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network
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Abstract

This paper formulates and solves a techno-economic planning problem of reactive power (VAR) in power transmission
systems under loadings. The objective of the proposed research work is to minimize the combination of installation
cost of reactive power sources, power losses and operational cost while satisfying technical constraints. Initially, the
positions for the placement of reactive power sources are determined technically. Different cost components such as
VAR generation cost, line charging cost etc. are then added in the total operating cost in a most economical way.
Finally, the optimal parameter setting subjected to reactive power planning (RPP) is obtained by taking advantages of
hybrid soft computing techniques. For the justification of the efficiency and efficacy of the proposed approach the
entire work is simulated on two inter-regional transmission networks. To validate the robustness and ease of the soft
computing techniques in RPP the responses of benchmark functions and statistical proof are provided simultaneously.
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1 Introduction
Electric power transmission operators and planners have
had immense concern on the importance of reactive
power in operation and planning problems. This con-
cern originates from ever-increasing load demands, un-
certainty in voltage stability and economic benefits by
obeying the operational limits. Thus, reactive power has
a considerable influence on economic as well as tech-
nical aspects of a power network.
Electric power systems require to be operated in a reli-

able and efficient manner considering reactive power con-
trol and voltage stability management. Reactive power
margins are related to voltage stability and thus, reactive
power planning (RPP) is one of the most challenging tasks
and complex problems for power system researchers. RPP
is divided into two categories viz. planning of VAR

equipment installation and planning for system operation
[1]. The objective of installation planning is to determine
the location, size and type of reactive power compensa-
tors. On the other hand, the settings of voltage control de-
vices such as capacitor banks, static compensators,
synchronous compensators and open loop tap setting
(OLTC) transformers are determined by system operation
planning. Such preventive planning provides a stable, se-
cure, reliable and economic power network [2].
In RPP there are many regular events such as demand,

capacity and availability of power generating units and
transmission limitations that extensively influence the
system operating variables. In general these variables in-
clude active and reactive power flow through transmis-
sion lines, production of VAR in generators, tap
positions of OLTC and the number of VAR sources to
be installed in appropriate sizes.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: nihar.16dr000115@ee.ism.ac.in
Department of Electrical Engineering, Indian Institute of Technology (ISM),
Dhanbad 826004, India

Protection and Control of
Modern Power Systems

Karmakar and Bhattacharyya Protection and Control of Modern Power Systems
           (2021) 6:26 
https://doi.org/10.1186/s41601-021-00202-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-021-00202-1&domain=pdf
http://orcid.org/0000-0002-8792-8842
http://creativecommons.org/licenses/by/4.0/
mailto:nihar.16dr000115@ee.ism.ac.in


1.1 Literature review
In general, solutions for RPP problems are categorized
into three groups as analytical approaches [3, 4], ap-
proaches by arithmetic programming and optimization
techniques by meta-heuristic evolutionary optimizers. In
the past few years, researchers have been addressing the
RPP problems with the help of optimization techniques
such as differential evolutionary (DE) algorithm [5],
Genetic algorithm (GA) [6] etc. During RPP on a con-
nected power network, an improved-particle swarm
optimization (IPSO) after the basic particle swarm
optimization (PSO) is implemented in [7] to lower the
deficiency in searching space for the initial particles in-
cluding boundary oscillations. In [8], a PSO based hybrid
approach is presented to resist severe contingencies by
effective reactive power reserve without perturbing sys-
tem security. A meta-heuristic optimization algorithm
viz. grey wolf optimization (GWO) is proposed in [9] to
solve RPP problems in the IEEE test system.
Several classical approaches for RPP have also been re-

ported. An integrated methodology is proposed in [2] for re-
active power source expansion planning, while reference [10]
uses successive LP (linear programing) to establish a satisfac-
tory operation of power networks through loss minimization
and lowering investment cost. Principles of Hamiltonian and
Pontryagins as well as Benders’ decomposition methods are
implemented in [11] for optimal long-term RPP, while a
cross-decomposition-algorithm (CDA) approach for RPP in
multi-area large-scale power networks is reported in [12].
Mixed-integer Linear Programming (MILP) is applied in [13]
for both RPP and transmission network expansion planning,
and a deterministic non-linear model is adopted in [1] for
long-term RPP.
Along with the aforementioned research, the operation

of India’s real power networks has been reported. To im-
prove the voltage stability margin in an 82-node system
in Indian, a non-linear least squares optimization ap-
proach is presented in [14]. This helps to lower the over-
all value of (L-indices)2 in the case of vulnerable buses.
A fuzzy rule based model is applied in an Indian power
network to determine effective controllers and their
movement directions with step size for the enhancement
of system voltage profile [15]. In [16], voltage-collapse
proximity based OPF as well as LP techniques are
adopted for the improvement of bus voltages. A math-
ematical model of the Indian power system for the es-
tablishment of bidding protocol is proposed in [17], and
in [18], conventional methods are presented to reduce
congestion in the Indian power transmission system
along with the transfer capability of the network. Refer-
ences [19, 20] reported different types of constraints
such as security and environmental constraints etc. in
the economic load dispatch (ELD) problem. Artificial
intelligence (AI) techniques such as PSO are also used

to determine the optimal VAR supporter size prior to
the optimal power flow in [21, 22].

