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Stochastic maximum power point tracking 
of photovoltaic energy system under partial 
shading conditions
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Abstract 

A large portion of the available power generation of a photovoltaic (PV) array could be wasted due to partial shading, 
temperature and irradiance effects, which create current/voltage imbalance between the PV modules. Partial shading 
is a phenomenon which occurs when some modules in a PV array receive non-uniform irradiation due to dust, cloudy 
weather or shadows of nearby objects such as buildings, trees, mountains, birds etc. Maximum power point track-
ing (MPPT) techniques are designed in order to deal with this problem. In this research, a Markov Decision Process 
(MDP) based MPPT technique is proposed. MDP consists of a set of states, a set of actions in each state, state transition 
probabilities, reward function, and the discount factor. The PV system in terms of the MDP framework is modelled first 
and once the states, actions, transition probabilities, and reward function, and the discount factor are defined, the 
resulting MDP is solved for the optimal policy using stochastic dynamic programming. The behavior of the resulting 
optimal policy is analyzed and characterized, and the results are compared to existing MPPT control methods.
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1  Introduction
Renewable energy is of tremendous importance because 
of environmental protection, limited availability of fos-
sil fuel, and increasing demand for electricity. Owing to 
technological advancements, the performance and reli-
ability of renewable energy systems have improved sig-
nificantly. Improvements in energy storage systems have 
further enhanced the trend of alternative energy sources. 
Photovoltaic (PV) based energy systems are one of the 
fastest growing forms of renewable energy. PV energy is 
clean, simple in design and requires very little mainte-
nance. Moreover, PV systems can also be constructed as 
stand-alone systems to give wide output power ranging 
from microwatts to megawatts. Therefore, PV systems 
are suited for urban installation as they are noise free and 
can be set up in any places where sunlight is available.

Partial shading is a natural phenomenon which occurs 
when a PV array or a part of it is shaded due to the shade 
of nearby buildings, dust, cloudy weather or bird drop-
pings. With partial shading, several modules in the PV 
array receive non-uniform irradiation, and therefore the 
current through each series string is no longer constant. 
As a consequence, the shaded portion of the array may 
consume instead of generating power. This results in 
heating or hot-spots in the PV panel. This problem, if it 
remains untreated, can result in permanent damage of 
the PV panel in the long run. In addition, the efficiency of 
the PV system can be degraded by up to 70% due to hot-
spot heating.

A major issue associated with partial shading is its 
impact on the current–voltage characteristics of a PV 
system. Because of partial shading, the current–voltage 
relationship becomes highly nonlinear and it becomes 
difficult to find the value of the voltage at which the PV 
system delivers maximum power. Many researchers 
have proposed methods to tackle this problem. A recent 
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review of maximum power point tracking (MPPT) meth-
ods under partial shading condition (PSC) is presented 
in [1]. The solutions proposed for MPPT under PSC can 
be broadly categorized into six main groups [1], i.e., con-
ventional algorithms, metaheuristic algorithms, hybrid 
algorithms, mathematically based algorithms exploiting 
the characteristic curves of PV system, artificial intelli-
gence-based algorithms, and hybrid algorithms. The con-
ventional algorithms for MPPT are the simplest in their 
structure but can be easily trapped in a local maximum 
power point (MPP).

Metaheuristic algorithms such as the bio-inspired 
mimetic salp swarm algorithm [2] and the dynamic 
leader- based collective intelligence algorithm [3] can 
effectively achieve the global MPP. However, the tun-
ing of the parameters for achieving the best trade-off 
between local and global explorations is difficult.

Figure 1 shows the change in MPP of a PV when irradi-
ance is decreased [4]. It is noted that when the irradiance 
changes, both the maximum available power of the PV 
and the voltage at the maximum power change. A tech-
nological review on soft computing methods for MPPT is 
presented in [5]. Compared to the current voltage curves 
in Fig. 1, the curves in Fig. 2 [6] indicate the generation 
of local MPP (Fig.  2c) which makes it difficult for the 
conventional MPPT techniques to find the global MPP. 
Hence there has been significant work on MPPT tech-
niques under PSC [1, 7].

Among the wide range of methods for MPPT under 
PSC discussed earlier, some use nature-inspired meth-
ods [8] while others are based on effective utilization of 
power electronic circuitry [9].

Among the direct methods are the perturb and observe 
based incremental conductance, particle swarm optimi-
zation based [10, 11], and parasitic capacitance methods 
[10, 12]. Some of the artificial intelligence based meth-
ods include a back-propagation neural network based 
method, a two-stage off-line trained artificial neural 

Fig. 1  MPP shifts vertically down when irradiance is decreased [4]

Fig. 2  Operation of PV array a under uniform irradiance, b under partial shading, c the resulting I–V and P–V curve for (a) and (b) [6]
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network based MPPT technique using two cascaded arti-
ficial neural networks [13], an artificial neural network-
based duty cycle estimation of the boost converter in PSC 
[14], a genetic algorithm to detect the MPP of a photo-
voltaic system [15]. A comparison among different MPP 
tracking techniques based on the annual performance 
has been reported in [16]. A bio-inspired flower pollina-
tion algorithm for MPP tracking has been discussed in 
[17] which has been shown to effectively handle partial 
shading condition however, some time is required before 
the duty cycle is adjusted according to the changes in the 
shading condition. Another interesting recent approach 
for MPP tracking is adaptive perturb and observe that 
has been reported in [18] but the model of uncertainty 
has not been incorporated in the design of the MPP 
tracking algorithm.

