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Abstract

Based on the large-scale penetration of electric vehicles (EV) into the building cluster, a multi-objective optimal
strategy considering the coordinated dispatch of EV is proposed, for improving the safe and economical operation
problems of distribution network. The system power loss and node voltage excursion can be effectively reduced, by
taking measures of time-of-use (TOU) price mechanism bonded with the reactive compensation of energy storage
devices. Firstly, the coordinate charging/discharging load model for EV has been established, to obtain a narrowed
gap between load peak and valley. Next, a multi-objective optimization model of the distribution grid is also
defined, and the active power loss and node voltage fluctuation are chosen to be the objective function. For
improving the efficiency of optimization process, an advanced genetic algorithm associated with elite preservation
policy is used. Finally, reactive compensation capacity supplied by capacitor banks is dynamically determined
according to the varying building loads. The proposed strategy is demonstrated on the IEEE 33-node test case, and
the simulation results show that the power supply pressure can be obviously relieved by introducing the
coordinated charging/discharging behavior of EV; in the meantime, via reasonable planning of the compensation
capacitor, the remarkably lower active power loss and voltage excursion can be realized, ensuring the safe and
economical operation of the distribution system.

Keywords: Distribution network, Electric vehicles, Multi-objective optimization, Coordinated dispatch, Advanced
genetic algorithm

1 Introduction
With the continuous development of energy industry,
the utilization of renewable energy as an alternative for
fossil fuels has become a common sense of some coun-
tries [1]. Recently, the integrated energy system (IES) has
been greatly supported by the Chinese government and
turned into a research hotspot, since it benefits the inte-
gration of renewable energy, and the coordinated devel-
opment of energy system. As the terminal node of IES,
the building integrated energy system (BIES) provides
customers with flexible cascades of different local energy
resources, not only facilitating the environmentally

friendly, but also reducing the cost for consumers simul-
taneously [2, 3]. The consumers in the building can be
classified as two types: stationed institutions, and electric
vehicles (EV) owners. EV is an important part for the fu-
ture power system, for the more and more intense coup-
ling with BIES. However, with the large-scale
penetration of EV, operation of the distribution network
is enormously impacted by these random charging loads,
since problems such as harmonic pollution, three-phase
voltage imbalance, and aging of the transformers are in-
duced. Especially, the enlarged load peak-valley gap puts
forward higher requirements for the power system. The
node voltage excursion as well as the active power loss is
usually regarded as a crucial indicator reflecting the op-
eration state of the distribution system. The peak load
arisen from the aggregated charging behavior of EV
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owner probably leads to low voltage even collapse, con-
currently increased system loss. Hence, guiding mea-
sures for coordinated regulation should be taken, to
minimize the negative influences of EV while satisfying
the travel demands of customers.
As part of a vehicle to grid (V2G) system [4], EV also

can be regarded as controllable power resource, to
realize the bidirectional power flow between the building
and distribution system. Additionally, time-of-use
(TOU) price mechanism is an effective method for the
integrated demand side management, which creates an
economic incentive for users to adjust their charging/
discharging time. For example, residential customers
plug in their vehicles during off-peak hours. This helps
to reduce the potential of distribution transformer over-
loads, as well as stabilize the load fluctuation by valley
filling and peak shaving, thus balance the demand and
supply.
A voltage regulation model is proposed after regula-

tion of EV devices in [5], to reduce the voltage fluctu-
ation of the power system, while the active loss has not
been included in the optimization objective. Contras-
tively, the optimized model for distribution system re-
configuration is analyzed in [6], with the only
optimization function of power loss. Researches about
energy management and optimized operation of EV
based on microgrid are also explored in many papers [7,
8]. Reference [9] similarly establishes a coordinated
scheduling model of EV in response to TOU price. The
charging/discharging plan is generated with fixed peak
and valley periods, which maybe not suitable for the
time-varying loads.
In this paper, the standard IEEE 33-node system is

taken as an example, and measures of TOU price com-
bined with the reactive power compensation devices are
adopted. We select the tradeoff between power loss and
node voltage excursion as the optimal objective. Under
the designated simulation circumstance, the optimal
compensation capacity is dynamically solved by an im-
proved genetic algorithm. Through the peak shaving and
valley filling effects on the building load curve of coordi-
nated regulation of EV, the positive guiding role of TOU
price can be directly manifested. EV as controllable load
inside BIES can participate in energy management ef-
fectively. Besides, by statistical results comparison of
power loss and relative voltage excursion, the feasibility
of reactive power compensation approach is also
verified.