1.2 Aims and contributions
Energy policy in India focuses on sustainable and rapid
economic growth of the power sectors. To achieve this
objective, the usage of energy at an affordable price along
with the ancillary economic growth is of primary concern.
However, low frequency (48–49Hz) and low voltage (0.7–
0.8 p.u) due to active-reactive power imbalance are some
of the frequently occurring problems in Indian power net-
works [23]. In the existing literature, the system operating
cost has not been considered for RPP in Indian power net-
works. These networks are also very prone to voltage in-
stability and system collapse compared to other developed
nations. In [14], only one method is adopted for assessing
the voltage instability, while, proper measurement of volt-
age instability is very important prior to reactive power
compensation. This paper presents a unique techno-
economic planning strategy for Indian power sectors to
provide significant economic and sustainable benefits.
The proposed approach makes the following

contributions:-

� Detection of critical/ weak nodes in Indian 62-bus
and 191-bus systems by loss sensitivity analysis,
power flow analysis and modal analysis method.
These different methods are performed on the sys-
tem to allow for proper compensation.

� Proper placement of VAR compensators with
effective number and capacity to provide reactive
power at weak nodes.

� Code profiling of different cost components using
load multiplier parameters in practical Indian power
networks to maintain a reliable operational cost
structure.

� To obtain a global optimal solution extensive search
has to be carried out in searching space. A, memory
based hybrid algorithm is applied to tune controller
parameters to minimize the system operating cost as
well as power loss of the networks.

� Establishment of robustness of the hybrid-algorithm
through the response of benchmark functions and
statistical analysis.

1.3 Paper organization
This paper describes the mathematical outline of prob-
lem formulation and a brief explanation of the proposed
methodology in Section II and III respectively. Results
and details of the practical networks are illustrated in
Section IV, while Section V address the statistical ana-
lysis of the optimized outcomes to measure the robust-
ness of the proposed approach. Finally, an overall
conclusion is given in Section VI.

Karmakar and Bhattacharyya Protection and Control of Modern Power Systems            (2021) 6:26 Page 2 of 17



2 Mathematical problem formulation
In reactive power planning, power networks are treated
as a set of equality and inequality constraints and better
strategies are practiced to control the flow of active and
reactive power. RPP is categorized as a non-linear com-
plex problem, and the equation formulations of RPP in
this paper are based on power loss minimization along
with minimum system operating cost, OCtotal as:

OCtotal ¼ CCrp þ CCsvc þ CCqg þ CCch ð1Þ
CCrp ¼ PL � rate of energy ð2Þ
¼ PL � 0:06� 100000� 24� 365ð Þ

PL ¼
Xm
k¼ i; jð Þ

gk V 2
i þ V 2

j−2V iV jcos δi−δ j
� �h i

ð3Þ

CCsvc ¼ 0:0003 Qsvc
2

� �
−30:3051 Qsvcð Þ þ 127:38 ð4Þ

CCqg ¼ QG � rate of Q−generation cost
¼ QG � 0:0068� 24� 365ð Þ ð5Þ

QG ¼
Xng
k¼1

aqQ
2 kð Þ þ bqQ kð Þ þ cq

� � ð6Þ

CCch ¼ Qch � per unit cost of reactive power during line ch arging
¼ Qch � 11:6068

ð7Þ

Qci− j
¼ V 2

i
Y ch

2
þ V 2

j
Y ch

2

Qch ¼
XNch

ch¼1

Qci− j

8>><
>>: ð8Þ

Minimize,

OCtotal ¼
X

CCrp

þ
Xnc
c¼1

CCsvc þ
Xng
g¼1

CCqg þ
XNch

ch¼1

CCch

 !
ð9Þ

This paper aims to optimize the different reactive
power sources such as transformer tap settings, gener-
ator reactive power output, capacitor bank etc. in a way
that the system voltage profile is maintained within its
limit at optimum operating conditions. Therefore, the
supply of adequate reactive power is very important for
maintaining the desired voltage stability. Generators are
the main sources of reactive power. Reactive power pri-
cing for generators is done using the triangle method
[24] in this work, while the cost (CCqg) in (5) will en-
courage the reactive power producers to invest and pro-
vide more reactive power for system reliability. Total
VAR generation (QG) by synchronous generators is cal-
culated in (6).

According to the study [25] the VAR cost during line
charging by line charging reactance also makes up an es-
sential part of the planning problem. So, CCch is included
as another VAR source in (7). Eq. (9) shows its additive
nature; it can be considered as a split objective function
in place of a multi-objective one. A better perception of
the objective function can be obtained from Table 1.
Usually the load flow balances in (10) and (11) are rep-

resented as the equality constraints. The inequality con-
straint (12) represents the upper-lower limits of voltage
magnitude in all buses, while constraints (13) and (14)
show the limits of VAR generation of generators and
compensators respectively. The transformer tap-setting
constraint is shown in (15).