Based on the above discussion, it can be inferred that 
although many works have been done on the MPPT 
under PSC for PV systems, none of the existing methods 
uses the mathematical model of uncertainty involved in 
the shading patterns for developing MPPT technique. 
In addition, the existing methods do not use pre-calcu-
lations of the MPP under various shading conditions. 
Hence, this paper discusses a Markov Decision Process 
(MDP)-based MPPT control which belongs to the class 
of artificial intelligence-based methods. MDP consists 
of five elements, i.e., a set of discrete and finite states, a 
set of actions (or control decisions), a set of state tran-
sition probabilities, a state dependent reward function, 
and a discount factor ranging between zero and one. 
Once a problem is formulated as a MDP (by defining all 
five elements), the optimal control policy (optimized with 
respect to the expected value of the discounted reward 
function) is calculated using a stochastic dynamic pro-
gramming technique such as value iteration or policy 
iteration [16, 19]. The optimal policy is a mapping that 
provides an optimal action for each state.

The main advantage of using a MDP-based control 
over existing approaches is that the uncertainty in the 
irradiance level is incorporated directly in the calcula-
tion of control policy. Another advantage is that the 
control policy is optimized with respect to the expected 
discounted value of the reward function. The disadvan-
tage, however, is the computational complexity involved 
in calculation of the optimal policy. This disadvantage is 
less of a concern for two reasons. First, the computations 
are performed beforehand (in an offline manner) and 
the calculated policy is stored in the memory associated 
with the embedded system. Second, with modern com-
putational capability and development of approximate 
dynamic programming approaches, complex problems 
can become computationally tractable.

There is one additional task associated with the pro-
posed approach compared to the existing methods, i.e., 
the collection of statistical data. In order to develop 
state transition probabilities, statistical data related to 
the irradiance levels at the location of PV panel instal-
lations needs to be collected beforehand. The solution 
of this problem is beyond the scope of this paper. How-
ever, machine learning and iterative policy improvement 
are existing tools that can enable the implementation of 
the proposed method without accurate statistical data 
to begin with. Such development is an avenue of future 
research. In the rest of the paper, the formal problem 
formulation is presented in Sect.  2 and the proposed 
MDP model is given -n Sect. 3. Calculation of the opti-
mal MPPT policy using the proposed MDP model is 
described in Sect. 4. A simulation-based case study and 
qualitative and quantitative comparison with existing 
approaches is provided in Sects.  5 and 6, respectively. 
Finally, findings and future directions are summarized in 
Sect. 7.

2 � Problem formulation and solution approach
When different modules in the PV array receive non-uni-
form irradiation, multiple local maxima occur in the I-V 
characteristics of the PV array (see Fig. 2). Consequently, 
the PV array fails to operate at MPP. In order to operate 
the PV array at MPP, it is required to track the maximum 
operating region of the PV plant according to changing 
weather conditions and shift the operating point of the 
plant according to environmental conditions in the pres-
ence of uncertainty.

Our proposed solution involves multiple steps includ-
ing the formulation of a MDP model and its use for cal-
culation of optimal control policy. Figure  3 shows the 
flowchart of the solution process. Note that once the 
optimal control policy is formulated, it is used to dictate 
the duty cycle of the DC-DC converter and hence the 
operating voltage is changed to track the MPP. Details of 
the MDP model are presented in the next section.

3 � Markov decision process model for MPP tracking
As mentioned earlier, a MDP consists of a set of states, a 
set of actions in each state, a state transition probability 
function T

(

s
′
|s, a

)

 , a reward function R(s), and a dis-
count factor (γ ) that is a number between zero and one. 
The discount factor describes the preference for current 
rewards over future rewards [16]. Consequently, the 
MDP model is formulated as:

where S is the set of states, A is the set of all possible 
actions, T

(

s
′
|s, a

)

 is the transition probability function 

(1)MDP =
{

S, A, T
(

s′|s, a
)

, R(s), γ
}
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expressing the probability of being in state s′ ∈ S when 
control (action) a ∈ A is taken in a state s ∈ S . R(s) is the 
reward function that defines the value of immediate 
reward for a state s ∈ S . Each ingredient of the model for 
stochastic control of the MPPT of a PV energy system is 
presented below.