2 Modeling of coordinated dispatch for EV
In the presence of large-scale penetration of EV into
BIES, the load pressure, operating cost, and reliance on
distribution grid will be increased. Coordinated dispatch
facilitates to boost the utilization of EV and improve the

demand side flexibility. Due to the intrinsic advantages
such as operational safety and energy density, the lith-
ium ion batteries of 25 kWh are selected as the power
battery for EV [10–12], and the charging power main-
tains at 2.5 kW for a single vehicle. Concurrently, the
safety threshold of the state of charge (SOC) is set to be
[10%, 90%], hence it can be inferred that the charging
time could not be more than 8 h. As the traffic infra-
structure, supposing that power consumption for EV is
15 kWh per 100 km [13], and the theoretical endurance
mileage can be calculated as 133 km.

2.1 Structure of the BIES
BIES is mostly configured as an energy cascade
utilization system which enables free power flow
among different energy types. The building cluster
provides power to residents through external distribu-
tion power grid. As illustrated in Fig. 1, the demand
side is comprised of three kinds of loads (cooling
load, heating load, power load) and EV connections.
EV devices are not considered as traditional loads
since they can also act as a power supplier. For the
V2G application, EV charging devices not only pro-
vide customers with charging services, but also allow
the EV owners to sell excessive electricity to the
power system.

2.2 Aggregated charging of EV
Aggregated charging of EV could be explained as char-
ging behavior only according to customers’ travel needs
or living habits, without any guiding principle. As the
EV travel follows a probability density distribution repre-
sented in Fig. 2:

f d xð Þ ¼ 1

xσd
ffiffiffiffiffiffi
2π

p exp½− lnx−μdð Þ2
2σ2d

� ð1Þ

where μd = 3.20, σd = 0.88, x denotes the daily
mileage of EV (mostly lies between 32 and 97 km),
so a charged 25 kWh battery can provide sufficient

Fig. 1 Framework of BIES
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energy to meet daily driving requirements. Monte
Carlo random sampling can be used to predict the
charging power demand for a single EV during a
day. In this paper, 24 h in a day is divided into 96
periods, with sampling the state of EV per 15 min.
The charging expectation for a single vehicle is
shown in Fig. 3.

2.3 Coordinated dispatch of EV
The three-stage TOU price is designated to establish
a positive guidance for the charging/discharging
process of the EV owners. Depending on the load
change of the power grid, the corresponding electri-
city price level of each period is confirmed, to achieve
the peak shaving and valley filling. In the modeling
process of TOU price, minimizing the peak valley dif-
ference of the total loads in building cluster is chosen
as the optimization objective, and the application
background is specified as follows:

(1) the battery power meets the driving demand of the
EV owners, and there is no other power
consumption behavior beside the normal travel;

(2) user charge and discharge without exceeding the
safe range of the SOC, and 80% of the total owners
participate in the coordinated dispatch (λ = 0.8);

(3) pv, pp and pf are defined as the electricity price of
valley, peak and normal period respectively, then
the price model p(t) can be described as:

p tð Þ ¼
( pv t1≤ t≤ t2
pp t3≤ t≤ t4
pf else

ð2Þ

where t1-t4 represents the start and end moment of val-
ley period, as well as peak period, respectively;

(4) before charging/discharging, the user can query
the current battery status of the EV and
independently select the charging/discharging
time. The parameters tsc, tc, tsd, td are defined as
follows:

tsc, tsd -the start moment for users to charge/discharge;
.
tc, td -duration of charging/discharge process.
Users participating in the coordinated dispatch can se-

lect tsc or tsd according to Eqs. (3) and (4):

tsc ¼
(
t1 þ randc� t2−tcð Þ 0≤ tc≤ t2 −t1
t1 else

ð3Þ

tsd ¼
(
t3 þ randd � t4−tdð Þ 0≤ td ≤ t4 −t3
t3 else

ð4Þ

where randc and randd are random numbers in [0,
1]. It can be known that for the TOU price model,
parameters t1-t4 determine the peak and valley areas,
and consequent daily load characteristics. Hence, they
are key factors for optimal control of the distribution
network.