PGi−PDi−V i

Xnb
j¼1

V j Gij cos δi−δ j
� �þ Bij sin δi−δ j

� �� �
¼ 0 i∈Nb

ð10Þ

QGi−QDi−V i

Xnb
j¼1

V j Gij sin δi−δ j
� �

−Bij cos δi−δ j
� �� � ¼ 0 i ∈Nb

ð11Þ
Vmin

i ≤V i≤V
max
i i∈Nb ð12Þ

Qmin
Gi ≤QGi≤Q

max
Gi i∈Ng ð13Þ

Qmin
ci ≤Qci≤Q

max
ci i∈Nc ð14Þ

tapmin
i ≤ tapi≤ tap

max
i i ¼ Ntap ð15Þ

3 Proposed methodology
From previous sections it is evident that RPP is difficult
to solve directly. Also the problem formulation is a mix-
ture of non-linear equations for which global optimized
set of controlling parameters cannot be achieved by only
implementing a conventional optimization approach.
Thus, the solution of RPP is obtained by the following
sub-strategies.

3.1 Detection of weak nodes
Optimal placement of VAR compensators is an import-
ant task for power system planners, both for operational
and economic aspects. So this paper initially detects the
weak positions for the placement of shunt compensators
prior to the sizing of the devices. Three effective
methods viz. loss sensitivity analysis (LSA) [26], power
flow analysis (PFA) [27] and modal analysis (MA) [28]
are applied for the detection of weak nodes.

3.2 Modeling of static VAR compensator (SVC)
SVC is a combination of thyristor controlled reactors
and fixed capacitor banks. When connected parallel in
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line, the reactive current is drawn from the source and
the thyristor valves add or remove shunt connected re-
actors and capacitors. SVC injects VAR to a bus as: Qsvci

¼ BsvcV 2
i where Vi is the voltage magnitude and Bsvc is

the suceptance of the SVC connected at the ith bus. In
this work, SVC is installed in this manner:

for k ¼ 1 : nsvc
shunt pop svc kð Þð Þ ¼ sqrt −1ð Þ�svc value

end
ð16Þ

where nsvc and svc_value are the number of SVC units
and p.u susceptance value of the SVC unit respectively.
After incorporating SVC units, the bus admittance
matrix (Ybus), used for load flow analysis, is reformed as:

Y svc
bus ¼ Ybus þ

00:::::00
0Y svc::00
…………
00:::::00
00:::::00

2
66664

3
77775 ð17Þ

3.3 Loadability enhancement
Since the extent of RPP is wide, in a practical situation,
the power networks face different echelons of load, and
several transition states may occur under different load-
ing conditions [29]. So, the aim of multi-load level RPP
is to maintain a profile of minimum operating cost at
minimum transmission loss without any violations of
bus voltages. In this paper, loadability is formulated in
terms of a single-valued scalar parameter λ, whose value
is varied towards the maximum point, while the base
load condition is identified when λ = 1. Thereafter when
the load is increased rather than for λ to increase, the
generator and load bus power (active and reactive) are
updated as:

PGi ¼ λPG0i

PLi ¼ λPL0i

QLi ¼ λQL0i

8<
: ð18Þ

where PG0i, PL0i and QL0i are the initial (λ = 1) active and
reactive power at the ith bus, and their corresponding
modified values are PGi, PLi and QLi.

Table 1 Comprehensive representation of cost amalgamated split objective function

Contribution Models Contributors Parameters Security plan

CCrp Vi, Vj, yij Minimization followed by least energy loss

CCsvc Qsvc, Bsvc, Vi Minimization by removing installation problems

CCqg QG, aq, bq, cq, ng Minimization

CCch Vi, Vj, Nch, Qci-j, Qch Minimization
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3.4 Application of evolutionary algorithms
After addressing the technical aspects, some well-
established evolutionary algorithms such as PSO, DE, CSA
are used to search an optimal set of controlling parame-
ters prior to solving the previously stated objective func-
tion. In this work the hybrid optimization method is
adopted for the RPP problem. A unique hybridization be-
tween the crow search algorithm (CSA) and DE is simu-
lated on a standard power system for RPP purpose. Some
other algorithms are also applied to determine the opti-
mized set of controlling parameters. In a later section, the
hybridization is described briefly along with CSA and DE.

3.4.1 Reasons for designing hybridization using DE and CSA
It is known from [30] that, no single optimizer exists
which is able to determine a consistent solution to all glo-
bal optimization problems. Based on this concept several
attempts have been made on hybridization with core algo-
rithms (e.g., PSO, DE, GA, CSA etc.) to handle the com-
plexity in different engineering models. In many cases it is
seen that the core algorithms fail to solve the non-linear
complex problems after certain limitations. Thus, it is a
good practice to adapt hybrid algorithms for an optimal
result. In the hybridization method exploration and ex-
ploitation characteristics can be more effective when sep-
arate algorithms work simultaneously. It has already been
shown in the previous discussions that RPP is a non-linear
complex problem with different constraints and thus
hybridization between CSA and DE is adopted to enhance
the diversification and intensification of the controlling
parameters for reactive power planning purposes. The
adaptability of hybridization methods in power systems in
recent years is listed in Table 2.