3.1 � States
State-space is the collection of information regarding the 
MPPT. Each state variable has its own domain. Union 
of domains of all state-variables constitute state-space. 
After careful deliberation and literature survey, the states 
and state variables are defined as follows:

In (2), there are a total of N  states, and each state has 
five variables and consequently five types of information 
among these variables. Variable ei is the error between 
the maximum expected power at a given voltage and the 

(2)

Si = {s1, s2, . . . , sN }

si =
{

ei, Irri,Vi,V
∗
i ,αi

}

αi ∈ {0, 1, . . . ,m}

Vi,V
∗
i ∈ {Vmin,Vmin + δ1,Vmin + 2δ1, . . . ,Vmax}

Irri =
{

Irri,1, Irri,2, . . . , Irri,q
}

, q ∈ N

Irri,j ∈ {Irrmin, Irrmin + δ2, Irrmin + 2δ2, . . . , Irrmax}

ei ∈ {emin, emin + δ3, emin + 2δ3, . . . , emax}

actual power received at that voltage. It is assumed that 
the maximum expected power at each voltage is known. 
The error variable ranges from emintoemax and the inter-
val between any two values of ei is δ3 , which can be any 
positive constant and is chosen according to its suitability 
to the problem. A small δ3 will result in large state space 
while a large δ3 will result in small state space. Irradiance 
Irri is the irradiance vector containing the irradiance of 
every panel in state i . Each panel has different ranges of 
irradiance, defined in (2) as Irri,j where j ranges from 1 
to q and q is the total number of solar panels in the sys-
tem. Vi is the current PV output voltage determined by 
the selection of the duty cycle, while V ∗

i  is the last value 
of voltage V  in the last m actions which has achieved a 
minimum value of e . Variable αi indicates the number of 
actions executed for searching the MPP ( αi ranges from 0 
to m , counting up to m actions).

With the above selection of state space, it is possible 
to determine whether the current voltage is achieving 
maximum expected power or not, while the irradiation 
level at each panel (or group of panels) is also deter-
mined. In practice, irradiation measurement sensors 
are required to provide such information. In addition, 
information about the best possible voltage ( V ∗ ) within 
the last m voltage values that yields lowest error is also 
obtained. This information is incorporated in the state 
space because, in practice, the irradiation measurement 

Fig. 3  Flowchart of the proposed methodology
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may not be accurate or there may be some anomaly caus-
ing the MPP to shift from the expected value. Under such 
circumstances, it would be impossible to make the error 
( e ) equal to zero. Therefore, V ∗ is the voltage that may 
be adopted by the system if the error remains nonzero 
for more than m consecutive steps (or decision epochs). 
Once the error becomes zero, the value of αi is reset to 
zero.

3.2 � Actions
Actions basically refer to all the available decisions in 
each state for the MPPT of the PV system. Based on 
selected state variables, actions include the selection 
of voltage V for the PV system. If no change in the cur-
rent value of V is desirable, a no-operation (NOOP) can 
be selected as an action. This usually happens when the 
value of e is either zero or smaller than a threshold.

Each action in (3) (except for NOOP) corresponds to a 
particular value of V  (assuming there are x possible val-
ues for V  ). Once a value of V  is selected, the duty cycle is 
then adjusted accordingly to achieve the value of V  . Note 
that the subscript i is used with V  when it refers to the 
value of the voltage in a particular state si . Otherwise, the 
subscript is not used.

3.3 � Reward function
Reward function is a measure of how good or bad a state 
is, and can be regarded as a negative of cost function. In 
the MPPT problem, it is preferable to drive the error to 
zero. Hence the reward must be inversely proportional 
to the error. In addition, it is also desirable to make the 
value of V  equal to V ∗ especially when it is not possible to 
reduce the error to zero. Therefore, a reward for making 
V  equal to V ∗ is required that should be inversely propor-
tional to the value of αi.

Based on the above discussion, the reward function is 
given as:

In (4), the first term ( r1 ) is to endorse the fact that 
desired power must be equal to the maximum expected 
power. It means that if it is not operating at MPP this 
term will have a value, while e will be zero or close to 
zero if operating at MPP, and then a high reward is 
obtained. Note that β , �1 , and �2 are positive constants 

(3)A = {a1, a2, . . . , ax,NOOP}, x ∈ N

(4)

R(si) = r1(si)+ r2(si)

r1(si) =

{

(�1 − ei)− βifei lt; threshhold
(�2 − ei)ifei ≥ threshhold

r2(si) =

{(

1
1+αi

)

ifVi = V ∗
i

0otherwise

to be selected by the user. The second term ( r2 ) in (4) is 
to endorse the need for the system to be operating at the 
best possible voltage and further actions are discouraged. 
If the system is not operating at maximum possible volt-
age, this whole term will be zero so further actions taken 
to improve the voltage will have no reduction in reward. 
In the second term α is the action executed since the last 
time when Vi = V ∗

i .

3.4 � Transition probabilities
When modeling real-world decision-problems in the 
MDP framework, it is often impossible to obtain a com-
pletely accurate estimate of transition probabilities. The 
MPPT problem consists of multiple states, and a state is 
an assignment to multiple state variables. Therefore, joint 
probability distribution can be involved in determination 
of full state transition mapping. In this regard, a Bayes-
ian Network (Bayes Net) is used, which helps simplify 
the probabilistic representations. It can capture uncer-
tain knowledge in a natural and efficient way. Independ-
ence and conditional independence relationships among 
variables in Bayes Net can greatly reduce the number of 
probabilities that need to be specified in order to define 
the full joint distribution. Bayes Net basically repre-
sents dependencies among variables and a Bayes Net is 
a directed graph in which each node is annotated with 
quantitative probability information [10]. Bayes Net of 
the proposed stochastic control for MPPT of PV energy 
system is shown in Fig. 4.

