
ORIGINAL RESEARCH Open Access

High performance decoupled active and
reactive power control for three-phase
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Abstract

Finite control set-model predictive control (FCS-MPC) is employed in this paper to control the operation of a three-
phase grid-connected string inverter based on a direct PQ control scheme. The main objective is to achieve high-
performance decoupled control of the active and reactive powers injected to the grid from distributed energy
resources (DER).
The FCS-MPC scheme instantaneously searches for and applies the optimum inverter switching state that can
achieve certain goals, such as minimum deviation between reference and actual power; so that both power
components (P and Q) are well controlled to their reference values.
In addition, an effective method to attenuate undesired cross coupling between the P and Q control loops, which
occurs only during transient operation, is investigated. The proposed method is based on the variation of the
weight factors of the terms of the FCS-MPC cost function, so a higher weight factor is assigned to the cost function
term that is exposed to greater disturbance. Empirical formulae of optimum weight factors as functions of the
reference active and reactive power signals are proposed and mathematically derived. The investigated FCS-MPC
control scheme is incorporated with the LVRT function to support the grid voltage in fulfilling and accomplishing
the up-to-date grid codes. The LVRT algorithm is based on a modification of the references of active and reactive
powers as functions of the instantaneous grid voltage such that suitable values of P and Q are injected to the grid
during voltage sag.
The performance of the elaborated FCS-MPC PQ scheme is studied under various operating scenarios, including
steady-state and transient conditions. Results demonstrate the validity and effectiveness of the proposed scheme
with regard to the achievement of high-performance operation and quick response of grid-tied inverters during
normal and fault modes.
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1 Introduction
1.1 Literature review
A grid-connected inverter constitutes an essential part
of modern DER (distributed energy resources) grid inte-
gration systems [1–10]. During the last few years, many
efforts have been made to ensure reliable operation of
the grid-tied inverter by taking into consideration mod-
ern grid codes and standards [11–20]. The increasing
computation capability of high-speed digital signal pro-
cessors (DSPs) and the availability of various hardware-
in-the loop (HIL) control boards have facilitated the de-
velopment and implementation of sophisticated control
algorithms for achieving reliable grid-integrated systems
[21–30]. Accordingly, some new functions and features
(such as LVRT) recommended by updated grid codes
and standards can be added to the inverter control algo-
rithm [19, 20, 23, 26–34]. Such regulations obligate the
grid-tied inverters to withstand unintentional grid volt-
age sag for a specific duration based on some LVRT pro-
files, which are customised in many countries [19, 20,
31, 35–38]. A modern control technique that has been
utilised in recent years to control the operation of grid-
tied inverters is the FCS-MPC [39–55]. Successful util-
isation of the FCS-MPC algorithm has been reported in
many studies [56–69]. Most of the existing FCS-MPC
schemes for grid-connected inverters are either current
controlled [51, 61, 63, 66, 70, 71] or voltage controlled
[72–75].
In current-controlled schemes, FCS-MPC regulates

and controls as per the desired value the current injected
to the grid from the DER by applying the adequate in-
verter switching state. In voltage-controlled schemes,
FCS-MPC controls the inverter output voltage (voltage
space vector), which indirectly controls the current
injected to the grid. In this scheme, the computation of
the voltage space vector is similar to the one used in the
well-known SVM technique.
In this paper, FCS-MPC is employed to apply a direct

PQ control strategy such that the active and reactive
powers (P and Q) injected to the grid from the DER are
directly controlled to their reference values; this is done
through the application of the optimum inverter switch-
ing state to ensure a quick response. In recent years,
considerable efforts have been made to overcome the
major challenges of FCS-MPC that negatively affect its
overall performance. One of these challenges is choosing
the weight factors of the cost function. Thus, the topic
of selecting the weight factors of the FCS-MPC cost
function to optimise the scheme’s performance has
gained much attention [41, 44, 46, 55, 76]. Most of the
weight factor determination methods are based on itera-
tive range-sweeping techniques or evolutionary search
algorithms because of the lack of theoretical design
methodologies or analytical approaches for designing

and adjusting these parameters. In general, all methods
aim to assign a higher weight factor to a given objective
term whenever it presents an unaccepted error [46]. To
achieve this task, the errors between the desired and ac-
tual values of the associated variables are usually used as
inputs to the tuning algorithm [41, 55, 76].
Some methods assign discrete values to the weight fac-

tors (usually dual values) [41] or employ evolutionary
search algorithms to determine the optimum weight fac-
tors involving the operating range [44], while other
methods compute the dynamic weighting factor gain as
functions of the errors such that the weight factors are
tuned online [55, 76]. Nevertheless, inappropriate dy-
namic weight factors can lead to the over-optimisation
of the terms of the cost function. This deteriorates over-
all performance. Thus, there is a trade-off between sim-
plicity and accuracy. To address such issues, this paper
proposes an empirical weight factor-tuning method for
achieving an optimised transient response of the overall
FCS-MPC system.

