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ORIGINAL RESEARCH

Critical peak rebate strategy and application 
to demand response
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Abstract 

Time-of-use (TOU) pricing strategy is an important component of demand-side management (DSM), but the cost of 
supplying power during critical peak periods remains high under TOU prices. This affects power system reliability. In 
addition, TOU prices are usually applicable to medium- and long-term load control but cannot effectively regulate 
short-term loads. Therefore, this paper proposes an optimization method for TOU pricing and changes the electricity 
consumption patterns during the critical peak periods through a critical peak rebate (CPR). This reduces generation 
costs and improves power system reliability. An optimization model for peak-flat-valley (PFV) period partition is estab-
lished based on fuzzy clustering and an enumeration iterative technique. A TOU pricing optimization model includ-
ing grid-side and customer-side benefits is then proposed, and a simulated annealing particle swarm optimization 
(SAPSO) algorithm is used to solve the problem. Finally, a CPR decision model is developed to further reduce critical 
peak loads. The effectiveness of the proposed model and algorithm is illustrated through different case studies of the 
Roy Billinton Test System (RBTS).
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1  Introduction
Demand response refers to the demand side management 
mode in which users transfer or reduce loads in response 
to electricity prices or incentive signals. Time-of-use 
(TOU) pricing is an important part of demand response 
strategy [1–3], which can not only delay the need for grid 
investment, but also improve power system stability, and 
thus has been widely used in the electricity market [4–6]. 
However, as discussed in [7], users are not well prepared 
to respond to time-varying prices, and therefore TOU 
pricing is usually only applied to medium and long-term 
load regulation. Thus, even if peak-flat-valley (PFV) TOU 
pricing is implemented, load in the critical peak period 
(i.e., critical peak load) will still be high [8]. The presence 
of critical peak load not only reduces the utilization rate 
of power equipment, but also affects the safe and reliable 
operation of the power system. Therefore, it is necessary 

to combine TOU pricing with short-term critical peak 
load regulation to improve system reliability and the 
economy of system operation.

PFV period partition is an important part of TOU 
electricity price research. Several studies in [9–11] 
derive period partition results directly from experi-
ence, while ignoring the difference of period partition 
in different cases. The K-means clustering algorithm is 
used in [12] to obtain the best period partition results, 
though the randomness of initial values can cause non-
unique partial results. In [13], a novel approach is pro-
posed to efficiently reveal the latent cluster structure 
of multi-view data for clustering, while [14] introduces 
a classifier design method based on a modification of 
traditional fuzzy clustering. An evolving fuzzy cluster-
ing approach is developed in [15], which uses a fuzzy 
membership concept to break down clustering in 
epochs instead of running the clustering of all data at 
once. To integrate more comprehensive information 
from different views, reference [16] develops a fuzzy 
clustering model using a low-rank tensor to address 
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the multi-view data clustering problem. However, the 
algorithms in [13–16] are complex to implement and 
have difficulty in meeting the fuzzy judgment criteria of 
period partition. An enumeration iteration method is 
used in [17] to partition periods of each month. How-
ever, it is sensitive to outliers and has no constraints on 
the length of the period. Since the length of the period 
will affect user electricity consumption habits, it needs 
to be limited.

TOU electricity prices are usually determined accord-
ing to multiple objectives and obtained through opti-
mization algorithms. In [17], a TOU price optimization 
model considering the benefits of the grid side is pro-
posed, while [18] develops a consumer satisfaction indi-
cator to measure the quality of the user experience. In 
[19], an optimal TOU electricity pricing model is inves-
tigated and the particle swarm optimization (PSO) algo-
rithm is adopted to solve the proposed optimization 
problem. However, although the PSO algorithm has a 
high convergence speed, it is easy for it to converge to 
a local optimal solution. The simulated annealing (SA) 
algorithm introduced in [20] has high global conver-
gence, but takes a long time to converge.

Critical peak pricing (CPP) is a pricing mechanism pro-
posed for the critical peak load, and it can guide users 
to reduce or transfer their critical peak loads [21]. At 
present, most CPP-related research is based on a fully 
open electricity market environment [22]. Reference [23] 
introduces the design and implementation of CPP among 
types of electricity users, while the study presented in 
[24] develops a critical peak rebate (CPR) strategy in the 
CPP mechanism and analyzes the load adjustment effects 
of TOU price and CPP strategy, respectively. In [8], a 
TOU pricing with incentive strategy is developed without 
considering the incentive cost and the impact of incen-
tives on other periods.