There is only one random variable which is the error ( e ) 
in the power. This variable is random because shading is 
random. It depends upon the irradiance value received 
from the panels and its own previous value.

The expression for the state transition probability is 
presented as:

(5)T
(

sj|si, ak
)

= P
(

ej|ei, Irr i,1, Irr i,2, . . . , Irr i,q , ak
)

Fig. 4  Bayes Net for the stochastic control of MPPT
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where ej is the value of error in state sj and Irri,∗ are the 
values of irradiation in state si . Note that besides the 
stochastic transitions, there are also deterministic tran-
sitions in the state variables. For example, the values of 
αi,Vi change deterministically depending upon what 
action is taken. Also, the value of V ∗ either remains the 
same or becomes equal to the value of Vj depending upon 
the value of ej.

To facilitate the calculation of the transition probabili-
ties, a function-based approach is proposed. The intui-
tion behind the proposed approach is that the error ( ei ) 
can either increase, decrease, or stay the same. Therefore, 
at each state, it needs to characterize three probability 
values, i.e., the probabilities of increase, decrease and no 
change in ei . The functional form can be written as:

Similarly,

Also,

Here p1,k , p2,k ∈ (0, 1] are the probability values that 
depend upon the action to be executed. For example, 
the probability of increase in error would be large if an 
action results in Vj being far away from V ∗

i  . Note that the 
above equations take into account only one unit change 
in the error, while the probabilities for two or more unit 
changes can be defined in a similar manner.

3.5 � Discount factor
The discount factor ( γ ) is a number between zero and 
one indicating the depreciation in the value of reward 
with respect to the decision epochs. If γ is close to zero, 
only the immediate rewards have significant value and 
the rewards in the distant future have insignificant value. 
On the other hand, if γ is selected to be close to one, the 
distant rewards have almost the same value as that of the 
immediate rewards. For the MPPT problem, the discount 
factor is selected to be close to one so that the resulting 
optimal control policy is ‘far sighted’, i.e., distant future 
states are given significant value (and not just the near 
future states) while calculating optimal action.

(6)P
(

ej = ei + δ3|ei, Irr i,1, Irr i,2, . . . , Irr i,q , ak
)

=

{

0 ifei = emax

p1,k otherwise

(7)P
(

ej = ei − δ3|ei, Irr i,1, Irr i,2, . . . , Irr i,q , ak
)

=

{

0 ifei = emin

p2,k otherwise

(8)P
�

ej = ei|ei, Irr i,1, Irr i,2, . . . , Irr i,q , ak
�

=







1− p1,k − p2,k ifemin < ei < emax

1− p1,k
1− p2,k

ei = emin

ei = emax

4 � Solution of the MDP model for optimal policy
Once the problem is formulated as an MDP as in Sect. 3, 
any standard approximate dynamic programming algo-
rithm can be used to solve the model for optimal policy. 
Here the value iteration method is used, and the Bellman 
equation is the basis of the value iteration algorithm for 
solving MDPs, expressed as:

where R(s) is the reward of states, Ui

(

s′
)

 is the utility of 
the next state after executing action a and γ is the dis-
count factor. If there are n possible states, n Bellman 
equations will be available, one for each state. The n 

equations contain n unknown utilities of states. The 
equations are non-linear, because of the max operator, so 
the iterative approach is used. The iteration step, called a 
Bellman update, is given as:

where the update is assumed to be applied simultane-
ously to all the states at each iteration. The iterations 
are carried out until the utilities of all the states reach a 
steady state, i.e., Ui+1(s) = Ui(s), ∀s ∈ S . Once the steady 
state utilities ( U∗(s) ) are calculated for all states, the opti-
mal policy is calculated as:

where π∗(s) is the optimal policy obtained by using the 
principle of maximum expected utility by which agent 
chooses the action that maximizes the expected utility of 
the subsequent state.

(9)Ui+1(s) = R(s)+ γ max
a∈A(s)

∑

s
′

T
(

s
′

|s, a
)

Ui

(

s
′
)

(10)Ui+1(s) ← R(s)+ γ max
a∈A(s)

∑

s
′

P
(

s
′

|s, a
)

Ui

(

s
′
)

(11)π∗(s) = arg max
a∈A(s)

∑

s
′

P
(

s
′

|s, a
)