3.4.2 Traditional DE [37]
DE is technically a stochastic population based evolutionary
algorithm. It uses three evolutionary operators viz. muta-
tion, crossover and selection in a cycle towards the vicinity
of an optimum individual solution from the randomly

generated initial population. At initialization, a target vector
(parents) Xi = (x1i, x2i,…xdi), i = 1,2,..,NP is randomly gener-
ated within user-defined limits of d variables.
In Mutation, for each individual Xi, a mutate vector,

Ui(t + 1) = (u1i(t + 1), u2i(t + 1),…, udi(t + 1)) is generated
as:

Ui t þ 1ð Þ ¼ Xr1 tð Þ þ F� Xr2 tðð Þ‐Xr3 tð Þ
rl≠r2≠r3≠i ¼ 1; 2;…;NP ð19Þ

In Crossover, DE performs a crossover operation on
parent and mutate vectors and thereafter a new trial vec-
tor (offspring) Vji(t + 1) is obtained as:

V jiðt þ 1Þ ¼ U jiðt þ 1Þ; i f randð0; 1Þ≤CR
Xji tð Þ; otherwise ð20Þ

In Selection, the generated trial vector Vi(t + 1) will be
compared with the parent vector Xi(t) based on better
fitness value, as:-

Xiðt þ 1Þ ¼ V iðt þ 1Þ; i f f ðV iðt þ 1ÞÞ≤ f ðXiðtÞÞ
Xi tð Þ; otherwise ð21Þ

3.4.3 Crow search algorithm [38]
The crow search algorithm is a population based
optimizer which is inspired by the intelligent behavior of
crows for finding, storing and retrieving their food. In
CSA, the individual position of every crow represents a
possible solution of an optimization problem. At
initialization the position vector of crows is represented in

a string by Xi;iter ¼ ½xi;iter1 ; xi;iter2 ;…; xi;iterd � -where iter = 1,2,
…, itermax. Due to intelligence, each crow can memorize
their best food storing places, and the memory locations

of crow i, Mi;iter ¼ ½mi;iter
1 ;mi;iter

2 ;…;mi;iter
d � indicate the

best food locations of that particular crow. In every iter-
ation crow i also moves randomly to find the better
sources of food (hidden places of other crows) by

Table 2 Different hybridization methods

Year Reference Hybrid Algorithm Reason for implementation

2017 [31] Chaotic Artificial Bee Colony Differential
Evolution (CABC-DE) algorithm

To solve reactive power optimization and minimize the searching time for the
global solution.

2020 [32] Hybrid MGWO-SCA-CSA To reduce the overall generation cost of micro-grid system with the help of opti-
mal controlling parameters.

2017 [33] Hybrid of modified PSO and GA To solve non-linear optimal power flow problem in power system by enhancing
the primary population set generation procedure of the variables.

2020 [34] Hybrid PSODE To determine the optimal solution of RPP in power transmission system.

2013 [35] Hybrid PSO To improve movements of particles and avoid local optimum solution subjected
to achieve economic benefits in community micro-grid operation.

2020 [36] Hybrid Symbiotic Differential Evolution Moth-
flame Optimization (HSDE-MFO) algorithm

To obtain optimal parameters of photovoltaic models depending upon
measured current-voltage data of photovoltaic systems for the reliable operation
of the system.
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following the randomly selected jth crow and then acquires
the best hiding place (Mj,iter) corresponding to crow j.
In accordance with some of the possibilities, the next pos-

ition and hidden place (memory) of crow i is determined by:

Xi;iterþ1 ¼ Xi;iter þ rand � fli;iter � Mj;iter−Xi;iter
� �

if r j≥AP
a random position otherwise

�

ð22Þ

Mi;iterþ1 ¼ Xi;iterþ1 if f Xi;iterþ1
� �

is better than f Mi;iter
� �

Mi;iter otherwise

�

ð23Þ

3.4.4 Hybrid DECSA
It is seen from (19) and (20) that CR and F have a great
impact on DE. In other words, crossover and mutation are
the dominant operators, and thus, CR and F can be varied
over a certain range in searching space. Also in CSA,
memories of hidden food places play an important role for
new search spaces. In hybrid DECSA, after mutation and
crossover of the initial population a swarm set is generated
using (19), (20) and (21). This elicited swarm is used as
the best memory of crows to determine the next position
of the crows using (22) in a cyclic process. A pseudo code
of DECSA is given in algorithm 1.

Fig. 1 String representation of population vector

Table 3 Details of benchmark-test-functions [39]

Benchmarks Range Functions Type GOV

Sphere [− 100, 100]
f ðuÞ ¼Pd

i¼1
u2i

UM 0

Step [−100, 100]
f ðuÞ ¼Pd

i¼1
ðui þ 0:5Þ2 UM 0

Dejong’s [−1.28, 1.28]
f ðuÞ ¼Pd

i¼1
½iu4i þ randð0; 1Þ� UM 0

Ackley’s [−32, 32]
f ðuÞ ¼ −20 expð−0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
i¼1

u2i

s
Þ− expð1d

Pd
i¼1

cosð2πuiÞÞ þ 20þ e
MM 0

Griwank [−600, 600]
f ðuÞ ¼Pd

i¼1

u2i
4000−

Qd
i¼1

cosð uiffi
i

p Þ þ 1
MM 0

Schwefel’s [− 500, 500]
f ðuÞ ¼Pd

i¼1
½100ðxiþ1−x2i Þ2 þ ðxi−1Þ2�

MM 0

UM uni-modal, MM multi-modal, GOV global optimum value
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The population vector of the controlling parameters
related to RPP used in this paper is presented in Fig. 1.
The numerical efficiency of DECSA is explored by

solving classical benchmark functions. The details of
these functions are given in Table 3 and the results
of the comparison of different optimization tech-
niques correspond to benchmark functions are shown
in Table 4. A complete flow is shown in Fig. 2 in
section IV.
It can be concluded from the convergence graphs of

benchmark functions; in Figs. 3 and 4 that DECSA con-
verges faster than DE and CSA. Also, it is an effort to
measure the stability of hybrid DECSA to minimize the
optimization problems.