3 Modeling of distribution grid and var
compensator
The guiding ideology for the distribution network
optimization can be concluded as follows: on the prem-
ise that the parameters such as branches and loads are
known, and various constraints are satisfied, dynamically
adjust the output of the pre-set capacitor bank to
optimize the comprehensive indices of active power loss
and voltage excursion. Finally, the economical and safe
operation of the distribution power system can be
achieved.

3.1 Objective function
The optimization objective function comprises two im-
portant issues: active power loss and voltage excursion
of the distribution system.

Fig. 2 Probability of driving distance during 1 day

Fig. 3 Original charging requirement for a single EV
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3.1.1 Active power loss
The first objective is the minimization of the total active
power loss of the distribution network, which can be
mathematically modeled as Eq. (5):

min f 1 ¼

Xn
i¼1

Xn
j¼1

PLij

Xn
i¼1

Xn
j¼1

P
0
Lij

ð5Þ

where P’Lij、PLij respectively denote the active power
loss of the branch (i, j) before and after
optimization.

3.1.2 Voltage excursion
Node voltage is an important indicator reflecting
the security and service quality. To avoid all the
voltages moving toward their maximum limits after
optimization, the deviation of voltage from the
rated value is chosen as an objective function, that
is:

min f 2 ¼

Xn
j¼1

U j−U jN
� �

Xn
j¼1

U
0
j−U jN

� � ð6Þ

where U’
j、Uj、UjN respectively represent the actual

voltage of the node j before and after optimization, and
the rated voltage of the node j.
Combining the above two indicators, the objective

function can be expressed as:

minF ¼ λ1

Xn
i¼1

Xn
j¼1

PLij

Xn
i¼1

Xn
j¼1

P
0
Lij

þ λ2

Xn
j¼1

U j−U jN
� �

Xn
j¼1

U
0
j−U jN

� �

þ μ
Xn
j¼1

ΔU j

U j max−U j min

� �2

ð7Þ

where λ1 and λ2 are the weight coefficients for the
two optimization objectives (λ1 = λ2 = 0.5). The penalty
function is used to deal with the node voltage out-of-
limit problem,Ujmin and Ujmax are the minimum and
maximum voltage values of the node j; while μ indi-
cates the penalty factor (μ = 1000), and ΔUj is defined
as (8):

ΔU j ¼
(U j−U j max U j > U j max

0 U j min≤U j≤U j max

U j min−U j U j < U j min

ð8Þ

3.2 Constraints
The basic constraints of distribution power system
optimization mainly include equality constraints (power
flow) and inequality constraints as follows:

A. SOC of lithium battery constraint:

SOCmin≤SOC≤SOCmax ð9Þ
where SOCmin and SOCmax are the safety threshold
values of SOC, which are 10% and 90% respectively.

B. compensation capacity constraint:

0≤C j ¼ k jCjN ≤C j max ð10Þ
where Cj and Cjmax illustrate the output capacity of the
capacitor bank installed on the node j, and its maximum
capacity respectively; CjN is the capacity of a single cap-
acitor included in the capacitor bank; kj is the number of
single capacitors on the node j.