This paper mainly studies the load regulation effect 
on TOU electricity pricing and CPR strategy, and ana-
lyzes the reliability of the regulation results. A period 
partition method based on fuzzy clustering and enu-
meration iteration is proposed first to obtain the opti-
mal period partition. It uses an “exponential similarity 
coefficient” instead of “Euclidean distance” to dilute the 
influence of outliers on moving variables. To meet the 
interests of both grid and user, a multi-objective PFV 
TOU electricity price optimization model is then estab-
lished. A simulated annealing particle swarm optimi-
zation (SAPSO) algorithm is then proposed with high 
convergence speed and global convergence for the opti-
mal TOU prices. A critical peak load regulation model 
based on CPR strategy is constructed to combine criti-
cal peak load regulation with TOU pricing, where the 
critical peak rebate in the model is derived from users’ 

power shortage cost [25, 26]. Finally, the Roy Billinton 
Test System (RBTS) system is used in case studies to 
prove the correctness and effectiveness of the proposed 
model and algorithm.

The distinctive features and innovative contributions of 
this paper are as follows:

1.	 Based on fuzzy clustering theory, this paper proposes 
a PFV period partition model, which can compre-
hensively analyze the load data of several typical days 
and add length constraints to the periods. An itera-
tive algorithm is then proposed to find the optimal 
period partition scheme. In addition, to reduce the 
influence of outliers on the position of moving vari-
ables, an exponential similarity formula is introduced 
to characterize the similarity of each time to different 
periods.

2.	 Considering the interests of both grid and demand 
sides, an optimization model of TOU pricing is pro-
posed and is solved using the SAPSO algorithm, 
which is developed based on the PSO and SA algo-
rithms to ensure high convergence speed and global 
convergence.

3.	 Within the context of TOU pricing, a critical peak 
load adjustment model based on CPR strategy is pro-
posed to further reduce peak load. In this model, the 
critical peak load reduction is determined by an elas-
tic coefficient adjustment strategy and the principle 
of proportional distribution is implemented by sign-
ing agreements with users.

4.	 A CPR decision-making model based on power 
shortage cost is proposed to compensate users’ par-
ticipation in the CPR strategy and to further improve 
the stability of the power system.

2 � Optimal period partition iteration method based 
on fuzzy clustering

According to TOU electricity pricing theory, a typical day 
is divided into a few PFV periods [1]. Thus this section 
establishes a period partition model based on fuzzy clus-
tering theory and presents a period partition algorithm 
based on an enumeration iterative algorithm.

2.1 � Period partition optimization model
Users’ load characteristics in a single quarter are simi-
lar, so this section divides PFV periods by analyzing the 
load data in a quarter. A typical day in each month is 
selected, and the load data of three typical days in each 
quarter are grouped to divide into PFV periods. From 
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fuzzy clustering theory, three fuzzy judgment criteria are 
designed, i.e.:

1.	 The probability of the lowest point on the load curve 
being in the valley period is 100%, and the probability 
of the highest point being in the valley period is 0%.

2.	 The probability of the highest point on the load curve 
being in the peak period is 100%, and the probability 
of the lowest point being in the peak period is 0%.

3.	 The possibilities of other points of the load curve 
belonging to different periods are determined by the 
semi trapezoid membership.

If the load at the time i of the typical day of the jth month 
in the quarter is expressed as qij, where j = 1, 2, 3 and i = 1, 
2, …, 24, and qminj and qmaxj represent the respective mini-
mum and maximum loads during a typical day of the jth 
month, the range normalization of qij is expressed accord-
ing to semi trapezoid peak membership degree as:

where Uij represents the peak membership degree of time 
i in the typical day of the jth month.

The peak membership degree Ui which represents the 
probability of time i being in the peak period is given as:

According to Ui values from small to large, all times are 
sorted and boundaries between different periods are deter-
mined jointly by peak and valley membership degrees. 
These cannot be obtained by Ui alone. Therefore, this paper 
introduces moving variables and reference points of peak 
membership. (0,0,0) and (1, 1, 1) are the reference points 
of the minimum and maximum peak membership, respec-
tively, while the moving variables are the points on the 
shortest distance between (0, 0, 0) and (1, 1, 1). The bound-
aries are determined by calculating the maximum similar-
ity between the peak membership degrees at each moment 
and the corresponding moving variables.

mp, mf and mv are defined as the moving variables of mem-
bership degree in PFV periods, and are uniformly expressed 
as ms={p,f,v}. To reduce the influence of outliers on the posi-
tion of the moving variables, the similarity ris between the 
time i and the moving variables s can be obtained by:

(1)Uij =
qij − qminj

qmaxj − qminj

(2)
Ui =

√

√

√

√

√

3
∑

j=1

U2
ij

3

(3)ris =
1

3

3
∑

j=1

e−
3
4 (Uij−ms)

2

In this section, length constraints are added to period 
partition results, and the PFV period partition model can 
be expressed as:

where Gs represents the time set of period s, and card(Gs) 
represents the number of times in the period s. lmin and 
lmax represent the minimum and maximum of the period 
length, respectively.