1.2 Objective of the paper
The primary objective of the paper is to study and inves-
tigate an integrated control scheme for a three-phase
grid-tied string inverter that can guarantee satisfactory
steady-state performance as well as quick transient per-
formance by employing decoupled control of the active
and reactive powers (PQ) injected into the grid. The
control scheme also attempts to consider the LVRT
mode during grid voltage sag to satisfy the existing grid
codes related to grid-connected inverters. The perform-
ance of the investigated scheme is studied under various
operating conditions, including the normal and fault
modes (grid voltage sag). Qualitative and quantitative
analyses of steady state and transient responses are
undertaken and addressed. Results demonstrate the val-
idity and effectiveness of the discussed scheme in terms
of the achievement of a high-performance three-phase
grid integration system during both the normal and fault
modes of operation. The rest of the paper is organized
as follows. Section 2 provides an overview of the
current-controlled FCS-MPC scheme for three-phase
grid-tied inverters, and Section 3 details the different
parts of the investigated system, including the computa-
tion of grid voltages and currents in (α-β) coordinates,
the computation of power components (P and Q), the
formulation of the cost function, and the adjustment of
weight factors and also describes the LVRT mode. In
Section 4, selected simulation results are presented and
discussed, and qualitative and quantitative assessments
on the results are also provided. Conclusions are drawn
in Section 5, and the empirical formulae of variable
weight factors and their mathematical derivations are
presented in Additional file 1.
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1.3 Main contribution
The main contributions of the paper are as follows:
(1) It proposes a simple and effective method of opti-

mising the weighting factors of the FCS-MPC cost func-
tion for reducing undesired cross coupling between the
P and Q control loops. Empirical formulae of optimum
weight factors (as functions of active and reactive power
references) are formulated and mathematically derived.
The proposed method varies the weight factors of the

cost function only during detected transient periods and
retains equal weight factors during steady-state oper-
ation. Thus, during steady-state operation, both terms of
the cost function have the same levels of priority and
contribution. However, during the transient period, the
weight factors adjustment is governed by a simple, lo-
gical rule, i.e., granting a higher weight factor to the
term that is exposed to higher undesired coupling until
the error is restricted to predetermined satisfactory
limits.
(2) It applies the concept of decoupled PQ control to

incorporate LVRT capability, which is an essential op-
tion demanded by recently published grid codes (such as
IEEE 1547, VDE-AR-N 4120 and IEC 62477–1). Most
existing LVRT schemes are current-control based. They
inject a suitable reactive current to the grid; conse-
quently, reactive power is indirectly injected to the grid.
However, in this paper, the LVRT is achieved through
the direct injection of the optimum values of P and Q
during a fault condition using the same FCS-MPC
scheme; the corresponding reference powers (Pref &
Qref) are instantaneously calculated within the FCS-MPC
algorithm.

2 Current controlled FCS-MPC scheme for 3-Φ
grid- connected string inverter
2.1 Single-line diagram and inverter power circuit
The single-line diagram of a typical three-phase PV grid
integration system is illustrated in Fig. 1. In this system,
all PV arrays (considered as one of the DERs) are con-
nected to a common DC bus of 600 V through the indi-
vidual MPPT tracking units and suitable DC-DC
converters incorporated with each PV array. The string
inverter injects both active and reactive powers (P and
Q) to the grid according to the mode of operation. The
circuit diagram of a 3-Φ grid-connected inverter is
shown in Fig. 2; as shown, the energy produced from the
distributed resource is injected to the grid through the
inverter. A 3-Φ inductor LS having a small equivalent
series resistance RS is inserted at PCC between the in-
verter output and the grid [24]. The voltage space vector
US can be described as a function of the DC link voltage
and inverter switching states as follows:

US ¼ 2
3
VDC S1 þ e j2π=3S3 þ e j4π=3S5

� �
ð1Þ

where S1, S3 and S5 are the switching states of the upper
power transistors of the inverter. The voltage space vec-
tor US can be resolved into two orthogonal components
(Uα and Uβ) in the (α-β reference frame, where their
equivalent values are computed by:

Uα ¼ 2
3
VDC S1−

1
2
S3−

1
2
S5

� �
ð2:aÞ

Fig. 1 Single line diagram of 3-Φ grid-tied String Inverter
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Uβ ¼ 2
3
VDC

ffiffiffi
3

p

2
S3−

ffiffiffi
3

p

2
S5

� �
ð2:bÞ

The resultant components of inverter voltage space
vector US for all switching states are presented in
Table 1. The six active inverter switching states and two
nil switching states are used to control the operation of
the grid-tied inverter in different configurations such as
current-controlled mode or SPWM or SVM techniques.
In FCS-MPC, the optimum inverter switching state is

instantaneously selected and applied to the inverter to
minimise a specific cost function; this is explained in the
following sections.