3.3 Algorithm
The purpose of multi-objective optimization is to deter-
mine a set of Pareto solutions, which compromise each
optimization objective. Herein, a novel genetic algorithm
based on elite preservation policy is introduced to solve
the optimization mathematical model established in 3.1
and 3.2. Principally, the crossover probability Pc and mu-
tation probability Pm are improved as follows [14]:

Pc ¼
( k1 Fmax−F 0ð Þ

Fmax−Favg
F 0≥ Favg

k2 F 0 < Favg

ð11Þ

Pm ¼
( k3 Fmax−F 00ð Þ

Fmax−Favg
F 00≥ Favg

k4 F 00 < Favg

ð12Þ

where k1-k4 are constant, which are set to be
0.5、0.9、0.02 and 0.05; while Favg、Fmax、F′ and
F″ respectively demonstrate the average and max-
imum fitness value of individuals, the better fitness
of the two crossover individuals, and the fitness of
the mutation individuals. By improving Pc and Pm, it
helps to duplicate the good individuals and elimin-
ate the bad solutions. In order to improve the cal-
culation efficiency, the elite preservation policy is
taken into consideration. After the power flow cal-
culation of the initial population, 20% of the indi-
viduals with the best compromise effects of network
loss and voltage fluctuation are reproduced directly
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to the next generation, while rest individuals are
randomly selected by the roulette wheel method and
produced according to the crossover and mutation
operations. The flowchart of the algorithm is shown
in Fig. 4.

4 Results and discussion
The standard IEEE 33-node power distribution sys-
tem shown in Fig. 5 is tested for verification, and
its load information is detailed in reference [15].
The basic parameters of the network for the per-
unit system are 10 MVA and 12.66 kV. It is
assumed that the building loads are evenly distrib-
uted on these four nodes: 3, 10, 18, 32. Consider-
ing the time-varying characteristics of the daily
loads, a series of building load data including cool-
ing load, heating load and power load, whereas
without EV integration, for a certain day are col-
lected in Fig. 6 (original building loads). Distrib-
uted generator DG1 and DG2 are respectively
installed on the node 2 and 5, with the output of
1 + j0.484 MVA. The capacitor banks for compen-
sation are installed on the node 17 and 32, with
the maximum capacity of 1 Mvar. EV scale inside
the buildings connected to the distribution grid is
500, with the charge/ discharge power of 2.5 kW.
Furthermore, the convergence accuracy of power
flow calculation is 10− 4.

Based on the building load curve in Fig. 6, the op-
timized result under the coordinated dispatch of EV
is obtained, as depicted in Fig. 7. For comparison,
the aggregated EV charging result is also exhibited.
It can be observed that the load area between 17:
00–20:00 is intensified by the aggregated EV char-
ging behavior, which puts forward higher require-
ments for the power supply. The attempt of
coordinated charging/discharging regulation could
realize the function of load peak shaving and valley
filling, circumventing above problem. By introducing
the TOU price, which makes full use of the schedul-
ability of V2G, the load curve can be smoothed,
while guaranteeing the charging demand of EV
owners.
Concretely, the distribution system is most prone

to black out at about 19:00 for the original build-
ing load curve, with the peak load of 3715 kW.
However, this would be further increased to 4167
kW under the access of aggregated EV charging.
After coordinated regulation, the peak load can be
optimized to 3608 kW (decreased by 13.41%). Ac-
cordingly, voltages for all of the nodes are also cal-
culated, as demonstrated in Fig. 8. Supposing that
a voltage dip lower than 0.95 p.u. or a voltage
higher than 1.05 p.u. is deemed as voltage out-of-
limit, then it is discovered that under the EV
aggregated charging, the system voltage drops ser-
iously. Only 11 node voltages are better than the

Fig. 4 Flowchart of the developed genetic algorithm

Fig. 5 IEEE 33-node system

Fig. 6 Daily original building load curve
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lower bound, and the worst one of 0.834 p.u. oc-
curs on the node 32. In contrast, the system volt-
age is overall heightened on coordinated regulation
mode, and the voltage of the node 32 is raised up
to 0.846 p.u., close to its value when the distribu-
tion system operates with original building loads
(0.844 p.u.).
Moreover, through the power flow analysis,