2.2 � Period partition iterative algorithm
The three moving variables are considered to move in 
equal steps, and the objective function is calculated step 
by step. The period partition result is selected as the opti-
mal result when the objective function is the largest. The 
calculation process of the optimal result is as follows:

Step 1 Set the moving step size of ms={p,f,v} as:

where N is the maximum number of steps that the mov-
ing variable moves.

Step 2 Initialize moving variables. Since ms ∈ [0,1], with 
the constraint conditions shown in (4b), ms={p,f,v} is ini-
tialized as:

Step 3 Determine the period partition. The 24 times are 
sorted in positive order according to the values of Ui, and 
the sequence corresponding to time i is set as Li. In the 
light of (4c), it is considered that when Li ∈ [1, lmin], the 
probability Ui of i is small, so i ∈ Gv. When Li ∈ [25−lmin, 
24], Ui is large, so i ∈ Gp. lmin times are then added to the 
largest rif from remaining times to Gf, and the maximum 
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ris={p,f,v} of each remaining time is calculated and classi-
fied into the corresponding set Gs.

Step 4 Calculate the value of the objective function. If 
card(Gs={p,f,v}) > lmax, the objective function value of this 
iteration is 0; otherwise, it is calculated according to (4a).

Step 5 Determine the optimal results. If the current 
value of the objective function is greater than the optimal 
one, the current value is used as the optimal value and the 
period partition results are saved as the optimal results.

Step 6 Determine if the iteration is terminated. If mp = 1, 
mf = 1-Δm and mv = 1 − 2Δm, terminate the iteration and 
go to Step 7. Otherwise, find the first ms={p,f,v} that does 
not satisfy the stopping criteria in descending order, set 
ms = ms + Δm and initialize the boundary variables greater 
than ms according to (6), and then return to Step 3.

Step 7 Output optimal period partition results.

3 � Optimization model of PFV TOU electricity price
In this section, the objective functions of the grid-side and 
user-side are integrated to establish a TOU electricity price 
optimization model. The SAPSO algorithm is then pro-
posed to obtain the optimal electricity prices.

3.1 � Grid side objective functions
The objective functions of the grid-side are to minimize the 
peak load and the peak-to-valley load difference, as:

where F1(·) and F2(·) are the objective functions, pp, pf, 
and pv are decision variables, and q′i(·) denotes the opti-
mized power at time i.

3.2 � User side objective functions
The maximum power consumption similarity and the max-
imum user satisfaction are taken as objective functions:

The power consumption similarity K (Spearman similar-
ity equation) and the user satisfaction S are:

(7)
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where qi and q′i represent the loads at the time i before 
and after optimization, respectively, whereas q̄ and q̄′‾q 
and‾q′ are the respective average loads before and after 
optimization. p0 is the initial price and pi represents the 
TOU price at time i.

3.3 � Constraint functions of PFV TOU Pricing

1.	 Users’ benefit After implementing the TOU price, the 
electricity expense of users will not increase, i.e.:

	 where g1(·) is the constraint function. Qs and Q′s are 
the loads in period s before and after optimization, 
whereas p0 and ps are the electricity prices in period s 
before and after optimization, respectively.

2.	 Benefit to the power supplier the stability of the power 
system will be improved considering the TOU price, 
and the power supply cost will be reduced. The total 
benefit to the power supplier will not be reduced 
after the TOU price, i.e.:

	 where λ is the benefit coefficient [27].
3.	 Electricity rate To prevent the peak and valley peri-

ods from being inverted, it is necessary to restrict the 
price relationship of each period, as:

4.	 Marginal cost price The price in the valley period 
shall be higher than the marginal cost price in the 
valley period, i.e.:

	 where pc is the marginal cost price.
5.	 Electricity consumption similarity To make the opti-

mal load strategy similar to the users’ power con-
sumption habits, it is necessary to ensure that the 
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load distributions before and after optimization are 
consistent, i.e.:

	 where η is the adjustment coefficient.
6.	 Total electricity consumption: The total daily load 

should be guaranteed to change within a certain 
range before and after the TOU price as:

3.4 � Single‑objective fitness function of TOU optimization
This section transforms the multi-objective function into 
a single objective function by proportion coefficients and 
the penalty function J(P) related to the constraints as:

where βi is the ratio coefficient of objective function Fi(·) 
and can be used to represent different user types. P = (pp, 
pf, pv) and J(P) is the penalty function from [28].