U∗
(

s
′
)
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It is important to point out that the solution of an MDP 
in general involves the computational complexity of the 
order N 2x where N  is the number of states and x is the 
number of actions [20]. In the MDP proposed here, the 
number of states does increase with the decrease in step 
size ( δ1, δ2, δ3 in (2) above). A decrease in step size may be 
desirable for achieving high precision in MPPT. There-
fore, if MDP is used alone (without any additional small 
scale duty cycle tuning algorithm), there may be an issue 
of computational complexity. On the other hand, since all 
of the calculations involved in the determination of the 
optimal policy using MDP are carried out offline, larger 
computational complexity is affordable. At the PV plant 
site, there is minimal computational requirement, and all 
responses (in the form of pre-computed optimal policy) 
can be saved in the digital signal processing kit included 
in the DC-DC converter. Therefore, as the real-time data 
on the current/irradiance is fed into the MPPT control-
ler, all it needs to do is set the duty cycle (instantly) at 
the corresponding value suggested by the optimal policy. 
Figure  5 shows the breakdown of the online and offline 
calculations and computing-related activities. It is evi-
dent that most calculations are performed beforehand 
(offline) and only a single calculation in real-time (online) 
is required, i.e., calculation of the index of the state that 
has occurred according to the sensor readings.

5 � Simulation‑based case study
The overall design of the case study is based on three 
steps: 1) study of the MPP under various shading con-
ditions using the SIMULINK-based model of a 2 × 2 
PV array; 2) formulation of the MDP for MPPT of the 
array based on the obtained maximum power points; 3) 

calculation of the optimal control policy using the value 
iteration algorithm (implemented in MATLAB). The 
value of discount factor in value iteration is set to 0.95 in 
order for the MDP policy to consider the rewards of the 
states in the long-term. Also, the termination criterion 
is set as �Ui+1 −Ui�∞ ≤ 10−6 . The results for different 
scenarios using the MDP-based MPPT control policy 
are then reported to indicate the effectiveness of the pro-
posed approach. The subsections below explain each of 
the above mentioned steps in detail.

5.1 � PV system model
The model of the PV energy system is given in Fig. 6. In 
this model, there are four modules and three variable 
constants, i.e., temperature, irradiance and partial shad-
ing. More than four modules could be used but four are 
selected to reduce the complexity of the model and the 
MDP conditions. The range of irradiance can also be 
changed according to the MDP model, while different 
partial shading patterns are used to achieve the maxi-
mum power.

The main purpose of this work is to improve the energy 
harvesting of the PV system and to determine MPP by 
detecting the shaded portion of the array especially under 
dynamic weather conditions while avoiding complex con-
trol techniques. Thus, the only uncertainty present in this 
power point tracking problem is shading, which changes 
under different weather conditions, temperature etc. 
The shading is considered to be equal to the irradiance 
absorbed by a PV module.

Change in voltage (ΔV) is incorporated through 
change in duty cycle (ΔD) of the DC-DC converter in the 
detected MPP region. The perturb & observe (P&O) algo-
rithm is also implemented in order to precisely detect the 
MPP. In this way the technique is further optimized in 
order to harness maximum energy from the PV.

5.2 � Evaluation of shading patterns
For different possible partial shading scenarios, the shad-
ing patterns are segregated into the following:

1.	 Horizontal shading pattern
2.	 Vertical shading pattern
3.	 Diagonal shading pattern

Comprehensive tests are conducted in order to ana-
lyze particular cases of each shading pattern. Results are 
gathered on the basis of different tests for the 2 × 2 array 
for horizontal and vertical shading patterns. Lower and 
upper diagonal shadings are tested for the diagonal shad-
ing pattern.

The horizontal shade is considered row-wise and the 
vertical shade column-wise. The diagonal shading pattern 

Fig. 5  Depiction of online and offline calculations and activities
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is tested by giving low-shade at upper and lower diagonal 
entries simultaneously. For both lower and upper diago-
nal cases, initially, the first row is shaded while keeping 
the other two rows unshaded with 1000 W/m2, and then 
the second row is shaded in the same pattern as the first 
row and the corresponding current–voltage (I-V) and 
power-voltage (P–V) curves are obtained. Three differ-
ent irradiation values are considered for this purpose. 
For dark shade (D), the irradiation value is set as 200 W/
m2, while for light shade (L), it is set as 500 W/m2. The 
module that has been considered as unshaded (U) has 
an irradiance value of 1000  W/m2. The results indicat-
ing the MPP and the corresponding voltage are pre-
sented in Table 1. From these results, the MDP states are 
formulated.

5.3 � Definition of MDP state space and actions
The variables involved in this problem are 
V ,V ∗, Irr1 . . . .Irrn, e,α . The state space parameter values 
for the MDP model are defined as:

(12)

Si = {s1, s2, . . . , sN },N = 643, 125

si =
{

ei, Irri,Vi,V
∗
i ,αi

}

αi ∈ {0, 1, 2}

Vi,V
∗
i ∈ {26, 30, 34, . . . , 54}

Irri =
{

Irri,1, Irri,2, Irri,3, Irri,4
}

Irri,j ∈ {200, 400, 600, 800, 1000}

ei ∈ {0, 100, 200, . . . , 600}

Fig. 6  PV model with 2 × 2 array
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Note that the state space is defined for a four-panel sys-
tem, and the irradiation range is from 200 to 1000 W/m2. 
Values of the irradiation levels and the voltages have been 
selected based on the results of Table  1 that have been 
generated using the system in Fig. 6.