2.2 Principle of current controlled FCS-MPC approach
In recent years, FCS-MPC has been adopted to control
the operation of switching power converters such as
grid-tied inverters [39–70, 76, 77]. In the FCS-MPC
technique, the future behaviour of the system is pre-
dicted for a finite time frame [40]. Accordingly, the
optimum future control action is applied to the system
to satisfy a customised goal function [57–66], and the
FCS-MPC algorithm is repeated at every sampling

period [67–70, 76, 77]. Generally, it is characterised by
fast transient response and the ability to consider the
nonlinearities and constraints in the control law [41–
60].
Applying KVL to the circuit in Fig. 2 yields:

van ¼ iaRS þ LS
dia
dt

þ ean ð3:aÞ

vbn ¼ ibRS þ LS
dib
dt

þ ebn ð3:bÞ

vcn ¼ icRS þ LS
dic
dt

þ ecn ð3:cÞ

The rates of change of grid currents dia
dt ,

dib
dt and dic

dt are
rearranged:

dia
dt

¼ 1
LS

van−eanð Þ−ia RS

LS
ð4:aÞ

dib
dt

¼ 1
LS

vbn−ebnð Þ−ib RS

LS
ð4:bÞ

dic
dt

¼ 1
LS

vcn−ecnð Þ−ic RS

LS
ð4:cÞ

Accordingly, (4.a) is employed to derive the instantan-
eous value of phase current ia at the (k + 1)th sample as:

Δia ¼ Δt
LS

van−eanð Þ−Δt ia RS

LS
ð5:aÞ

ikþ1
a −ika ¼

TS

LS
van−eanð Þ−TS i

k
a
RS

LS
ð5:bÞ

ikþ1
a ¼ ika þ

TS

LS
van−eanð Þ−TS i

k
a
RS

LS
ð5:cÞ

ikþ1
a ¼ ika 1−TS

RS

LS

� �
þ TS

LS
van−eanð Þ ð6:aÞ

where TS is the sampling time, LS is the per-phase

Fig. 2 Power Circuit of a 3-ΦGrid Connected String Inverter

Table 1 Switching States of a 3-Φ VSI Inverter

Switching
State
S1 S3 S5

Vector
Notation
Ux

Space Vector
ŪS

α-β Components
Uα and Uβ

Mag. Angle Uα Uβ

0 0 0 U0 0 N/A 0 0

1 0 0 U1 2/3VDC 0 2/3VDC 0

1 1 0 U2 2/3VDC π/3 1/3VDC 1/√3VDC

0 1 0 U3 2/3VDC 2π/3 −1/3VDC 1/√3VDC

0 1 1 U4 2/3VDC π - 2/3VDC 0

0 0 1 U5 2/3VDC 4π/3 −1/3VDC −1/√3VDC

1 0 1 U6 2/3VDC 5π/3 1/3VDC −1/√3VDC

1 1 1 U7 0 N/A 0 0
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inductance of the inductor and RS is the equivalent
series resistance of the inductor LS.
Similarly, the instantaneous grid currents of other

phases, ib and ic, at the (k + 1)th sample are predicted as:

ikþ1
b ¼ ikb 1−TS

RS

LS

� �
þ TS

LS
vbn−ebnð Þ ð6:bÞ

ikþ1
c ¼ ikc 1−TS

RS

LS

� �
þ TS

LS
vcn−ecnð Þ ð6:cÞ

From (6.a), (6.b) and (6.c), the grid currents at the
(k + 1)th sample can be predicted through online meas-
urement of the grid voltage (ean, ebn, ecn) and grid cur-
rents ia, ib and ic at the current kth sample.
The inverter output voltages (van, vbn, vcn) can be mea-

sured directly, while their (α-β) components in the sta-
tionary reference frame can be calculated based on (2.a)
and (2.b). Unlike the hysteresis controllers or PI control-
lers driving PWM units, the FCS-MPC scheme instant-
aneously selects the optimum switching state every
sampling period and achieves a specific goal function
without requiring a PWM unit or hysteresis current con-
trollers [40].
A simplified block diagram of a typical FCS-MPC

scheme is presented in Fig. 3, in which the predictive
model block computes and predicts the grid currents at
the (k + 1)th sample for the eight inverter switching
states. Inside the cost function computation block, a cost
function is computed for all switching states.
The switching state that results in the minimum value

of the cost function is considered as the optimum state
to be applied. This task is performed inside the optimum
switching state selection block shown in Fig. 3. Conse-
quently, if the reference grid currents i�a , i

�
b and i�c are

given, the chosen cost function J, described by (7), is re-
peatedly evaluated during every sampling period for the
eight possible switching states. One of them is the
optimum switching state that results in the minimum
value of the cost function at the (k + 1)th sample. Ac-
cordingly, the actual grid current tracks the reference
value with accepted error (deviation).

J ¼ i�a−i
kþ1
a

�� ��þ i�b−i
kþ1
b

�� ��þ i�c−i
kþ1
c

�� �� ð7Þ

Excellent waveform tracking under FCS-MPC ap-
proach requires high sampling rates, which can be pro-
vided by high-speed data acquisition cards.

3 Description of the investigated decoupled PQ
control system using FCS-MPC approach
The block diagram of the investigated FCS-MPC PQ sys-
tem for a 3-Φ grid-connected string inverter is illus-
trated in Fig. 4. The system is composed of two main
blocks: (1) LVRT, which determines the mode of

operation and computes the suitable reference signals of
active and reactive powers; (2) The FCS-MPC system,
which includes several blocks, such as prediction of grid
currents and active and reactive powers, computation of
cost function and selection of optimum switching state.
All tasks are explained below in Subsections 3.1, 3.2 and
3.3.

