bias as equal to the old 
bias plus uncertainty, which is corrected by the linear 
function of the difference between the previous predic-
tion and verifying bias.

In our study, the KF method models the true 
(unknown) forecast bias xt at time t by the previous 
true bias plus a white noise wt term as:

where �t is the time delay. Assuming the forecast error yt 
is corrupted from truth by a random error term vt as:

thus, yt includes both the systematic bias and random 
error. Therefore, the system matrix and the observa-
tion matrix are designated as the identity matrix for the 
proposed algorithm. The random vectors wt and vt must 
follow the normal distribution with zero mean and be 
independent.

Kalman [12] showed that the optimal recursive pre-
dictor of xt can be written as a combination of the pre-
vious bias estimation and the previous forecast error. 
The optimal estimates given for the state vector xt and 
covariance matrix Pt at time t are:

As soon as the new value yt becomes known, the new 
value of state vector xt is calculated as:

where Kt is the Kalman gain matrix and is the most cru-
cial parameter of the filter. Kt determines how easily the 
filter will adjust to any possible new conditions, and is 
given as:

Finally, the new value of the covariance matrix Pt of 
the unknown state is given by:

Equations  (3)–(6) are known as updating equations, 
which update the Kalman algorithm from time t −�t 
to t. Note that − 1 denotes the inverse matrix while I 
stands for the identity matrix. This procedure is recursive 
because values of the KF coefficients at any one-time step 
depend on the values at the previous time step, and it is 
optimal in a least-squares sense.

(1)xt = xt−�t + wt

(2)yt = xt + vt

(3)xt/t−�t = xt−�t , Pt/t−�t = Pt−�t +Wt

(4)xt = xt/t−�t + Kt(yt − xt/t−�t)

(5)Kt = Pt/t−�t(Pt/t−�t + Vt)
−1

(6)Pt = (I− Kt)Pt/t−�t

Since xt and Pt converge to their true values rapidly, 
the initial values x0, P0 do not seriously affect the results 
of the algorithm. However, the way in which the covari-
ant matrices Wt of the random vector wt and Vt of vt are 
calculated during the process can significantly affect the 
final outcome. In our case, the system covariant matrix 
Wt and observation covariant matrix Vt are estimated 
based on the samples of the last 7 values of wt = xt − xt-1 
and vt = yt − xt respectively, as:

where n = 7 and n − 1 represents unbiased estimation. 
The period of 7 values has proved to be the optimal 
choice in the study for successful correction and fast 
adaptability. Here the initial values of xt, Pt, Wt and Vt are 
set to 0, 4, 1 and 6, respectively.

For a time delay of �t = 24 h, it means today’s forecast 
bias is estimated using yesterday’s bias, which in turn was 
estimated using the bias from the day-before-yesterday. 
The forecast bias may have time-varying behavior at dif-
ferent times of the day (e.g., different wind speed activi-
ties during daytime versus nighttime), so the influence of 
diurnal variation in atmospheric boundary layer is con-
sidered. Different from the nonlinear version of Kalman 
filter in [18, 20], the KF algorithm used in this study is 
run on data for each hour of the day to eliminate the 
error caused by the diurnal behavior, using only values 
from previous days at the same hour of the day. In this 
way, a given hour is corrected using only the past fore-
casts and observations at the same hour.

Because the original data is in 15-min increments, the 
observations and forecasts are transformed to one-hour 
averages as pre-processing of the bias correction. The 
results for the first 39 days are removed to eliminate the 
effects of the KF algorithm’s spin-up, and the results for 
the remaining 800  days are then analyzed. Finally, the 
corrected one-hour wind speeds are transformed back to 
15-min wind speeds.

3.2 � Model output statistics (MOS) method
Since the MOS method is the most widely used in post-
processing techniques for numerical models, the cor-
rection results by the MOS method are also provided to 
compare with the KF correction results.

MOS uses a multiple linear regression to correct system-
atic errors in NWP models using NWP outputs of certain 
weather variables as predictors and fitting these predictors 

(7)

Wt =
1

n− 1

n
∑

i=1

(

(xt−i − xt−i−1)−

∑n
j=1 (xt−j − xt−j−1)

n

)2

(8)

Vt =
1

n− 1

n
∑

i=1

(

(yt−i − xt−i)−

∑n
j=1 (yt−j − xt−j)

n

)2
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to observations. To find the optimal predictors, the MOS 
multivariate regression equations are used.