Based on the above state space, seven actions are 
defined, with one for each possible value of V in (12). 
The numbering of the actions is such that a1 corresponds 
to V = 26 , a2 corresponds to V = 30 and so on until a7 
which corresponds to V = 50.

5.4 � Selection of reward function
In the proposed reward function (4), the rate of change 
of reward with respect to error has two segments. The 
first segment is when the error is between the accept-
able ranges. In this range the rate of change of reward is 
increased so that the error would remain zero. If the error 
increase above the threshold, maximum reward cannot 
be achieved regardless of the error. So in this paper the 

main task is to achieve maximum reward for this error 
should it be below the threshold.

Reward function is selected so the MPP can be 
achieved. When the error increases from a low value, the 
reward drops rapidly whereas when the error is increased 
from a high value, the reward drops slowly. The expres-
sions used in the simulations are as follows:

5.5 � Calculation of transition probabilities
Calculation of the transition probabilities is not straight-
forward. The Bayes Net approach presented in Fig.  4 
helps determine the transition probabilities. In the case 
study presented here, a function-based approach is 
adopted as described in (6), (7), and (8). The probability 
values with respect to the sum of total irradiation on the 
solar panels are defined in Tables 2 and 3. The probabil-
ity values in Table  2 are assigned based on how far the 
action is taking V from V ∗ . The values of p1,∗ and p2,∗ in 
Pr0 correspond to V  being at the same value as V ∗ , while 
the values of p1,∗ and p2,∗ in Pr1 correspond to V  being 
four volts different than V ∗ . In Table  3, the action-wise 
assignment of the probability values is presented. Note 
that these probability values are consistent with the sim-
ulation based results in Table  1 that depict the voltages 
corresponding to the maximum power for different par-
tial shading scenarios.

5.6 � Simulation results
The simulation results presented in this section are gen-
erated using the proposed MDP-based technique with 
the parameter values discussed in Sects.  5.2 to 5.5. The 
parameter values are selected based on the simulation 
of the 2 × 2 PV array under various PSC as discussed in 
Sect.  5.1. The MDP policy is generated using the value 
iteration algorithm implemented using MATLAB as dis-
cussed in Sect.  5.

(13)

R(s) = 200/(1+ e)+ (v == vs) ∗ (1/(1+ α))R(s)

= r1(s)+ r2(s)

r1(s) =

{

(600− e)− 200ife lt; 200
(600− e)ife ≥ 200

r2(s) =

{
(

1

1+α

)

ifv = vs

0otherwise

Table 1  List of cases for a 2 × 2 PV array under shading 
combinations with voltage regions

Case No Module conditions (Wm−2) Vpv MP IPV

Case 1 No one shaded(1000) 52.47 799.2 15.2315

One Module Shaded shaded(200) 53.19 483.3 9.0862

Two Module shaded(200) 52.01 471.2 9.0597

Three Module shaded(200) 26.63 242.4 9.1025

Four Module shaded(200) 49.87 147.5 2.9576

Case 2 No one shaded(900) 52.66 718.4 13.6422

One Module shaded(300) 53.36 486.1 9.1098

Two Module shaded(300) 52.14 472.3 9.0583

Three Module shaded(300) 26.95 244.1 9.0575

Four Module shaded(300) 50.45 187.5 3.7165

Case 3 No one shaded(500) 51.86 391.8 7.5549

One Module shaded(250) 52.62 299.2 5.6860

Two Module shaded(250) 51.41 289.2 5.6253

Three Module shaded(250) 52.17 195.8 3.7531

Case 4 No one shaded(700) 52.45 555.8 10.5967

Case 5 Module 4 shaded(250) 53.44 505 9.4498

Case 6 Module 2&3 shaded(200) 26.3 399.1 15.1749

Case 7 Module 1&4 shaded(200) 26.3 399.1 15.1749

Case 8 Module 1&3 shaded(200) 26.3 399.1 15.1749

Case 9 Module 2 shaded(200) 53.23 483.3 9.0794

Table 2  Statistical data based assignment of transition probability values for the case study

Pr0 Pr1 Pr2 Pr3 Pr4 Pr5 Pr6

p1,∗ = 0 p1,∗ = 0 p1,∗ = 0.25 p1,∗ = 0.75 p1,∗ = 1 p1,∗ = 1 p1,∗ = 1

p2,∗ = 0.75 p2,∗ = 0.5 p2,∗ = 0.25 p2,∗ = 0 p2,∗ = 0 p2,∗ = 0 p2,∗ = 0
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Along with the results from the proposed method, the 
results from the existing methods, i.e., modified incre-
mental conductance (Modified INC) [21] and dynamic 
leader-based collective intelligence algorithm [3] for 
MPPT under partial shading are also presented. It is 
important to note that the techniques in [21] and [3] use 
online computation (search) of the MPP whereas the 
proposed method uses a precomputed policy for iden-
tification of the MPP. Therefore, when plotted against 
the number of decisions, as in Figs. 7, 8, 9, the proposed 
method is able to reach the MPP within a single deci-
sion whereas the dynamic leader-based approach and 

the incremental conductance-based approach take some 
time to converge. The results from the dynamic leader-
based approach are optimized by assuming that it finds 
the correct MPP in a single cycle which is equivalent to 
three decision steps as described in [3]. For optimized 
results from the incremental conductance method, it 
assumes that the increment is always in the correct 
direction.