3.1 Computation of grid voltages and currents in (α-β)
stationary reference frame
The (α-β) components of grid currents iα and iβ are
computed using (8.a) and (8.b), respectively. Similarly,
the (α-β) components of grid voltages eα and eβ are cal-
culated using (9.a) and (9.b), respectively, based on the
concept of the space vector as described by (1). Those
components are essential in active and reactive power
computations, as explained in Section 3.2.

iα ¼ 2
3

ia−
1
2
ib−

1
2
ic

� �
ð8:aÞ

iβ ¼ 2
3

ffiffiffi
3

p

2
ib−

ffiffiffi
3

p

2
ic

� �
ð8:bÞ

eα ¼ 2
3

ean−
1
2
ebn−

1
2
ecn

� �
ð9:aÞ

Fig. 3 Simplified block diagrams of current controlled FCS-
MPC for grid-tied inverter
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eβ ¼ 2
3

ffiffiffi
3

p

2
ebn−

ffiffiffi
3

p

2
ecn

� �
ð9:bÞ

3.2 Prediction of active and reactive power
The instantaneous active and reactive powers (P and Q)
injected to the grid are computed as follows [21, 22, 78]:

P ¼ eαiα þ eβiβ
� 	 ð10:aÞ

Q ¼ eβiα−eαiβ
� 	 ð10:bÞ

Resolution of (6.a), (6.b) and (6.c) into the equivalent
(α-β) components leads to the predicted iα and iβ at the
(k + 1)th sample period as follows:

ikþ1
α ¼ ikα 1−TS

RS

LS

� �
þ TS

LS
uα−eαð Þ ð11:aÞ

ikþ1
β ¼ ikβ 1−TS

RS

LS

� �
þ TS

LS
uβ−eβ
� 	 ð11:bÞ

where uα and uβ were previously computed using (2)
and tabulated in Table 1. eα and eβ were previously com-
puted using (10).
From (8) to (11), the instantaneous active and reactive

powers are predicted at the (k + 1)th sample as follows
[17]:

Pkþ1 ¼ ekþ1
α ikþ1

α þ ekþ1
β ikþ1

β

� �
ð12Þ

Qkþ1 ¼ ekþ1
β ikþ1

α −ekþ1
α ikþ1

β

� �
ð13Þ

As the grid voltage has low variation compared to the
sampling and switching frequencies, the grid voltage
components eα and eβ can be considered constant during
the sampling period, i.e., (ekþ1

α = ekα) and (ekþ1
β = ekβ).

3.3 Formulation of cost function
The cost function is formulated to account for the active
and reactive powers as follows:

J ¼ Pref −P
kþ1

� 	2 þ Qref −Q
kþ1

� �2
ð14Þ

where Pref and Qref are the desired reference values of
the active and reactive powers to be injected to the grid from
the DER through the 3-Φ inverter. In (14), the first term of
the objective function aims to minimise the active power de-
viation (ripple), while the second term aims to minimise the
reactive power ripple, and both terms have the same degree
of importance and make equal contribution. Accordingly,
the instantaneous value of the cost function J in (14) is com-
puted for all inverter switching states. The resultant values of
the cost function are plotted in Fig. 5 (a) for a small time
frame of 70 μs (seven samples, each with a sampling period
of 10 μs). From the results, applying inverter vectors U4 and
U5 alternatively produces the minimum values of the cost
function (J4 and J5) during the selected time frame (in six
samples out of seven) in conjunction with the null vectors
U0 or U7 (in one sample out of seven). Thus, switching states
4 and 5 is the optimum selection (also see Fig. 5 (b)). In
addition, the null vector is considered as the optimum se-
lected vector in one of the seven samples (at t = 0.02005 s; J0
is the minimum). Fig. 5 (a) also shows that applying vectors
U2 and U3 will yield the worst values of cost function (J2 and
J3) during the selected time frame. Similarly, applying vectors
U1 and U6 will not result in an optimised cost function.
Thus, vectors U2, U3, U1 and U6 are not used during the in-
vestigated time period. In Fig. 5 (b), the overall minimum
possible cost function Jmin (dotted line) is plotted together
with J4 and J5, which correspond to vectors U4 and U5, re-
spectively. In most FCS-MPC systems, weight factors are in-
cluded in the terms of the cost function. Involving such
weight factors allows the FCS-MPC system to assign a prior-
ity to the controlled variables on the design criteria. Thus,
(14) is rewritten to involve weight factors in both terms of
the cost function:

J ¼ wp Pref −P
kþ1

� 	2 þ wq Qref −Q
kþ1

� �2
ð15Þ

where wp and wq are the weight factors of active and
reactive power terms, respectively.

3.4 Flowchart of the investigated FCS-MPC PQ control
system
The flowchart of the FCS-MPC algorithm is shown in
Fig. 6 (a); (2) and (11)–(15) are computed at each sample
for all possible inverter switching states such that an
optimum switching state is determined and applied dur-
ing the next sample.