MOS aims at correcting forecasts by means of a regres-
sion function r between the variable Y to be predicted and 
some explanatory variable(s) (or predictors) X which may 
be NWP model output(s) or any other source of informa-
tion. This regression function is estimated based on past 
forecasts and associated observations, and it is then applied 
to future forecasts to increase their accuracy. In the present 
study, a classical regression method is applied [32], and the 
regression function is a second-order polynomial relation-
ship of the explanatory variables as:

where β0 is a real number, β is a vector of real numbers, 
and X1,2 is the vector containing every possible combina-
tion of product of explanatory variables of order 1 and 2 
(called interactions). The parameters β0 and β are fitted 
onto the training dataset with an ascending selection of 
predictors based on the Bayesian information criterion. 
WRF-modeled U, V, and W wind components, wind 
speed (wspd), temperature T, pressure P and relative 
humidity (rh) are used as potential predictors here.

4 � Results and discussion
The bias correction methods presented in Sect.  3 are 
applied to improve the wind speed forecasts in this section. 
The root-mean-square error (RMSE) can be decomposed 
as:

where

In Eqs.  (10)–(12), the variable R represents RMSE, 
RC represents the centered root-mean-square error 

(9)r̂(X) = β0 + β · X1,2

(10)R2 = R2
C + B2

(11)RC =

√

√

√

√

1

Np

Np
∑

i=1

[(Fi − F)− (Oi − O)]2

(12)B = F − O

(CRMSE), and B denotes bias. Oi is the observation value 
at time i and Fi is the corresponding forecast value. Np is 
the size of sample which means the number of pairs (Fi, 
Oi). F  and O are the mean forecast value and observa-
tion value, respectively. CRMSE is considered to be the 
random component of RMSE, while the systematic com-
ponent is represented by bias. CRMSE can be associated 
with the intrinsic predictive skill of the forecast because 
of the limitation of physical parameterization, and bias 
estimates the systematic errors which may be associated 
with biased initial conditions, smoothed topography, off-
set parameter values, etc.

4.1 � Global performance
To evaluate the performance of the bias correction, the 
global metrics of the results are investigated first. Table 1 
characterizes the ability of improving forecast skill for the 
bias correction quantitatively, based on metrics of bias, 
mean absolute error (MAE), RMSE, CRMSE and the cor-
relation coefficient. Because the study mainly analyzes 
the bias correction results for 72-h forecasts, only 72-h 
MOS bias correction results are presented as compari-
son. From Table  1, it can be seen that the KF approach 
for 72-h forecasts has decreased RMSE by 16% from 3.58 
to 3.01 m s−1, MAE by 14% from 2.71 to 2.34 m s−1, bias 
from 0.22 to − 0.19 m s−1, and improved the correlation 
from 0.58 to 0.66. The result for CRMSE is similar to that 
for RMSE. Table 1 also shows the results of the KF bias 
correction for 24-h and 48-h forecasts. It is not surprising 
that the KF for 24-h forecast shows the best performance, 
as when the forecast period gets longer, the correction 
effect is weakened. For results of 24-h forecasts, the KF 
bias correction has decreased RMSE by 18%, MAE by 
16%, bias by 27%, and improved the correlation from 0.58 
to 0.67, with all the metrics showing remarkable improve-
ment. Although 0.6 m s−1 improvement in RMSE in some 
circumstances is not seen to be high, this is a substantial 
improvement in wind energy. In a 2008 Department of 
Energy publication, it was stated that, “a 1% error in wind 
speed estimates for a 100-MW wind generation facility 
can lead to losses approaching $12,000,000 over the life-
time of that plant” [33]. The MOS bias correction also 

Table 1  The overall performance of the KF bias correction for 24-h, 48-h, 72-h forecasts and MOS bias correction for 72-h forecasts 
based on the five metrics (bias, MAE, RMSE, CRMSE, and correlation coefficient)

Statistics Bias (m s−1) MAE (m s−1) RMSE (m s−1) CRMSE (m s−1) Correlation 
coefficient

Raw forecasts 0.22 2.71 3.58 3.57 0.58

KF bias correction (24 h) − 0.16 2.28 2.92 2.91 0.67

KF bias correction (48 h) − 0.18 2.32 2.99 2.98 0.66

KF bias correction (72 h) − 0.19 2.34 3.01 3.00 0.66

MOS bias correction (72 h) 0.19 2.49 3.22 3.21 0.59
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shows moderate improvement, decreasing RMSE by 10%, 
MAE by 8% and bias by 14%. From the above results, it is 
obvious that the KF is suitable for short-term wind power 
prediction with the forecast period of 24–72 h. In the rest 
of this paper, only the results for 72-h forecast are ana-
lyzed as representative forecasts.