Table 1 illustrates the statistical results of the two
indices for the system under different EV regulation
modes. It’s obvious that the integration of building
loads increases the power supply burden of distri-
bution system, since the problems such as power
consumption and voltage quality are more serious.
By the introduction of TOU mechanism, the coor-
dinated management of flexible loads inside the
buildings not only boosts the utilization of EV, but
conducive to the economical and safe operation of
the grid, consistent with the concept of energy con-
servation and emission reduction of modern power
system.
DG1 and DG2 separately connected to the node 2

and 5 can further support the system voltage. After
the DG input, 12 nodes exceed the voltage lower
limit, the smallest value is still on the node 32,

which is raised to 0.874 p.u. The relative voltage
excursion of each node totally adds up to 2.327
p.u., decreased by 22.92% compared to 3.019 p.u. of
the original building loads. Finally, by employing
the improved genetic algorithm analyzed in 3.3, the
optimal compensation capacities of the capacitor
banks on the node 17 and 32 are solved as 0.95
and 0.81 Mvar respectively. The risk of voltage out-
of-limit is effectively reduced after reactive compen-
sation, which can be testified by the node voltage
of 32 (0.914 p.u.). Based on the coordinated
dispatch of EV devices, Fig. 9 declares the node
voltages of the distribution system before and after
compensation, emphasizing an excellent effect of
voltage fluctuation suppression. After reactive com-
pensation by DG and capacitor banks, the total
voltage excursion is optimized to 1.591 p.u. (de-
creased by 47.3% compared to that of the original
building loads).
In addition, as shown in Table 2, when DG and

capacitor are not installed, the active power loss of
the system is 647.2 kW; which is reduced to 411.9
kW when DG is put into operation but capacitor
compensation is not available. After both of the DG
and capacitor banks are put into use, the system
loss is further decreased to 397.3 kW. Compared
with power consumption of 666.9 kW for the ori-
ginal building loads, the reduction achieves 2.95%,

Fig. 8 Voltage curves under two operation modes of EV
Fig. 9 Comparison results of node voltages before and after
reactive compensation

Fig. 7 Load curves under two regulation modes of EV

Table 1 Indices under different EV regulation modes

Regulation mode Relative voltage excursion
(p.u.)

Power loss
(kW)

Without building loads 1.701 202.6

With original building
loads

3.019 666.9

Aggregated charging of
EV

3.199 755.2

Coordinated dispatch of
EV

2.978 647.2
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38.2% and 40.4% respectively. Therefore, the rea-
sonable dispatch of EV weakens the burden of the
distribution network for power supply, concurrently
the multi-objective optimization approach also en-
sures the significant improvements of system power
loss and node voltage excursion, proving that the
proposed strategy in this paper could obtain out-
standing performance.
It’s worth to note that the response degree of the

EV users λ also has an impact on the optimal ef-
fects for the distribution network. For the demand
side, participating in regulation favors the economic
interest of customers. For the network, a higher λ
definitely corresponds to a weaker difference be-
tween load peak and valley. This is conducive to
improving both the initiative of users and security
of the distribution system.

5 Conclusions
In dependence on the basic principle of optimal control
for distribution network, considering the popularization of
EV devices in BIES, an optimization strategy is put for-
ward in this paper. The strategy combines the pricing
mechanism in the buildings and the dynamic compensa-
tion of the energy storage device, which is designed to bal-
ance the optimization between system power loss and
node voltage fluctuation. By simulation analysis and com-
parison on the MATLAB, the overall ability of the
optimization strategy is illustrated. Firstly, BIES provides
access for EV, enhancing more space for schedulable re-
source capacity. Next, introduction of EV coordinated
dispatch by the TOU price mechanism promotes their ini-
tiative and utilization, and alleviates the power supply de-
mand of the distribution network by load peak shaving
and valley filling. Finally, under the condition of basic con-
straints, the optimal solution of compensation plan by
capacitor banks can be determined through an improved
genetic algorithm. After scheduled charging/discharging
of EV and reactive compensation, the active power loss
and risk of node voltage out-of-limit are improved simul-
taneously, promoting the economical and safe operation
of the distribution network. This optimal strategy can be
extended to other cases, and has great significance for the
optimal management of power grid.
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