Fig. 4 Block diagram of FCS-MPC scheme for three-phase
grid-tied inverter
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Initially, the system is investigated with constant
weight factors (wp =wq = 1) during the whole operation
of the FCS-MPC system.
Then, those weight factors are varied during the tran-

sient periods, as explained in the flowchart of Fig. 6 (b);
this is described in detail in Additional file 1.

3.5 Adjustment of weight factors (Wp &Wq) of cost
function
As shown in the flowchart presented in Fig. 6 (b), the
weight factors in (15) are adjusted based on a simple
rule that imposes a penalty to the term causing cross
coupling during the transient operation (by reducing its
weight factor).
The same result can be obtained by granting higher

priority or rewarding the negatively affected term of the
cost function (by increasing its weight factor) during the
transient periods. During steady-state operation, since
no change occurs in the reference power, the weight fac-
tors are assigned to their initial values of unity. Once the
algorithm detects a transient change in any of the

reference signals (Pref or Qref), the weight factors are ad-
justed accordingly based on the rule summarised in
Table 2 and previously illustrated in the flowchart of
Fig. 6 (b).
As shown in Table 2, when the algorithm detects an

abrupt change in Pref while Qref has no change (Sp >
Sq), the weight factor wp is reduced to alleviate the dis-
turbance that occurred on the Q loop from the P loop,
while the weight factor wq is kept constant at unity.
Similarly, when the algorithm detects an abrupt

change in the Qref signal while Pref has no change (Sq >
Sp), the weight factor wp is kept constant at unity, while
wq is reduced to alleviate the disturbance that occurred
on the P loop from the Q loop.
This paper proposes a simple and effective method of

tuning the weight factors (wp and wq). The details of the
proposed method, including the mathematical derivation
of the proposed formulae of wp and wq, are presented in
Additional file 1. The optimum values of wp and wq are
plotted in Fig. 7 (a) and (b), respectively.

3.6 LVRT mode and modification of reference signals
The inverter control scheme is incorporated with an LVRT
option to make it compatible with modern grid integration
regulations and standards such as VDE-AR-N 4120, IEC
62477–1 and IEEE 1547 [19, 20, 26, 27, 31, 35–37].
In cases of fault and occurrence of voltage sag, the

LVRT mode is enabled. Hence, the LVRT subroutine de-
termines the level of voltage sag, and the reference
power signals (Pref and Qref) are then computed such
that the inverter injects a combination of active and re-
active powers (or only reactive power) to the grid based
on the actual value of the grid voltage sag (Vsag), as
shown in Fig. 6 (c). The flowchart of the LVRT subrou-
tine illustrated in Fig. 6 (c) demonstrates that the nu-
merical value of the active and reactive powers to be
injected to the grid is considered as a function of (Vsag).
This relation is also presented as follows:

If 0:9 < Vsag≤1:0⇒Then

Qref ¼ 0

Pref ¼ Prated

8>><
>>:

If 0:5 < Vsag≤0:9⇒Then

Qref ¼ 2 Prated 1−Vsag
� 	

16ð Þ
Pref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2rated−Q

2
ref

q

8><
>:

If 0≤Vsag≤0:5⇒Then

Qref ¼ Prated

Pref ¼ 0

8>><
>>:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

In (16), the voltage sag is discriminated in three zones:

Fig. 5 a Cost function for all possible inverter switching
states. b Cost function when applying U4 & U5 and the
resultant minimum cost function as alteration between J4
& J5
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Fig. 6 a Flowchart of the FCS-MPC algorithm. Flowchart of the overall elaborated FCS-MPC algorithm for 3-Φ grid connected
string inverter. b Flowchart of weight factors adjustment. c Flowchart of LVRT algorithm
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� In the first zone, Vsag is between 0.9 and 1, and the
inverter injects only active power to the grid.

� In the second zone, Vsag is between 0.5 and 0.9, and
the inverter injects both active and reactive powers
with fixed apparent power.

� In the third zone, Vsag is below 0.5, and the inverter
injects only reactive power to the grid with nil active
power.

Most developed countries have their own LVRT pro-
files, which the operation of modern grid-tied inverters
should guarantee [23, 26, 27, 29, 38].

4 Simulation results
The overall FCS-MPC system for a three-phase grid-tied
string inverter was modelled and investigated in PSIM
software®. The simulation parameters are summarised in
Table 3. The simulation platform is PSIM and the sam-
pling time is 20 μs (sampling rate is 50 kHz). In this sec-
tion, the simulation results are categorised in three
groups:
(1) Steady-state performance of the elaborated FCS-

MPC PQ system at normal operating conditions with
quantitative assessment;
(2) Transient response of the FCS-MPC PQ system at

normal operating conditions with quantitative
assessment;
(3) Transient performance of LVRT under grid voltage

sag.