3.5 � Calculation method of hourly load
The price elasticity coefficient of demand can show the 
sensitivity of user demand to price change. This section 
defines eij (i, j = p, f, v) as the price elasticity coefficient, 
which represents the impact of the price change in period 
j on the load in period i. The effect of the price change on 
demand is given as:

where Qp, Qf and Qv denote the power consumption in 
peak, flat and valley periods at the initial price, respec-
tively, whereas ΔQp, ΔQf and ΔQv are the respective load 
changes in different periods after the TOU price. Δpp, Δpf 
and Δpv are the respective changes of price in different 
periods considering the TOU price.

From (16), the load change at each time after the TOU 
price can be further calculated as:
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where i and l are times, and Δqi and qi are the load change 
and initial load at the time i, respectively. eil is the elastic-
ity coefficient corresponding to the periods of time i and 
time l. kl is the number of times in the period l and pl is 
the electricity price at the time l under the TOU price.

The load q′i at the time i under the TOU price is:

3.6 � Optimization method of PFV TOU price based 
on the SAPSO algorithm

This section combines the PSO algorithm with the SA 
algorithm and proposes a SAPSO algorithm which has 
high convergence speed and global convergence, to 
obtain the optimal TOU electricity prices.

In this section, the new variables are defined as fol-
lows: M is the iteration number, i denotes the ith particle, 
and j denotes the jth dimension. Each particle has three 
dimensions, j = 1 for the peak period, j = 2 for the flat 
period, and j = 3 for the valley period. Each particle has 
position and velocity variables, which are continuously 
updated during iterations. Xij

k and Vij
k are the position 

and velocity variables of the jth dimension of the ith par-
ticle in the kth iteration. Xmax and Xmin denote the upper 
and lower limits of the position variable, while Vmax and 
Vmin represent the upper and lower limits of the velocity 
variable. Bi and B′ are the local and global optimal fitness 
variables of particle i. bij is the optimal position variable 
of the jth dimension of the ith particle, while bgj is the 
optimal position variable of the jth dimension of all par-
ticles. T0 is the initial temperature, T is the temperature 
variable and D is the decay rate of temperature.

The optimization steps of TOU pricing based on the 
SAPSO algorithm are as follows:

Step 1 Initialize position variables, velocity variables, 
and temperature variables.

•	 Select 2 × 3 × M random numbers Rij (i = 1, 2,…,M; 
j = 1,2,3), which are uniformly distributed in [0, 1], 
and set k = 0.

•	 Initialize the position variable Xij
0, velocity variable 

Vij
0 of each particle, and the temperature variable T 

as:

Step 2 Initialize local and global optimization variables.

(18)�qi =
qi

kl

24
∑

l=1

eil
pl − p0

p0

(19)q′i = qi+�q

(20)
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X0
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V 0
ij = Rij(Vmax − Vmin)+ Vmin

T = T0
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•	 Calculate the fitness F[Xi
0] of all particles and assign 

F[Xi
0] to the local optimal fitness variable Bi. It is 

assumed that the local optimal location variable bij is 
the location variable Xij

0.
•	 Compare the local optimal fitness variable Bi of all 

particles, assign the minimum value to the global 
optimal fitness variable B′, and assign its location 
variable to the global optimal location variable bgj.

•	 Let k = k + 1.

Step 3 Update velocity and position variables.

•	 Select 3 × M random numbers Hij, which are uni-
formly distributed in (− 1, 1).

•	 Update the velocity variable Vij
0 and position variable 

Xij
0 of all particles as:

where c1 and c2 are constants, R′ij ~ U (0, 1) and 
R′ij ~ U (0, 1) are two independent random variables, 
and ρ is the contraction factor, which can be calcu-
lated by:

•	 Limit the position variable according to the upper 
and lower limits as:

Step 4 Calculate the fitness of all particles.

•	 Calculate the fitness F[Xi
k] of the ith particle in the 

kth iteration and compare it with the fitness F[Xi
k−1] 

in the previous iteration. If F[Xi
k] ≤ F[Xi

k−1], the ith 
particle remains the position variable Xij

k. Otherwise, 
the particle has the probability of exp F [Xk−1

i ]≤F [Xk
i ]

T  to 
keep the position variable unchanged, and the prob-
ability of 1− exp

F [Xk−1
i ]≤F [Xk

i ]

T  to change the position 
variable as:

•	 If the position variable of particle i changes, recalcu-
late the fitness variable F[Xi

k].

(21)
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(24)Xk
ij = Xk−1

ij + V k
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Step 5 Update the local and global optimization vari-
ables of all particles.

•	 Compare the fitness variable F[Xi
k] of the ith particles 

in the kth iteration with the local optimal fitness vari-
able Bi. If F[Xi

k] < Bi, Bi = F[Xi
k], and bij = Xij

k; other-
wise, keep Bi and bij unchanged.

