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Abstract

Photovoltaic (PV) systems are widely spread across MV and LV distribution systems and the penetration of PV
generation is solidly growing. Because of the uncertain nature of the solar energy resource, PV power forecasting
models are crucial in any energy management system for smart distribution networks. Although point forecasts can
suit many scopes, probabilistic forecasts add further flexibility to an energy management system and are
recommended to enable a wider range of decision making and optimization strategies. This paper proposes
methodology towards probabilistic PV power forecasting based on a Bayesian bootstrap quantile regression model,
in which a Bayesian bootstrap is applied to estimate the parameters of a quantile regression model. A novel
procedure is presented to optimize the extraction of the predictive quantiles from the bootstrapped estimation of
the related coefficients, raising the predictive ability of the final forecasts. Numerical experiments based on actual
data quantify an enhancement of the performance of up to 2.2% when compared to relevant benchmarks.
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1 Introduction
The recent growth in distributed Photovoltaic (PV)
power generation systems fosters the exploitation of re-
newable energy and adds further flexibility to electrical
distribution systems, which now experience a significant
amount of generation in close proximity to load, with
obvious advantages in terms of reduced line congestion
and losses. PV power is however nondeterministic, as it
strictly depends on weather and environmental condi-
tions [1]. This brings significant challenges for transmis-
sion and distribution system operators and for market
operators. They continually have to deal with local pro-
duction that may not respond coherently to day-ahead
prior generation programs [2]. The impact of such un-
certainty on the network operation is therefore severe.
For example, large margins of energy reserve are neces-
sary to be able to deal with the deviations from prior

generation programs, and the distributed energy re-
sources of smart grids must be managed under such un-
certainty [3]. In order to optimally accomplish such
tasks, forecasts of PV power for a specific time horizon
must be available up to few days before the actual energy
generation.
The relevant literature on PV power forecasting is

quite heterogeneous [4]. Most researchers and practi-
tioners use deterministic PV power forecasting, i.e., the
disposal of a single value that predicts the actual PV
power at a specific time horizon [5]. However, PV power
forecasting is best addressed within probabilistic frame-
works, because of the intrinsic randomness of the phys-
ical phenomena. Literature reviews and competition
surveys [5–8] indicate a varied state-of-the-art, although
the number of contributions devoted to probabilistic PV
power forecasting is much smaller than that in the de-
terministic framework. Considering that a single spot
value can always be extracted from probabilistic
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forecasts while the opposite is clearly unfeasible,
research and contributions in the latter are highly
recommended.
Probabilistic PV power forecasting systems range from

pure statistical models to hybrid physical-statistical
models. High-performance solutions are based on
Quantile Regression (QR) models [9–11], machine learn-
ing approaches (such as gradient boosting [12], quantile
regression forests [10, 13, 14] and k-nearest neighbors
[15]). It is worth noting that, although the analytic for-
mulation of QR models is much simpler than machine
learning approaches, QR predictions still are somehow
competitive in most cases.
Generally speaking, the integration of Numeric Weather

Predictions (NWPs) into PV power forecasting models is
quite mandatory to improve predictions, particularly for
large time horizons [6]. Usually several weather variables
are available to forecasters, and thus model selection (i.e.,
the selection of the most informative predictors for the
final model) is typically applied to discard uninformative
inputs. To further maximize the exploitation of the avail-
able input data, ensemble approaches [7] have been ap-
plied with success in probabilistic energy forecasting [10,
16–19]. These approaches are commonly divided into
boosting, stacking, and bagging. Boosting consists of
building a “strong” model by combining several weaker
ones, which are trained iteratively. Stacking consists of
combining the outcomes of several models which are
solved in parallel or in cascade, in order to form the final
prediction. Bagging consists of building the final predic-
tion as a combination of the output of the same model
trained multiple times, using input data resampled with
replacement (i.e., bootstrap aggregated) [7].
This paper provides a contribution to probabilistic

ensemble PV power forecasting within the bagging
framework, based on the interaction between a QR
model and a Bayesian bootstrap. A Bayesian bootstrap
is the Bayesian analogue for bootstrapping, originally
presented in [20]. Bayesian models have been applied
with success in probabilistic energy forecasting [16,
21–23], although applications of Bayesian bootstrap
are still very rare. Thus further contributions are
worthy of attention.
Like other bootstrapping techniques, the Bayesian

bootstrap can improve the probabilistic forecasts by
using resampled data with replacement, which allows
for differentiating the output predictions. In the fore-
casting system presented in this paper, the Bayesian
bootstrap works analytically to find the posterior dis-
tributions of the QR model parameters, thus differen-
tiating itself from the traditional bootstrap which
instead relies on random picks among the available
input data. In this paper, a procedure to extract an
optimal point from the posterior distributions of the