4.1 Steady state performance

a. Unity PF Operation (Pref = 10 kW, Qref = 0 VAR)

The steady state performance of the investigated 3-Φ
grid-tied inverter system was studied for unity PF oper-
ation. The reference active power was set to 10 kW, and
the reference reactive power was zero. The instantan-
eous values of the resultant P and Q and the current
injected to the grid are plotted in Figs. 8 (a), (b) and (c),
respectively. As the reference reactive power was zero,
the current injected to the grid was in-phase with the
grid voltage. The results shown in Figs. 8 (a) and (b) in-
dicate that both P and Q were well controlled to their
desired values. The corresponding harmonic spectra of
P, Q and the grid current are illustrated in Figs. 9 (a), (b)
and (c), respectively.

4.1.1 Quantitative analysis of steady state performance at
unity PF
The quantitative analysis of steady state performance
was conducted, and the results are presented in Table 4.
The active power injected to the grid was 9.99 kW (de-
sired reference value was 10 kW), while the reactive
power was 68 VAR (desired reference value was zero
VAR).

Table 2 Selection criteria of weight factors

Parameter Operating Condition

Abrupt change in Pref only No changes
(Steady state)

Abrupt change in Qref only

Sp > Sq Sp = Sq Sp < Sq

Optimum Value

wp (0.8–0.1) 1 1

wq 1 1 (0.2–0.04)

Fig. 7 Optimum values of weight factors of FCS-MPC cost
function to minimize cross coupling during transient
response. a. wp as a function of Pref. b. wq as a function
of Qref
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However, it had negligible effect on the resultant PF
(in this case, the actual PF was 0.999). Moreover, the
computed THD of the grid current was 3.35%.

b. Zero PF Operation (Pref = 0W, Qref = 10 kVAR)

The steady-state performance of the FCS-MPS-MPC
was investigated for a different operating scenario: the
reference active power was zero, while the reference re-
active power was − 10 kVAR. The instantaneous values
of the corresponding P, Q and the current injected to
the grid are depicted in Fig. 10 (a), (b) and (c), respect-
ively. The results indicated that P and Q were controlled
to their desired values. As the reference active power
was zero (Zero PF), the grid current ia lagged the grid
voltage by 90°, as seen in Fig. 10 (c).
The corresponding harmonic spectra of P, Q and the

grid current are depicted in Figs. 11 (a), (b) and (c),
respectively.

4.1.2 Quantitative analysis of steady state performance at
zero PF
Quantitative analysis of the steady state performance
was carried out, and the results are presented in Table 5.
The reactive power injected to the grid was 10.005
kVAR, while the active power was − 100.6W. Again, this
only had a small effect on the resultant PF (in this case,

the actual PF was 0.01). The computed THD of the grid
current was 3.12%.

4.2 Transient performance

a. Step change of Pref (0→ 10 kW) with Qref = 0
VAR

The transient performance of the FCS-MPC system
was investigated for different operating scenarios. In this
subsection, the reference active power Pref has a step
change from 0 to 10 kW, while the reactive power refer-
ence Qref is zero.
The transient responses were studied with fixed as well

as adjustable weight factors, and the results are illus-
trated in Figs. 12 and 13, respectively.

4.2.1 Quantitative analysis of step response of active power
Pref (0→ 10 kW) with Qref = 0 VAR
A quantitative analysis was conducted of the transient
response presented above, and the results are sum-
marised in Table 6 for both FCS-MPC systems.
As shown in Fig. 12(a), the active power with fixed

weight factors had a fast transient response with a set-
tling time of less than 2 ms (1.77 ms). Similarly, the ob-
served settling time in the case of variable weight factors
was also less than 2 ms (1.82 ms), as illustrated in
Fig. 13(a).
In addition, both FCS-MPC schemes did not produce

overshoot for the active power.
However, the reactive power component Q was nega-

tively affected by the active power step change. The re-
sults indicated that the Q component was subjected to
undesired cross coupling during the transient period in
the case of the FCS-MPC scheme with fixed weight fac-
tors. This cross coupling on Q was approximately 1.6
kVAR and the time elapsed was 2 ms, as shown in
Fig. 12(b).
The results demonstrated that the proposed FCS-MPC

scheme with variable weight factors effectively eliminates
the cross coupling and successfully attenuates the

Table 3 Simulation parameters

Parameter Value

Simulation Platform PSIM

MPC Sampling time TS 20 μs

DC bus voltage VDC 600 V

Grid inductor/phase Ls 3 mH

ESR/phase Rs 0.2 Ώ

RMS of grid Line voltage 380 V

Grid frequency 50 Hz

Peak output power of PV arrays 12.8 kW

Fig. 8 Steady state response of FCS-MPC at unity PF operation (Pref = 10 kW, Qref = 0 VAR). (a) Active power P; (b) Reactive power
Q; (c) Grid phase voltage and current (Van & ia)
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disturbance to a negligible level during the transient
period, as shown in Fig. 13(a) and (b).
Figure 12(c) indicates that the weight factors were

fixed to unity in the case of the fixed weight factors,
while with variable weight factors, the weight factor wp

(as depicted in.
Figure 13(c)) was changed according to the adjustment

rule previously addressed in both Table 2 and Fig. 7 (a).
The grid currents sketched in Figs. 12(d) and 13(d) indi-
cate the successful operation of both schemes at unity
PF during the transients. In addition, once the transient
period had passed, both the fixed and variable weight
factor schemes resulted in similar PF and THD of the
current injected to the grid, as seen in Table 6.

b. Step change of Qref (0→ 10 kVAR) with Pref = 0
W

In this subsection, the transient performance of the
FCS-MPC system is investigated in another operating
scenario. The reference active power Pref was set to zero,
while the reactive power reference Qref was step changed
from 0 to 10 kVAR. The transient responses were inves-
tigated with fixed as well as adjustable weight factors,
and the results are illustrated in Figs. 14 and 15,
respectively.