•	 Compare the minimum local optimal fitness min(Bi) 
of all particles with the global optimal fitness variable 
B′. If min(Bi) < B′, then B′ = min(Bi), and bgj = bij; oth-
erwise, keep B′ and bgj unchanged.

Step 6 Update the temperature variable as follows:

Step 7 Termination criterion of iteration.
Check whether the fitness converges to the rated value. 

If so, output the global optimal fitness variable B′, the 
global optimal location variable bgj (j = 1,2,3), and the 
optimized load at each time; otherwise, let k = k + 1 and 
return to step 3.

4 � Critical peak load regulation based on the CPR 
strategy

This section further divides the critical peak period and 
regulates the critical peak load. The third-order price 
elasticity matrix in the previous section cannot directly 
reflect the elastic relationship between the critical peak 
period and other periods. Therefore, based on the CPR 
strategy, a critical peak load regulation model is pre-
sented. This signs contracts with users to determine the 
load to be directly reduced in the critical peak period 
and provides users with the critical peak rebate for load 
reduction. In this paper, the scheme of implementing 
CPR under TOU pricing is set as a TC strategy.

4.1 � Critical peak period partition
In this section, the daily critical peak loads are adjusted 
separately. Because the daily load distribution may dif-
fer greatly from that of the quarterly load, the periods 
are divided again according to the daily load under TOU 
pricing, and the steps are as follows:

Step 1 Input the daily load data under TOU pricing, 
and divide PFV periods according to the TOU period 
partition method. Because the daily load is analyzed 
instead of the quarterly load, the dimension of variable qij 
is 1, and Ui =

qi−qmin

qmax−qmin
.

Step 2 Save the period partition results in step 1 and the 
value of the peak period moving variable mp. The peak 
membership degree Ui of each time in the peak period is 
compared with mp, and if Ui ≥ mp, time i belongs to the 

(25)T = T × D
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critical peak period; otherwise, time i belongs to the peak 
period.

Step 3 Output period partition results.

4.2 � Load adjustment strategy based on proportional 
allocation principle

The critical peak load adjustment strategy is based on 
the premise that the period partition results before and 
after the CPR strategy are consistent. The load adjust-
ment process is as follows:

•	 Calculate the load to be reduced in the critical peak 
period.

•	 Calculate the load increase in other periods accord-
ing to the historical data and elastic coefficients.

•	 Predict the load of each time after CPR strategy 
according to the proportional apportionment prin-
ciple.

Set Q′s={p,f,v} as the total load in period s under TOU 
pricing. Q′p is the total load in the peak period, and p1 
and cp the peak period and the critical peak period after 
the critical peak period partition, respectively. Then 
Q′p = Q′p1 + Q′cp, where Q′p1 is the load of the peak 
period and Q′cp is the load of the critical peak period. 
Let θcp be the critical peak-peak load transfer rate, θcf 
the critical peak-flat load transfer rate, θcv the critical 
peak-valley load transfer rate, then θcp + θcf + θcv = 1. 
Q′s = {cp,pl,f,v} denotes the load of each period after CPR 
strategy, and ΔQcp denotes the load reduction of the 
critical peak period under CPR. Assuming that the total 
load of the day remains unchanged after CPR strategy, 
the load of each period under CPR is:

Then the load at each time, according to the propor-
tional apportionment principle, is calculated by:

where s is the period of time i, q′i and q′′i denote the 
load of time i before and after the CPR strategy, and 
Q′s={cp,pl,f,v} and Q"s={cp,pl,f,v} represent the load of period s 
before and after the CPR strategy, respectively.

In order to maximize the value of ΔQcp without 
changing the period partition, ΔQcp can be obtained by:

(26)Q′′
s={cp,p1,f ,v} =















Q′
v + θcv�Qcp

Q′
f + θcf�Qcp

Q′
p1 + θcp�Qcp

Q′
cp −�Qcp

(s = v)
�

s = f
�

(s = p1)
(s = cp)

(27)q′′i =
q′i

Q′
s={cp,p1,f ,v}

Q′′
s={cp,p1,f ,v}

where q′(cp)min is the minimum load in the critical peak 
period before the CPR strategy, Δq is the corresponding 
load reduction after the CPR strategy, and q′(p)max is the 
maximum load in the peak period under CPR. γ is the 
load reduction rate in the critical peak period under CPR.