4 Results and discussion
The proposed work is tested using MATLAB_2013a
on a PC with a 3 GHz processor. The weak nodes/
buses are shown in Table 4. The weak nodes/ buses
for the two Indian power networks are shown in
Table 5.

4.1 System 1: Indian 62-bus network
This system is structured with 62 electrical buses, 89
lines, 18 generators and 11 OL TC. The Indian 62-bus
network information obtained from the literature is
shown in Table 6.
Initially, PL and OCtotal are 77.62MW and 4.0844 ×

107 $ without RPP. Table 7 displays the numerical values
in terms of PL and OCtotal obtained from different evolu-
tionary algorithms when the positions for SVC place-
ment are determined by LSA, power flow analysis and
MA, respectively. It is seen that hybrid DECSA and LSA
co-operatively produce minimum PL and total oper-
ational cost (O.C) of 0.7057 p.u and 3.7080 × 107 $,
respectively.
The previous section has shown that the scaling

factor F and cross-over ratio CR have a great impact
on the DE algorithm. To comprehend the effect of

controlling parameters, as tabulated in Table 7, on
OCtotal 30 individual runs are performed with 1000 it-
erations while these two parameters are varied from
0.1 to 0.9. From Table 7 it is seen that OCtotal re-
duces to 3.7080 × 107 $ at CR = 0.7 and F = 0.6 while
the population size is forty.
Table 8 shows the numerical values in terms of PL

and OCtotal obtained from PSO, DE, DECSA etc.
while buses for SVC placement are determined from
previously mentioned analysis. It is observed that the
minimum PL and total OC are 0.7057 p.u and
3.7080 × 107 $, respectively. From Table 9, the effect
of load alteration on PL and O.C on the 62-bus
system can be noted. System1 is able to transmit
power up to 130% loading under the proposed ar-
rangement. The reduction in PL is up to 9.58% and
O.C 1.4916 × 107 with respect to no planning on the
system. At 110%, 120% and 130% loading levels the
power losses are minimized to 1.2209 p.u., 1.9605 p.u.
and 3.1327 p.u respectively. After 130% loading the
system collapses because of the violations of system
constraints.
Figure 5 draws the convergence performance of the

evolutionary algorithms while weak positions are de-
cided according to LSA. From these characteristics it is
seen that the objective function value converges more
evenly for the DECSA based strategy than PSO, DE,
CSA, PSODE and PSOCSA.
Previous studies have proved that SVC has a great

impact on the transmission system. The bar graphs in
Fig. 6 show the relative contribution of VAR through
SVC into System 1. According to the conditions of
RPP, the bus voltage must lie within predefined voltage
limits. Figure 7 validates the previous statement while
weak bus voltages are within the dotted range. The op-
timal values of the controlling parameters, responsible
for the RPP problem are tabulated in Table 10. It is also
noteworthy, from the table that all the optimal control-
ling parameters are within permissible limits.

Table 4 Comparison of optimization results obtained for the benchmark functions

Algorithm Sphere Step Dejong’s

Mean Std Mean Std Mean Std

DE [40] 8.2E−14 5.9E−14 0 0 0.00463 0.0012

CSA[studied] 0.0397 1.8448E-04 0.0391 2.9843E-04 0.0018 1.0877E-04

DECSA[proposed] 0.0113 9.9770E-05 0.0395 5.9997E-05 0.0014 2.0786E-04

Algorithm Ackley’s Griwank Schwefel’s

Mean Std Mean Std Mean Std

DE [40] 69.2 38.8 0 0 0 0

CSA[studied] 0.0230 9.2361E-05 0.0496 3.9056E-04 −7.8924E03 62.22

DECSA[proposed] 0.0113 5.2856E-05 0.0393 8.0515E-04 −8.332E03 255.33
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Fig. 2 Flow chart of proposed strategy for VAR Planning
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Table 11 represents the frequency of attaining mini-
mum loss within different ranges for System 1 from
30 independent trials. It can be seen that hybrid
DECSA is the most robust of all the studied methods
as it touches the minimum PL 26 times out of the
total 30. Figure 8 shows the bus voltages (V) after
RPP at different load levels. This indicates that the
voltages lie near to their permissible ranges except
buses 19 and 18 (V19, V18) at 110% loading.

4.2 System 2: Indian 191 bus network
The Indian 191-bus system is structured with 191
electrical buses, 255 lines, 19 generators, 55 OLTC,
and the network information obtained from the litera-
ture is shown in Table 6. Initially, without RPP, PL

and its operating cost are 93.70 MW and 4.9284 ×
107$, respectively.
Table 12 shows the influence of cross-over ratio as

well as mutation factor on hybrid DECSA. It can be seen
that the operating costs are changed accordingly by
changing CR and F. It is found that the minimum oper-
ating is 4.673 × 107 $ at CR = 0.8 and F = 0.6.
Methods of weak bus detection have a great impact

directly on PL and system operating cost which is
reflected in Table 13. Similar to System 1, loss sensitivity
analysis method provides a relatively better solution than
others in the case of System 2. A pictorial representation
of the convergence curve of operating cost, obtained
from every optimization techniques, is shown in Fig. 9.
The weak bus voltages shown in Fig. 10 also indicate
that they are all within the dotted range.