4.2.2 Quantitative analysis of step response of reactive
power Qref (0→ 10 kVAR) with Pref = 0 W
As shown in Fig. 14(a), the reactive power with the
FCS-MPC system of fixed weight factors had a fast
transient response with a settling time of less than
2 ms (1.57 ms).
In the case of the FCS-MPC system with variable weight

factors, the observed settling time was 0.42ms (much less
than the fixed weight factors case), as illustrated in Fig. 15(a).
Both FCS-MPC schemes did not produce overshoot

for the reactive power (as can be observed from
Figs. 14(a) and 15(a)). However, the FCS-MPC system
with fixed weight factors slightly undershot before the
reactive power settled down around the reference value,
as illustrated in Fig. 14(a).
In addition, the active power component P was

negatively affected by the step change in the Q
component.
The results indicated that the P component was sub-

jected to severe undesired cross coupling during the
transient period in the case of the fixed weight factors.
The active power drop was approximately 2.7 kW, and it
elapsed in 1.8 ms, as shown in Fig. 14(b).
The results demonstrated that the proposed FCS-MPC

scheme with variable weight factors effectively alleviates
the cross coupling and successfully attenuates the dis-
turbance to a negligible level during the transient period,
as shown in Figs. 15(a) and (b).
Figure 14(c) shows the unity weight factors for the

fixed weight factors case, while in the case of vari-
able weight factors, the weight factor wq was chan-
ged, as depicted in Fig. 15(c), according to the
adjustment rule previously addressed in Table 2 and
Fig. 7 (b).
The waveforms of the grid current sketched in

Figs. 14(d) and 15(d) indicate the successful operation of
both schemes at zero PF during the transients.
Once the transient period had passed, both schemes

(fixed and variable weight factors) resulted in similar PF
and THD of the current injected to the grid, as seen in
Table 7.

Fig. 9 Harmonic spectra P, Q and ia injected to the grid at unity PF (Pref = 10 kW, Qref = 0 VAR). (a) Spectrum of the active power
P; (b) Spectrum of the reactive power Q; (c) Spectrum of grid current (ia)

Table 4 Quantitative assessment of steady state performance at
Unity PF (Pref = 10 kW, Qref = 0 VAR)

Parameter Value

Average value of active power PAVG [W] 9990

Worst value of active power ripple ΔP = (Pref - Pactual) [W] 422

Percentage of active power ripple 100xΔP/Pref) [%] 4.22

Percentage of active power deviation 100 x (Pref - PAVG)/Pref [%] 0.10

Average value of reactive power QAVG [VAR] 68

Worst value of reactive power ripple ΔQ = (Qref - Qactual [VAR] 529

Actual PF Cos [tan−1(Q/P)] 0.999

Total harmonic distortion THD of grid current [%] 3.35
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4.3 LVRT mode of the FCS-MPC system under grid voltage
sag
The proposed FCS-MPC PQ control scheme is incor-
porated with an LVRT mode so that it withstands
grid voltage sag for a short duration (determined by
standard LVRT profiles) to be consistent with the up-
to-date grid code standards [27].
The operational scenario depends on the level of

voltage sag, as explained in Section 3.6 and shown in
the flowchart of Fig. 6 (c). The first part of Section
4.3 presents an emulation of grid fault and voltage
sag based on a standard LVRT profile. The LVRT
profile is presented in Fig. 16(a), and the correspond-
ing grid voltage sag is plotted in Fig. 16(b).
Consequently, the FCS-MPC PQ control unit gen-

erates the suitable reference active and reactive pow-
ers Pref and Qref based on (16), as illustrated in
Figs. 16(c) and (d), respectively. The second part of
Section 4.3 illustrates the transient response of the
FCS-MPC schemes under grid voltage sag. Figures
17 and 18 present the LVRT performance of the
FCS-MPC PQ scheme with fixed and variable weight
factors, respectively. Both groups of results prove
that the FCS-MPC PQ scheme provides quick re-
sponse and is able to enhance the LVRT capability
of a grid-tied string inverter such that the LVRT op-
tion incorporated with the inverter control scheme is
consistent with grid codes and standards.