In order to test and compare the performance of the 
proposed approach, three different scenarios of vari-
ations in the irradiance are considered. As irradiance 
changes the PV voltages will also change and follow the 

Table 3  Action-wise mapping of the transition probability values for the case study

p(e+|
∑

Irr , ak) ak

a1 a2 a3 a4 a5 a6 a7

∑

Irr 800 Pr0 Pr1 Pr2 Pr3 Pr4 Pr5 Pr6

1000 Pr0 Pr1 Pr2 Pr3 Pr4 Pr5 Pr6

1200 Pr1 Pr0 Pr1 Pr2 Pr3 Pr4 Pr5

1400 Pr1 Pr0 Pr1 Pr2 Pr3 Pr4 Pr5

1600 Pr2 Pr1 Pr0 Pr1 Pr2 Pr3 Pr4

1800 Pr2 Pr1 Pr0 Pr1 Pr2 Pr3 Pr4

2000 Pr2 Pr1 Pr0 Pr1 Pr2 Pr3 Pr4

2200 Pr3 Pr2 Pr1 Pr0 Pr1 Pr2 Pr3

2400 Pr3 Pr2 Pr1 Pr0 Pr1 Pr2 Pr3

2600 Pr3 Pr2 Pr1 Pr0 Pr1 Pr2 Pr3

2800 Pr4 Pr3 Pr2 Pr1 Pr0 Pr1 Pr2

3000 Pr4 Pr3 Pr2 Pr1 Pr0 Pr1 Pr2

3200 Pr4 Pr3 Pr2 Pr1 Pr0 Pr1 Pr2

3400 Pr5 Pr4 Pr3 Pr2 Pr1 Pr0 Pr1

3600 Pr5 Pr4 Pr3 Pr2 Pr1 Pr0 Pr1

3800 Pr6 Pr5 Pr4 Pr3 Pr2 Pr1 Pr0

4000 Pr6 Pr5 Pr4 Pr3 Pr2 Pr1 Pr0
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Fig. 7  Irradiance versus photovoltaic voltage under low frequency 
variations
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Fig. 8  Irradiance versus photovoltaic voltage under medium 
frequency variations
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uncertainty in irradiance as shown in Fig.  7. The first 
graph in Fig. 7 is the output power of the PV system, in 
which the output power with the proposed scheme is 
compared to the two other methods. The comparison 
indicates that the proposed approach is able to track the 
MPP relatively quickly (mainly because of the calcula-
tions performed beforehand). The second graph in Fig. 7 
shows the voltages of the PV energy system. As shown, 
at the beginning, the voltages are close to zero, and as 
the irradiance varies, the voltages change according to 
the irradiance. Again, the comparison indicates quicker 
response from the proposed approach compared to the 
others. As shown in Fig.  7, when the irradiance is con-
stant the PV voltage is also constant, while variation of 
irradiance changes PV voltage accordingly.

If shadow occurs due to bird droppings, dust, clouds 
or weather conditions, the irradiance can change more 
frequently as shown in Fig.  8. As seen, the PV voltages 
change according to the variation of the irradiance. Note 
that the advantage of the proposed approach over the 
dynamic leader-based and incremental conductance-
based approaches is more pronounced with frequent 
changes in the irradiance.

Finally, even more frequent change in the irradiance 
is considered in Fig. 9 and the results reinforce previous 
findings that the advantage of the proposed approach 
increases with the increase in the frequency of change 
in the irradiance. Such dynamic conditions may occur 
in real life when the solar panels are installed on top of a 
moving vehicle, a boat or a low flying UAV in the case of 
cloudy conditions.

Table  4 summarizes the results from the three cases 
shown in Figs. 7, 8, 9. Note that the advantage of the pro-
posed approach over the dynamic leader-based approach 
in terms of the total power delivered to the load varies 
from 1.78% (for the low frequency variations in the irra-
diance) to 3.62% (for the high frequency variations in the 
irradiance). It may however be noted that the difference 
in the generated energy may not be that great because of 
the fast computation available onboard with the electron-
ics associated with the PV system.