Fig. 3 Convergence characteristics of Uni-modal functions
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The performance of DECSA is judged over a num-
ber of trials. Table 14 shows the convergence recur-
rence of minimum active power loss in the case of
system 2. Here different ranges of possible solutions
are decided for all the algorithms. It can be seen that

DECSA provides the minimum PL 22 times in 30
trials.
Unlike System1, System 2 operates up to 110% loading

in proposed planning strategy. When the load factor is
increased to 110% the real power loss and O.C are
0.9603 p.u and 5.0512 × 107 $ respectively before RPP.
Table 15 shows the effect of SVC positions on PL and
O.C during load change.
From Fig. 11, it is seen that the bus voltages are not in

the pre-specified range under 110% loading. When the λ
value is high the fluctuation of bus voltage is more prom-
inent in System 2. So it can be concluded that system volt-
age stability is very affected by λ under this proposed
approach. The list of symbols is given in appendix (7.1).

Fig. 4 Convergence characteristics of Multi-modal functions

Table 5 Position of weak nodes/ buses for practical power
networks

Name of the bus
detection
techniques

Position of weak nodes at

Indian 62-bus Indian 191-bus

Loss sensitivity analysis 6, 44, 36, 10 52, 51, 50, 155, 87

Power flow analysis 10, 39, 6, 26 53, 48, 60, 52, 26

Modal analysis 24, 45, 59, 44 38, 63, 41, 99, 106
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5 Statistical analysis of test results
To judge the robustness of the proposed algorithm
subjected to RPP, the Wilcoxon signed rank test [44]
is performed on a sample solution set. If probability
(p-value) obtained is below 0.05, it is considered to
be proper evidence against the null hypothesis. It is
also well known that the robustness of any algorithm
can be established if it can characterized with statis-
tical significance by making sufficient proof against
the null hypothesis. Along with maximum, mini-
mum, average and standard deviation (std) values

the p-values calculated using this test are tabulated
in Table 16.
In this paper, only the p-value of DECSA is given

since it produces less operating cost with respect to
the other six methods when subjected to RPP on
practical networks. It is seen from Table 16 that the
p-value in every system is less than the desired value
of 0.05 which is in favor of statistical significance of
the test results. Also, the standard deviation values
for the test systems using the proposed algorithm
are very low which indicates least deviation of the
results in comparison to their mean values. Thus, it
proves the robustness of the proposed algorithm in
RPP.
Figures 12 and 13 represent the box plots of operating

cost with different optimization techniques applied in
the Indian 62-bus and 191-bus network respectively.
These box-plots exhibit the distribution of quantitative
data in a way that facilitates comparisons of OCtotal from
PSO, DE, CSA, PSODE and PSOCSA. It can be seen that
the chances of obtaining minimum operating cost is very
high since the median from DECSA is closer to the
lower quartile.

6 Conclusion
This paper proposed a multi-load level RPP on Indian
power systems. On two different networks the pro-
posed planning strategy is capable of finding the opti-
mal solutions of the objective function. The
characteristic curve of hybrid DECSA smoothly con-
verges to the verge of the optimal front and provides
a better solution of the objective function than the
other five studied algorithms. The algorithm main-
tains the solutions in a stochastic way and pre-
specified ranges in the search space. All SVCs are
suitably placed with the locations determined using
the LSA method by removing technical and computa-
tional bottlenecks. It is also noted that the overall op-
erating costs of both systems are significantly reduced
by the proposed approach in comparison to the base
case scenario. Hence, it can be concluded that the
proposed approach is suited to economic power plan-
ning with technical operations.
When different loading conditions are introduced in

load flow analysis for both test systems it is noted
that for System1 the proposed approach yielded a sig-
nificant solution for RPP whereas for System 2 it fails
to provide a promising solution at higher load levels.
Hence it is necessary to introduce an improved plan-
ning strategy for load adjustment. It may be solved by
proper co-ordination of load flow parameters or by
incorporating high performance VAR compensators to
the system which may expand the horizon for future
research in RPP.

Table 6 Details of the practical test systems

System
Specifications

Test Systems

Indian 62-bus Indian 191-bus

Value Details Value Details

Total Nodes/
Buses

62 [41] 191 [42]

Total PV buses 18 [41] 19 [42]

Slack Bus 1 at bus 1 1 at bus 1

Load buses
(PQ) voltage
limits

43 0.95 to1.1 p.u 171 0.9 to1.1 p.u

Shunt
capacitors

2 at bus 11 and 41 10 at bus 54, 102, 156,
163, 164, 187, 188,
189, 190 and 191

OLTC 11 at line 3, 11, 12,
13, 14, 37, 38, 39,
82, 83 and 85

55 –

Total control
parameters

33 – 79 –

VAr limits of
generators

Qmin,
Qmax

[43] Qmin,
Qmax

[42]

Table 7 Control of F and CR on DECSA for Indian 62 Bus
practical system

F Crossover ratio, CR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Operating cost×107 ($)