5 Conclusion
In this paper, an FCS-MPC approach was used to
control the operation of a three-phase grid-tied string
inverter based on the concept of direct PQ control,
providing a decoupled control of both active and re-
active powers injected to the grid from the DER.
The cross-coupling problem associated with PQ

control loops during transient operation was ad-
dressed and investigated, and an efficient method to
minimise the undesired cross coupling between the P
and Q control loops was proposed. The attenuation
of cross coupling was achieved by varying the weight
factors of the FCS-MPC cost function during the
transient period.
The proposed method can be considered as a

feedforward-tuning scheme for weight factors. In
addition, the paper deduced empirical formulae to
compute and tune the optimum weight factors as
functions of reference active and reactive power sig-
nals. The relevant mathematical derivations were also
presented. Results prove the validity and effectiveness
of the proposed method with regard to the attenu-
ation and alleviation of undesired cross coupling be-
tween the P and Q components.
The study involved both steady state and transient

performances of the FCS-MPC scheme under vari-
able operating scenarios, such as unity PF and zero
PF operations. In addition, qualitative and

Fig. 10 Steady state response of FCS-MPC at zero PF operation (Pref = 0 W, Qref = 10 kVAR). (a) Active power P; (b) Reactive power
Q; (c) Grid phase voltage and current (Van & ia)

Fig. 11 Harmonic spectra P, Q and ia injected to the grid at zero PF (Pref = 0 W, Qref = 10 kVAR). (a) Spectrum of the active power
P; (b) Spectrum of the reactive power Q; (c) Spectrum of grid current (ia)
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quantitative analyses of the obtained results were
carried out.
The elaborated FCS-MPC scheme inherently provided

the LVRT mode, as requested by the updated grid codes
and standards. The concept of a decoupled PQ control
approach was applied to inject the necessary active and

reactive powers to the grid during grid faults by modify-
ing the instantaneous reference active and reactive pow-
ers based on the instantaneous grid voltage.
The results indicated that the adopted method was

successful and able to support the LVRT capability of a
grid-tied string inverter.

Table 5 Quantitative assessment of steady state performance at Zero PF (Pref = 0 W, Qref = 10 kVAR)

Parameter Value

Average value of reactive power QAVG [VAR] 10,005

Worst value of reactive power ripple ΔQ = (Qref - Qactual) [VAR] 480

Percentage of reactive power ripple 100xΔQ/Qref) [%] 4.80

Percentage of reactive power deviation 100 x (Qref - QAVG)/Qref [%] - 0.05

Average value of active power PAVG [W] −100.6

Worst value of active power ripple ΔP = (Pref - Pactual) [W] 369

Actual PF Cos (tan−1[Q/P)] 0.01

Total harmonic distortion THD of grid current [%] 3.12

Fig. 12 Transient response of FCS-MPC with fixed weight
factors. (a) Active and reactive power. (b) Enlarged graph of
reactive power. (c) weight factors; (d) Phase voltage
and current

Fig. 13 Transient response of FCS-MPC with variable weight
factors. (a) Active and reactive power. (b) Enlarged graph of
reactive power. (c) weight factors; (d) Phase voltage
and current
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Table 6 Quantitative assessment of transient performance under step change of active power

Mode of operation Parameter Value

Fixed
weight factors

Variable
weight factors

Step change in active power
(Pref: 0→ 10 kW)
(Qref is zero VAR)

Settling time [ms] 1.77 1.82

Max.│Cross coupling on Q│ [kVAR] ≅ 1.60 ≅ 0.18

Peak overshoot of P nil nil

Weight factor wp 1 0.1

Weight factor wq 1 1

Steady state PF* ≅ 0.999 ≅ 0.999

Worst PF during cross coupling ≅ 0.982 ≅ 0.990

THD of current* [%] ≅ 3.350 ≅ 3.350

*after settling time

Fig. 14 Transient response of FCS-MPC with fixed weight
factors. (a) Active and reactive power. (b) Enlarged graph of
reactive power. (c) weight factors. (d) Phase voltage
and current

Fig. 15 Transient response of FCS-MPC with variable weight
factors. (a) Active and reactive power. (b) Enlarged graph of
reactive power. (c) weight factors. (d) Phase voltage
and current
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Table 7 Quantitative assessment of transient performance under step change of reactive power

Mode of operation Parameter Value

Fixed
weight factors

Variable
weight factors

Step change in reactive power
(Qref 0→ 10 kVAR)
(Pref is zero W)

Settling time [ms] 1.57 0.42

Max. │cross coupling on P│ [kW] ≅ 2.70 ≅ 0.01

Peak overshoot of Q nil nil

Weight factor wp 1 1

Weight factor wq 1 0.04

Steady state PF (after settling time) ≅ 0.010 ≅ 0.010

Worst PF during cross coupling ≅ 0.269 ≅ 0.011

THD of current (after settling time) [%] ≅ 3.120 ≅ 3.120

Fig. 16 LVRT mode of FCS-MPC PQ control scheme

Fig. 17 LVRT of FCS-MPC with fixed weight factors. a. Active
power P. b. Reactive power Q. c. Grid current ia. d. steady
state grid currents
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The results demonstrate the capability of the FCS-
MPC approach in achieving a high-performance
DER grid integration system that can be operated
with different operating conditions, including fault
mode
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