4.3 � Calculation of load transfer rate
This section uses the price elasticity matrix and the load 
data at each time under TOU pricing to find the load trans-
fer rate. The CPR and the peak price are assumed to have 
the same effect on the flat load and valley load, i.e.:

Let θcp:θcf:θcv = a1:a2:a3. a2 and a3 can be expressed as:

a1 can be approximately obtained from the relationship 
between load changes in different periods under TOU 
pricing as:

Load transfer rates are calculated by:

4.4 � CPR decision model
The power shortage cost C(qi) in [26] has a quadratic rela-
tionship with load reduction qi at time i as:

where C(qi) is the cost of reducing the load qi, τi is the 
user type parameter, and k1 and k2 are constant coeffi-
cients. In this paper, the data in [26] is used, i.e., k1 = 0.5, 
k2 = 1. The benefit of power reduction is:

where C′(qi) denotes the benefit of load reduction qi, and 
C′(qi) = C(qi). pi is the TOU price at time i, and ai is the 
rebate corresponding to time i. The relationship between 
ai and qi is:

(28)











q′(cp)min −�q = q′′(p)max

γ =
�q

q′(cp)min

�Qcp = γQ′
cp

(29)
θcf

θcv
=

epf Q
′
f

epvQ′
v

(30)
{

a2 = epf Q
′
f

a3 = epvQ
′
v

(31)a1 =
Q′
p1

2Q′
p

(

efpQ
′
p

efvQ′
v

a3 +
evpQ

′
p

evf Q
′
f

a2

)

(32)







θcp = a1
a1+a2+a3

θcf =
a2

a1+a2+a3
θcv =

a3
a1+a2+a3

(33)C(qi) = k1q
2
i + k2qi − k2qiτi

(34)C ′(qi) = (pi + ai)qi
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From the above equations, when qi ≠ 0, ai = k1qi, and 
the daily rebate A during the critical peak period can be 
obtained as:

where Gcp represents the set of critical peak times.

5 � Case study
5.1 � Basic data
In this study, to simplify the calculation, the maximum 
peak load day in each month is selected as the typical 
day. The minimum and maximum lengths of period lmin 
and lmax are 6 and 10, respectively. The ratio coefficients 
are β1 = β2 = 0.5, β3 = β4 = − 0.3, the benefit coefficient 
λ is 0.062, the marginal cost pc is 0.35 RMB, the adjust-
ment coefficient η is 1.2, the initial price p0 is 0.65 RMB, 
and the elasticity coefficients are set according to [17]. 
The load data and reliability test data are provided by the 
RBTS system [29, 30], and the peak load is 185 MW. For 
statistical purposes, it considers 30 days in a month.

5.2 � Optimal peak‑flat‑valley period partition
According to the period partition optimization model, 
the optimal period partition results of four quarters 
are obtained. Figure  1 shows the initial load of the first 
two quarters with different periods distinguished by 
color markings. In the first quarter, the peak periods are 
9:00–13:00 and 17:00–20:00, the flat periods are 8:00, 

(35)
{

ai + pi = k1qi + k2(1− τi) qi �= 0

ai = 0 qi → 0

(36)
∑

i∈Gcp

qiA =
∑

i∈Gcp

qiai

14:00–16:00 and 21:00–22:00, while the valley periods 
are 1:00–7:00 and 23:00–24:00.

Since the load data of the fourth quarter is similar to 
that of the first quarter, the first three quarters are thus 
taken as an example to show the peak membership 
degree of each time in different quarters. The period par-
tition results of the three quarters are shown in Fig. 2.

Taking the first quarter as an example, the value of the 
objective function and the length of the iteration time 
are analyzed, as shown in Fig.  3. Figure  3a shows that 
when the number of iterations N = 48, the function value 
tends to be static, and it takes 0.262 s to complete period 

Fig. 1  Period partitioning for: a first quarter b second quarter

Fig. 2  Peak membership of each time

Fig. 3  Iterative process of period partition
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partition as shown in Fig. 3b. It can be concluded that the 
proposed period partition method is efficient.

5.3 � Analysis of SAPSO algorithm
The influence of randomness in the heuristic algorithm 
on optimization results is examined through repeated 
experiments. Taking the optimization of TOU electric-
ity pricing in March as an example, 10 groups of experi-
ments are repeated, and the variation of the range 
of global optimal fitness function with the number of 
iterations is shown in Fig. 4. In a single experiment, the 
relationship between the global optimal fitness func-
tion and the iteration number is shown in Fig. 5.

According to Fig.  4, although randomness has a 
great influence on the fitness function, the influence 
decreases rapidly with the number of iterations. When 
the number of iterations is more than 160, the influ-
ence of randomness on the optimization results largely 
disappears. It can be seen from Fig. 5 that although the 
entry of randomness at the beginning results in a large 
fitness function, the algorithm converges rapidly. When 
the number of iterations is close to 20, the global opti-
mal fitness function decreases significantly, while with 
over 160 iterations, the SAPSO algorithm obtains the 
global optimal solution.

In addition, the exhaustion method is introduced 
to verify the global convergence of the optimization 
results of the SAPSO algorithm. The value range of 
the TOU price is set as [0.35, 1.2], and the interval is 
divided into 1000 parts on average. The peak, flat, and 
valley period prices are exhausted respectively, and 
the fitness function values under different TOU price 
cases are obtained. The exhaustion method and SAPSO 

algorithm are used to calculate the optimal fitness func-
tion for 12 months, as shown in Fig. 6.