0.1 3.844 3.868 3.820 3.811 3.844 3.811 3.820 3.851 3.807

0.2 3.842 3.747 3.775 3.902 3.848 3.802 3.775 3.844 3.842

0.3 3.830 3.835 3.787 3.836 3.809 3.784 3.815 3.833 3.794

0.4 3.834 3.813 3.821 3.870 3.834 3.809 3.807 3.866 3.788

0.5 3.830 3.800 3.833 3.907 3.852 3.749 3.821 3.817 3.852

0.6 3.834 3.800 3.826 3.900 3.804 3.850 3.7080 3.839 3.863

0.7 3.859 3.800 3.801 3.823 3.834 3.779 3.800 3.851 3.806

0.8 3.834 3.838 3.835 3.840 3.859 3.857 3.824 3.817 3.872

0.9 3.859 3.800 3.822 3.870 3.817 3.828 3.824 3.851 3.785
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Fig. 5 Convergence behavior of OC from
respective algorithms

Fig. 8 Bus voltage profile under different loading conditions

Fig. 7 Weak bus voltages after RPP Fig. 10 Weak bus voltages after RPP

Fig. 6 Amount of SVC contributions at Weak nodes

Fig. 9 Convergence behavior of OC from respective
algorithms in System 2
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Table 8 Optimal performance for Indian 62-bus practical system of three different methods

Methods LSA PFA MA

System real power
loss (in p.u)

Minimum Operating
cost (in $)

System real power
loss (in p.u)

Minimum Operating
cost (in $)

System real power
loss (in p.u)

Minimum Operating
cost (in $)

PSO 0.7240 3.80 × 107 0.7271 3.826 × 107 0.7286 3.83 × 107

DE 0.7217 3.79 × 107 0.7224 3.801 × 107 0.7242 3.811 × 107

CSA 0.7191 3.78 × 107 0.7194 3.785 × 107 0.7199 3.791 × 107

PSODE 0.7181 3.779 × 107 0.7184 3.78 × 107 0.7197 3.787 × 107

PSOCSA 0.7172 3.77 × 107 0.7175 3.775 × 107 0.7175 3.775 × 107

DECSA 0.7057 3.7080 × 107 0.7127 3.7479 × 107 0.7144 3.749 × 107

Table 9 Effect of SVC allocation on Indian 62-bus system at multi-load levels

Load SVC positions Reduction of PL in% Minimum O.C ($)

100% (λ = 1) 6, 44, 36, 10 9.08 3.7080 × 107

10, 39, 6, 26 8.18 3.7479 × 107

24, 45, 59, 44 7.96 3.749 × 107

110% 6, 44, 36, 10 8.09 5.8969 × 107

10, 39, 6, 26 7.57 5.9301 × 107

24, 45, 59, 44 7.26 5.9501 × 107

120% 6, 44, 36, 10 8.57 9.4197 × 107

10, 39, 6, 26 8.11 9.4678 × 107

24, 45, 59, 44 7.96 9.4828 × 107

130% 6, 44, 36, 10 9.58 1.4916 × 107

10, 39, 6, 26 8.98 1.4985 × 107

24, 45, 59, 44 8.73 1.5026 × 107

Table 10 Optimal system operating variables for System 1 with LSA and hybrid DECSA

Reactive power of Alternators (p.u) (*) VAr support by
SVC (p.u) (*)

OLTC Tap settings (#)

0 (2), 0 (4), 1.5 (5), 0 (8), 5 (17), 0 (23), 0 (25), 0 (32), 0 (33), 2
(34), 0.75 (37), 3 (49), 2 (50), 0 (51), 0 (52), 0 (54), 4 (57), 0 (58)

0.5 (4), 0.01 (44),
0.01 (36), 0.4329
(26)

0.89 (3), 1.08 (11), 0.9018 (12), 0.9331 (13), 1.0028 (14), 0.89
(37), 0.89 (38), 1.08 (39), 1.08 (82), 1.08 (83), 0.9246 (85)

*indicates bus number
#indicates line number

Table 11 Convergence recurrence of PL on Indian 62-bus system with 30 trials

Methods Range of active power loss, PL (p.u)

0.776–0.766 0.766–0.756 0.756–0.746 0.746–0.736 0.736–0.726 0.726–0.696

PSO 0 0 1 4 8 17

DE 0 0 2 1 10 17

CSA 0 0 0 4 8 18

PSODE 0 0 1 3 7 19

PSOCSA 0 0 0 3 6 21

DECSA 0 0 0 1 3 26
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Table 12 Control of F and CR on DECSA for the Indian 191-bus practical system

F CR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Operating cost×107 ($)

0.1 4.762 4.754 4.748 4.750 4.711 4.750 4.710 4.74 4.717

0.2 4.759 4.785 4.741 4.741 4.719 4.741 4.719 4.76 4.717

0.3 4.757 4.769 4.785 4.757 4.779 4.76 4.757 4.76 4.716

0.4 4.760 4.76 4.742 4.760 4.722 4.743 4.73 4.75 4.717

0.5 4.75 4.757 4.773 4.75 4.773 4.769 4.75 4.710 4.722

0.6 4.753 4.785 4.779 4.755 4.769 4.779 4.757 4.673 4.717

0.7 4.717 4.781 4.773 4.779 4.749 4.785 4.73 4.688 4.729

0.8 4.722 4.765 4.743 4.743 4.73 4.755 4.765 4.702 4.737

0.9 4.74 4.755 4.754 4.741 4.755 4.754 4.761 4.691 4.721

Table 13 Optimal performance for Indian 191-bus practical system of three different methods