From the relationship shown by (10), if CRMSE is plot-
ted against the bias, the distance of the point from the 
origin is equal to RMSE. Figure 2 illustrates such a dia-
gram for the raw forecasts and the KF and MOS bias 

corrections, where the radial distances from the origin 
to the gray circular lines equal RMSE. Obviously, wind 
speed errors in this forecast system are dominated by the 
random component. The KF not only reduces the bias 
component of RMSE, but also the remaining part. The 
latter can be seen as the ability of the KF to add predic-
tive skill to the raw forecasts by reducing random errors.

4.2 � Seasonal and diurnal variability for bias correction
To investigate the seasonal and diurnal characteristics of 
the forecast errors, the two metrics with all the available 
data at a given time of the 24 forecast hours are com-
puted. Figures  3 and 4 show the temporal evolution of 
bias and CRMSE, respectively for the raw forecasts, and 
the KF and MOS bias correction results.

The biases in summer and autumn are much larger 
than in winter and spring, and exhibit violent diurnal 
variation. The maximum bias is almost 3  m  s−1 which 
appears in summer. The growth of the planetary bound-
ary layer (PBL) is often a challenging process for predic-
tion, which is reflected by the jump in the bias values 
before sunrise (05 LST-07 LST) in summer and autumn 
(Fig.  3). Throughout the daytime and early evening, the 

Fig. 2  Bias (m s−1) as a function of CRMSE (m s−1), showing the raw 
forecasts and the KF and MOS bias corrections

Fig. 3  Temporal evolution of bias in a spring, b summer, c autumn, d winter for the raw forecasts, and the KF and MOS bias corrections across the 
24 h of forecast



Page 6 of 9Xu et al. Protection and Control of Modern Power Systems            (2021) 6:37 

bias values stay constant around 0.5  m  s−1, and before 
sunrise, the raw forecasts show an increase in bias, given 
the uncertainty associated with the PBL growth. The KF 
shows improvement across all the forecast hours in the 
range of 0.5–2.5 m s−1 with respect to the raw forecasts, 
while decreasing bias around 1.5–2.5  m  s−1 in 05 LST-
07 LST. This is the indication of the KF method’s abil-
ity to improve the predictive skill. In winter and spring, 
the diurnal cycles are not so obvious compared to those 
in summer and autumn, and the KF correction effect is 
not so remarkable. The MOS bias correction also shows 
moderate improvement in summer and autumn, espe-
cially in PBL growth time, though the KF approach per-
forms better than the MOS method nearly all the time.

For CRMSE (Fig.  4), the results are contrary to those 
for bias. The CRMSE in winter and spring is larger than 
in summer and autumn, and the maximum CRMSE 
appearing in winter is almost 4.5  m  s−1. The KF drasti-
cally reduces CRMSE of the raw forecasts by 1 m s−1 in 
winter. In spring, there is a high peak around 09 LST-10 
LST, and then it drops abruptly by almost 1.5 m s−1. The 
KF approach reduces CRMSE by around 1 m s−1 in this 

time interval, showing the capability to handle the fore-
cast error associated with PBL growth. Figure 4b shows 
similar results in summer. The KF reduces CRMSE of 
0.7–1.0 m s−1 from midnight to noon. The MOS method 
shows little improvement for CRMSE in all four sea-
sons, which indicates that the MOS method mainly 
reduces bias of the forecast error rather than the CRMSE 
component.

4.3 � Evaluation of wind speed forecasts sensitive to wind 
power prediction

It is well known that wind speed forecasts for wind power 
prediction are different from routine wind speed fore-
casts according to the wind turbine power curve. When 
wind speed is equal to or less than 5 m s−1 a turbine will 
not generate power output, while once the wind speed 
exceeds 12 m s−1, the wind turbine reaches its maximum 
capability. So forecast accuracy for wind speed between 
5 and 12  m  s−1 is essential to wind power prediction. 
Hence the wind speed forecasts sensitive to power pre-
diction are evaluated in this subsection.