It can be seen from Fig.  6 that the optimal fitness 
function obtained by the SAPSO algorithm is smaller 
than that of the exhaustion method mentioned above, 
so the SAPSO algorithm has good global convergence. 
Because the length of the feasible region is 0.85, the 
deviation from the optimal value is less than 8.5E−04, 
which fills the daily needs. Thus, the SAPSO algorithm 
proposed in this paper is accurate and effective.

Fig. 4  The relationship between the range of fitness function and 
the number of iterations

Fig. 5  The relationship between the global optimal fitness function 
and the number of iterations

Fig. 6  Comparison between exhaustion method and SAPSO 
algorithm
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5.4 � Effect analysis of TOU price and CPR
5.4.1 � Analysis on the effect of TOU price
The optimal electricity prices for 12 months of the year 
are shown in Fig.  7. The different peak, flat and val-
ley prices have the effect of reducing the peak load and 
increasing the valley load. It is noted that the valley price 
is close to the marginal price, so that the load adjustment 
effect is optimal.

Based on the initial load of typical days in January and 
March, two cases are analyzed using the SAPSO algo-
rithm, i.e., Case 1: optimize the TOU price according 
to the objective functions of the grid side; Case 2: opti-
mize the TOU price by combining the objective func-
tions of the grid side and the user side through (16). The 
price optimization results of the two cases are shown in 
Table  1. Based on the hourly load calculation method, 
the loads at each time corresponding to the price in 
Table  1 are calculated, as shown in Fig.  8. Table  1 indi-
cates that after considering objective functions of the 
user side, the peak and flat prices decrease while the val-
ley price remains stable, and thus the users’ electricity 
expenses decrease. It can be concluded from Fig. 8 that 
after the implementation of the TOU price, the peak load 

decreases significantly, while the valley load increases. 
However, compared with Case 1, the load curve of Case 
2 is closer to the initial load, and the power consumption 
similarity increases accordingly.

The value of βi can be used to represent different user 
characteristics. Three types of users are defined, i.e., Case 
1: β1 = β2 = 0.5, β3 = β4 =  − 0.3; Case 2: β1 = β2 = 0.01, 
β3 = β4 =  − 0.6; Case 3: β1 = β2 = 0.8, β3 = β4 =  − 0.01. Tak-
ing March as an example, the typical daily load curves of 
different types of users under TOU pricing are shown in 
Fig. 9. As can be seen, the load adjustment effect of TOU 
pricing is different for different types of users. The load 

Fig. 7  Optimal results of TOU electricity prices

Table 1  Optimal TOU electricity of different cases

Months Cases Peak Flat Valley

January Case 1 0.818 0.758 0.35

Case 2 0.769 0.694 0.35

March Case 1 0.81 0.774 0.35

Case 2 0.761 0.71 0.35

Fig. 8  Load curves before and after TOU price: a January; b March

Fig. 9  Load curve of different types of users under TOU price
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curve of Case 2 is the closest to the initial curve, while 
the difference of the peak load and peak-to-valley load 
in Case 3 are the smallest. In addition, the load curve of 
Case 1 is the most balanced.

5.4.2 � Effect analysis of CPR
The load at TOU price is divided into four periods of 
critical peak, peak, flat, and valley periods. The frequency 
distribution of each time in critical peak and peak peri-
ods of 12 typical days is summarized in Fig. 10. As shown, 
there are usually two maximum points in the load distri-
bution of a day, and the distribution of the peak period is 
usually concentrated around 12:00 and 19:00.

Taking the typical days of March and July as exam-
ples, the CPR strategy and TC strategy are implemented 
respectively to adjust the load curves, as shown in Fig. 11. 
The CPR strategy can reduce the load of the critical peak 
period and the load difference between the critical peak 
and peak periods. However, the CPR strategy has little 
impact on the load in other periods, which ensures user’s 
power consumption similarity.

5.5 � Comparison between TOU pricing and CPR
Four cases from two aspects of maximum load and reli-
ability are analyzed, including, Case 1: initial load; Case 
2: load after TOU price; Case 3: load after CPR strategy; 
Case 4: load after TC strategy.

5.5.1 � Analysis on load regulation effect of TOU pricing 
and CPR strategy.