Methods LSA PFA MA

System real power
loss (in p.u)

Minimum Operating
cost (in $)

System real power
loss (in p.u)

Minimum Operating
cost (in $)

System real power
loss (in p.u)

Minimum Operating
cost (in $)

PSO 0.9048 4.759 × 107 0.9051 4.760 × 107 0.9054 4.762 × 107

DE 0.9016 4.740 × 107 0.9037 4.751 × 107 0.9025 4.74 × 107

CSA 0.9004 4.730 × 107 0.9008 4.737 × 107 0.9044 4.757 × 107

PSODE 0.8971 4.719 × 107 0.8972 ×107 0.8976 4.721 × 107

PSOCSA 0.8954 4.710 × 107 0.8967 4.717 × 107 0.8970 4.718 × 107

DECSA 0.8884 4.673 × 107 0.8995 4.701 × 107 08990 4.716 × 107

Table 14 Convergence recurrence of PL on the Indian 191-bus system from 30 trials

Methods Range of power loss, PL (p.u)

0.937–0.927 0.927–0.917 0.917–0.907 0.907–0.890

PSO 1 5 9 15

DE 1 6 7 16

CSA 0 3 9 18

PSODE 0 4 8 18

PSOCSA 0 2 8 20

DECSA 0 1 7 22

Table 15 Comparison between SVC allocation and effects on System 2

Load level SVC positions Reduction of PL in % Minimum O.C ($)

100%
(λ = 1)

52, 51, 50, 155, 87 5.19 4.673 × 107

53, 48, 60, 52, 26 4.00 4.701 × 107

38, 63, 41, 99, 106 4.06 4.716 × 107

110%
(λ = 1.1)

52, 51, 50, 155, 87 2.59 4.9145 × 107

53, 48, 60, 52, 26 2.54 4.9171 × 107

38, 63, 41, 99, 106 2.5 4.9193 × 107
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Fig. 11 Bus voltage profile under different loading conditions

Fig. 12 Box plot for the System 1

Fig. 13 Box plot for the System 2

Table 16 Wilcoxon signed rank test for statistical analysis

Test System Methods Min. value ($) Mean value ($) Max. value ($) Standard deviation p-value

Indian 62-bus PSO 3.801 × 107 3.9574 × 107 4.192 × 107 0.1080 –

DE 3.790 × 107 3.9348 × 107 4.121 × 107 0.1207 –

CSA 3.781 × 107 3.8628 × 107 3.990 × 107 0.0730 –

PSODE 3.779 × 107 3.8582 × 107 3.989 × 107 0.0795 –

PSOCSA 3.770 × 107 3.8290 × 107 3.971 × 107 0.0764

DECSA 3.708 × 107 3.7507 × 107 3.907 × 107 0.0719 6.9824 × 10−7

Indian 191-bus PSO 4.759 × 107 4.7885 × 107 4.873 × 107 0.0203 –

DE 4.740 × 107 4.8142 × 107 4.934 × 107 0.0715 –

CSA 4.730 × 107 4.8004 × 107 4.930 × 107 0.0757 –

PSODE 4.719 × 107 4.7715 × 107 4.987 × 107 0.0630 –

PSOCSA 4.710 × 107 4.7576 × 107 4.880 × 107 0.0547 –

DECSA 4.673 × 107 4.6914 × 107 4.785 × 107 0.0302 1.0922 × 10−6
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7 Appendix
7.1 List of principal symbols

Load flow and cost related symbols

Vi, Vj ith and jth bus voltages

gk Line conductance

δi , δj ith and jth bus phase angles

PGi ; QGi Active and VAR generation at the ith bus

PDi ; QDi Active and VAR demand at the ith bus

Bij, Gij Susceptance and transfer conductance

Nch Line charging elements

Ych Admittance of line charging

Qch Total reactive power supplied during charging

ng Number of PV buses

nb Total number of buses

p.u Per unit

aq, bq, cq Generator reactive power cost co-efficient

CCrp Cost due to real power loss

CCsvc Cost associated with SVC

CCqg VAR generation cost of alternators

CCch Cost during line charging

Constraints and Ybus related symbols

VG Generator bus voltage

VG
max Maximum limit of generator voltage

VG
min Miniimum limit of generator voltage

QG Generated reactive power

QG
max High limit of generated reactive power

QG
min Low limit of generated reactive power

OLTC Open loop tap changing transformers

tap Tap settings of OLTC

tapmax Upper limit of tap setting

tapmin Lower limit of tap settings

m Number of lines

ntap Number of transformers

Yii Sending end admittance

Yjj Receiving end admittance

Vsec Transformer secondary voltage

Isec Transformer secondary current

Weak nodes and SVC related symbols

Qsvc Total reactive power supplied by SVC

Qsvc
max Maximumreactive power supplied by SVC

Qsvc
min Minimum reactive power supplied by SVC

nsvc Number of SVCs

pop Population

Bsvc Susceptance of SVCs

Bsvc,max Maximum limit of Bsvc

List of principal symbols (Continued)

Bsvc,min Minimum limit of Bsvc

ysvc Admittance of SVC

Algorithm related symbols

r1, r2 and r3 Randomly selected indices

NP Number of population

iter Iteration

fl Flight length

AP Awareness probability

F Mutation constant

CR Cross-over ratio
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