Fig. 4  Temporal evolution of CRMSE in a spring, b summer, c autumn, d winter for the raw forecasts, and the KF and MOS bias corrections across 
the 24 h of forecast
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Figure 5 gives the wind speed distribution of the obser-
vation, the raw forecasts, and the correction. For the KF 
approach (Fig.  5a), the bias correction mainly improves 
the raw forecasts in 4–12 m s−1, except for wind speeds 
in the 5–7 m  s−1 interval. In the wind speed interval of 
9–12  m  s−1, which are included in the area sensitive to 
wind power prediction (5–12  m  s−1), the correction 
shows significant efficiency. While for the MOS method 
(Fig. 5b), the bias correction only provides small improve-
ments on the raw forecasts in most wind speed intervals.

To quantitatively evaluate the performance of the 
two bias correction methods for wind speeds sensi-
tive to wind power prediction, the results are presented 
in Table  2. The raw forecasts for wind speed sensitive 
to wind power show better forecast skill than in Table 1 
based on all four metrics. This is rational because the 
model exhibits large errors when wind speed is low. In 
complex terrain, low wind speed is always associated 
with local circulations which cannot be accurately han-
dled by the numerical model. The KF has decreased 
RMSE by 18% from 2.91 to 2.40 m s−1, MAE by 17% from 
2.28 to 1.88  m  s−1. The larger reduction of CRMSE by 
19% from 2.90 to 2.36 m s−1 compared to RMSE, is due 
to the promoted bias. Thus, for wind speeds sensitive to 
wind power, the improvement of the bias correction is 

larger. This result proves that the KF approach is espe-
cially suitable for wind power prediction. The same fact 
can be seen in Fig. 6, while the MOS method also shows 
moderate improvement for wind speeds sensitive to wind 
power prediction.

The overall performance of the two bias correction 
methods has been evaluated. In contrast to MOS and 
other statistical methods which require a long training 
period and behave in a static manner, the KF approach 
adapts its coefficients during each time step. It requires a 
much shorter training period, and can adapt to changing 
synoptic conditions, changing seasons, and even chang-
ing weather forecast models. However, the disadvantage 
of the method is that it is less likely to predict extreme 
bias events, e.g., it is unable to anticipate a large bias 
when all biases for the past few days have been small.

5 � Conclusions
To improve the short-term hub-height wind speed fore-
casts for wind power prediction, a postprocessing bias 
correction Kalman filter approach is applied to 72-h 
wind speed forecasts at 70-m height from the WRF 

Fig. 5  The wind speed distribution of the observation, the raw forecasts and the a KF, b MOS

Table 2  The overall performance of the KF and MOS bias 
corrections for wind speeds sensitive to wind power prediction 
based on four metrics (bias, MAE, RMSE, and CRMSE)

Statistics Bias (m s−1) MAE (m s−1) RMSE (m s−1) CRMSE 
(m s−1)

Raw forecasts 0.12 2.28 2.91 2.90

KF − 0.35 1.88 2.40 2.36

MOS 0.14 2.03 2.62 2.61

Fig. 6  Bias (m s−1) as a function of CRMSE (m s−1) for wind speeds 
sensitive to wind power prediction, showing the raw forecasts, and 
the KF and MOS bias corrections
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model in Zhangbei wind farm for a period of more than 
two years. The main conclusions can be summarized as 
follows:

The KF approach for 72-h forecasts has decreased 
RMSE by 16% from 3.58 to 3.01  m  s−1, MAE by 14% 
from 2.71 to 2.34 m s−1, bias from 0.22 to − 0.19 m s−1, 
and improved the correlation from 0.58 to 0.66. Wind 
speed errors in this forecast system are dominated by 
the random component, while the KF not only reduces 
systematic errors of the model, but also significantly 
reduces random errors of it.

In all seasons, the forecast errors (including system-
atic errors and random errors) of the raw forecasts 
exhibit a strong diurnal cycle with a peak before sun-
rise in PBL growth time. The KF approach significantly 
reduces random errors of the model when the PBL 
growth occurs, showing the capability to deal with 
the forecast errors associated with physical processes 
which cannot be accurately handled by the numerical 
model. In contrast, the MOS method mainly reduces 
systematic component of the error rather than the ran-
dom component.

The improvement of the KF is larger within the range 
of the power curve where power generation is most 
sensitive to wind speed. This fact shows that the KF 
approach is especially suitable for wind power predic-
tion. And with the advantages of shorter training peri-
ods and faster adaption time than traditional statistical 
methods, the KF approach is suitable for short-term 
wind power prediction with the forecast period of 
24–72 h.
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