The differences of the peak load and peak-to-valley load 
of 12 typical days in four cases are analyzed and com-
pared in Fig.  12. It can be seen that the fluctuation of 

peak load is much higher than the peak-to-valley load 
difference under the same regulation mode. Both TOU 
pricing and CPR strategy can effectively improve load 
characteristics, especially TOU pricing. The maximum 
load reduction of CPR under TOU pricing is slightly 
less than that under the initial price, while the reduction 
effect of CPR strategy on peak-to-valley load difference 
is better than that of peak load. Among the cases, Case 
4 has the best load characteristics, which proves that the 
combination of TOU pricing and CPR strategy can maxi-
mize the effect of load adjustment.

Based on the 12 typical days, Case 3 and Case 4 are 
implemented and the critical peak rebates in the two 

Fig. 10  Distribution of time in different periods

Fig. 11  Load curves before and after CPR: a March; b July

Fig. 12  Load characteristics in different cases
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cases are shown in Fig. 13. The cost of implementing the 
CPR strategy under TOU pricing is much lower than 
that of direct implementation. Thus, to reduce the cost 
of CPR, the CPR strategy should be combined with TOU 
pricing.

5.5.2 � Reliability comparison before and after load 
adjustment

To measure the reliability of the power system in differ-
ent conditions, loss of load probability (LOLP), loss of 
load expectation (LOLE) and expected energy not sup-
plied (EENS) are used as the reliability indices:

where Sf is the state set of insufficient capacity of the sys-
tem, Gt is the output power of the tth generator, Qs′ is the 
load under state s′, T′ is the rated period, Δqs′ is the load 
reduction caused by insufficient capacity or constrained 
power generation under state s′.

The calculated reliability results are shown in Table 2. It 
is observed that the reliability data of different cases are 
different. Both TOU pricing and CPR can significantly 

(37)
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










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improve system reliability, but the effect of TOU pricing 
is more noticeable.

Since the EENS indicators of Case 2 and Case 4 are dif-
ferent, to draw general conclusions, the EENS of the four 
cases at different peak load levels are analyzed, as shown 
in Fig.  14. It is observed that with the increase of peak 
load, the EENS values of the four cases increase, while 
the values of Case 4 are always the lowest. Thus, the 
implementation of TC strategy can keep the power sys-
tem at optimal reliability level under different peak loads.

6 � Conclusions
This paper studies the optimal demand response decision 
and reliability analysis based on TOU pricing and CPR 
strategy. An iterative method of optimal period partition 
based on fuzzy clustering is proposed, and the typical 
daily load curve is divided into PFV periods. The optimal 
TOU price model considering the interests of both the 
grid and the user is established, and a SAPSO algorithm 
is proposed to solve the problem. The peak period under 
TOU pricing is then divided into a critical peak period 
and a peak period, and a critical peak load adjustment 
strategy is proposed to reduce the critical peak load pro-
portionally by signing a user agreement. Given the quad-
ratic relationship between power shortage cost and load 

Fig. 13  Critical peak rebates in different cases

Table 2  Analysis of CPR adjustment in different cases

Indices Case 1 Case 2 Case 3 Case 4

LOLP (P) 1.222E−04 4.518E−05 1.100E−04 4.517E−05

LOLE (P) 1.071 0.396 0.963 0.396

EENS (P) 9.734 3.301 8.811 3.139

Fig. 14  EENS in different cases
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reduction, the decision-making model of CPR is estab-
lished to calculate daily critical peak rebate. Finally, the 
IEEE RBTS reliability data is used to verify and analyze 
each model.

The following conclusions can be drawn from the case 
analysis:

1.	 When using fuzzy clustering and enumeration itera-
tion technology to divide PFV periods, the iteration 
results tend to be stable when the number of itera-
tions is above 50. It can also be concluded from the 
period partition results that the lengths of the three 
periods are similar, and the time composition of each 
period is relatively fixed.

2.	 By combining the grid side and user side objec-
tive functions to build the TOU price optimization 
model, it not only reduces peak load and increases 
valley load, but also ensures user satisfaction and 
power consumption similarity, as observed from the 
load curve under TOU pricing.

3.	 From the established decision-making model of 
CPR, it is seen that the rebate is positively related to 
power reduction. To keep compensation costs down, 
the load reduction should not be too large. The CPR 
strategy can effectively reduce critical peak load, but 
the compensation cost of the TC strategy is lower 
than that of CPR.

4.	 CPR and TOU pricing can effectively improve system 
reliability, while the TC strategy can maintain the 
optimal reliability level under different peak loads.

There are, however, some limitations in the proposed 
methods in this paper. When the scale of the power system 
is large and there are many types of users, the selection 
of a typical day will become an important factor affecting 
the effect of load adjustment. Therefore, it is necessary 
to research the selection of typical days in different situa-
tions. In addition, in actual scenarios, not all users will be 
willing to participate in the CPR strategy, even with users’ 
power shortage cost compensated. Therefore, the relation-
ship between the actual participation rate of users and the 
compensation modes needs to be further explored.
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