6 � Qualitative comparison with existing approach
In the previous section, it was shown that the proposed 
approach is quicker to respond to the change in the irra-
diance than the others. This is mainly because of the 
calculations performed beforehand in the proposed 
approach. This section highlights the main reason for 
the superiority of the proposed approach using analytical 
comparison. Although the proposed approach has only 
been compared to the incremental conductance based 
approaches, the conclusions from the comparison apply 
to all other existing techniques not based on precompu-
tations and not catering for the stochastic model of the 
variations in the irradiance. The tracking of MPP of a PV 
panel through the implementation of MDP is more effec-
tive than the existing online and offline methods. The 
proposed technique is efficient in the sense that, unlike 
offline methods, there is no need to interrupt the supply 
to load in order to track the MPP. Moreover, some exist-
ing offline methods are unable to track the MPP under 
varying weather conditions. In addition, unlike online 
methods, the complexity of this technique is low and it 
can be implemented in low cost microcontrollers.
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Fig. 9  Irradiance versus photovoltaic voltage under high frequency 
variations

Table 4  Comparison of power delivered to the load under different irradiance variations

Method Low frequency variations in irradiance Medium Frequency Variations In 
Irradiance

High frequency 
variations in irradiance

MDP policy Total power: 18,798 W Total power: 17,274 W Total power: 17,202 W

Average power: 606.39 W Average power: 557.23 W Average power: 554.91 W

Dynamic leader Total power: 18,462 W Total power: 16,566 W Total power: 16,578 W

Average power: 595.55 W Average power: 534.39 W Average power: 534.77 W

Modified INC Total power: 17,910 W Total power: 16,470 W Total power: 16,386 W

Average power: 577.74 W Average power: 531.29 W Average power: 528.58 W
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The proposed technique is cost-effective in the way that 
it takes statistical data of a PV array, which is then pro-
cessed in MATLAB and the shaded module is detected 
on the basis of low irradiation. Also, the algorithm is effi-
cient as it is able to differentiate between light and dark 
shades. Using the concept of MDP, the faulty portion of 
a PV array can be detected and the portion that is pro-
ducing maximum power in a particular shading scenario 
can also be identified. Thus, with the sophisticated con-
trol technique the PV array can operate on the voltage 
corresponding to the maximum power-producing mod-
ule in order to harness maximum energy in a particular 
weather scenario.

Lastly, the implementation of the MDP algorithm has 
narrowed down the scanning in order to detect MPP. 
Once a particular case of an identified shading pattern 
is detected, instead of scanning all the regions of the I-V 
curve, it only needs to scan one region in order to track 
the MPP.

The proposed model accuracy is compared with the 
existing modified incremental conductance (MIC) 
model. As shown in Table  5, both models can operate 
under PSC, though only the proposed model deals with 
uncertainty. MIC also has over 25 online calculations 
whereas the proposed method only requires one online 
calculation. However, the MDP approach requires statis-
tical data for implementation.

7 � Conclusions and Future Directions
Solar energy is one of the most promising sources of 
energy among all renewable energy sources. The demand 
for and investment in solar energy have increased signifi-
cantly because of the gradual reduction in the cost of PV 
panels and almost negligible maintenance cost. In order 
to harvest maximum energy from PV plants, maximum 
power point trackers are employed. These constantly 
track the MPP of the PV panel under various weather 
conditions.

In this research, a novel technique has been intro-
duced which tracks the MPP of a PV array under the 

unavoidable phenomenon of partial shading. The pro-
posed technique does not cut off the load from the power 
supply as required in some existing hardware or offline 
techniques. Moreover, no complicated controller nor 
complex mathematical operations are employed. There is 
no need to scan the I-V and P–V curves of the PV array. 
In this technique, the data of irradiance is calculated. 
This is then processed in a MATLAB code to obtain the 
shading information. The effectiveness of the proposed 
method is compared with the existing methods. The pro-
posed model can be used with any MPPT techniques 
to detect MPP. The proposed model works at differ-
ent irradiance levels, while it can also be further modi-
fied to cater for different temperature levels. In addition, 
computations in the MDP-based model are fully offline 
so there is no online computational complexity in the 
presented model. In addition, the MDP-based model is 
completely discrete so offline computations are relatively 
fast. The results of the presented control are tested in all 
shading conditions. The simulation results of the MDP 
control show significant maximum power as compared to 
traditional approaches because none of them dealt with 
shading uncertainties.

The authors believe that the proposed approach is 
one of the very first approaches that considers the mod-
eling of uncertainty in the MPPT problem in the form of 
transition probabilities. Another unique feature of the 
proposed technique is pre-calculation of the responses 
which enables quick response to rapidly changing irra-
diance. These unique features enable future extension 
of the proposed approach to MPP tracking in PV sys-
tems mounted on moving vehicles such as yachts, ships, 
ground vehicles and low flying unmanned aerial vehi-
cles. Another relatively simple extension of the proposed 
approach is the incorporation of temperature variation in 
the MDP model.

Abbreviations
MPPT: Maximum power point tracking; MDP: Markov decision process; PV: 
Photovoltaic; DC: Direct current; I-V: Current–voltage; P–V: Power-voltage; INC: 
Incremental conductance; PSC: Partial shading condition.

Table 5  Comparison of MDP with MIC

Feature Modified incremental conductance MDP-based approach

MPPT under partial shading condition Yes Yes

Consideration of uncertainty in the model No Yes

Number of offline calculations None O (N2M)*

Number of online calculations per jump in VPV  > 25 1

Statistical data required for implementation No Yes

Key idea Exploiting the general trends in P–V curve under 
partial shading

Exploiting the statistical informa-
tion about VMPP under partial 
shading
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