QR model parameters is specifically developed, and
this procedure is added to the forecasting system, in
order to generate the final PV power forecasts for the
target forecast horizon.
The proposal is validated using actual data collected at

a real PV installation in Switzerland and actual data
published in the framework of the Global Energy
Forecasting Competition 2014 [8]. Extensive numerical
experiments, based on these data and NWPs provided
by an external source [24], are presented in this paper.
Several related benchmarks are also presented to validate
the accuracy of the forecasts under comparative
analyses.
This paper is organized as follows. Section 2 pre-

sents the forecasting system and the analytic
models used in each stage of the system. Section 3
presents the benchmarks and the error indices used
to validate the proposal. Section 4 present the nu-
merical experiments, and the paper is concluded in
Section 5.

2 Methods
The proposed PV power forecasting system based on
Bayesian Bootstrap Quantile Regression (BBQR) is illus-
trated in Fig. 1. The inputs of the system are NWPs NW
and historical measured PV power data P. The proposed
forecasting system consists of three stages.
The first stage is model selection, i.e., the selection of

the most informative predictors among the available
pool of predictors. This is performed by evaluating the
performance of multiple QR models having different
combinations of predictors, and by picking the model
which returns the smallest error.
Inputs are therefore pooled in order to form predictor

data X (i.e., independent variables in the QR model)
which is informative for the PV power (i.e., the
dependent variable in the QR model). Data are then
partitioned into training datasets Ptra and Xtra (a 1 × T
vector and a T ×M matrix, respectively), and into
validation datasets Pval and Xval (a 1 ×V vector and a
V ×M matrix, respectively).
Training data thus contains T occurrences which are

used only to train models, whereas validation data con-
tains V occurrences for model selection to develop and
refine the forecasting system. M is the number of predic-
tors contemplated in the generic QR model, which
therefore has M + 1 parameters.
Multiple QR models are trained, and predictions for

the validation period are issued with each model. Since
predictions are given in terms of predictive quantiles,
the Pinball Score (PS) [25] is considered in order to
select the best model. In particular, the QR model
returning the smallest PS for the validation period is con-
sidered as the most skilled, and is selected as the underlying
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QR model for the remainder of the system. For nota-
tion, the underlying QR model selected in this first
stage of the system has M∗ predictors and M∗ + 1
parameters.
The second stage consists of applying Bayesian boot-

strapping over the selected underlying QR model, in
order to estimate the posterior distribution of the pa-
rameters of the QR model. Specifically, the Bayesian
bootstrap returns R samples extracted from each of the
M∗ + 1 posterior distributions of the M∗ + 1 parameters
of the QR model. As will be shown later, these samples
are extracted from a multivariate Dirichlet distribution.
A Monte Carlo sampling method then extracts R sam-

ples ( P̂
hαqi
h ) of predictive αq-quantiles of PV power for

the target horizon h.

The third and last stage consists of extracting a sin-

gle value P̂
hαqi�
h from the R samples of predictive

quantiles of PV power for each coverage, in order to

generate the prediction of PV power for the target

horizon. A procedure dedicated to this purpose, based

on the optimization of the sample τq-quantile of P̂
hαqi
h ,

is developed and presented in this paper. The entire

predictive distribution of the final probabilistic PV

power forecasts can be obtained by iteration for Q

predictive quantiles.
The models and the stages of the forecasting system

are discussed in the following sub-Sections.

Fig. 1 Schematic procedure of the forecasting system based on Bayesian bootstrap quantile regression
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2.1 Quantile regression modeling
A QR model links the target variable (i.e., the predict-

ive αq-quantile P̂
hαqi
h of PV power at the target time

horizon h) to predictors xh ¼ fx1h ;…; xMhg related to
the time horizon h but available at the forecast origin
h − k. The forecast lead time is indicated by k. This
paper focuses on day-ahead forecasting with hourly
time resolution, assuming that forecasts are issued at
midnight of day D-1 for the entire day D (i.e., k = 1,
…, 24), although the proposal can also be applied to
other short-term PV power forecasting frameworks.
Note that theoretically 24 models should be devel-
oped (i.e., one for each hour of the day), but since
the PV power production is deterministically zero
during the night, only the 16 models corresponding
to lead times k = 5, …, 20 are considered. In order to
lighten the notation in the entire paper, we will not
make reference to the forecast lead time k in the
symbols although the methodological section is re-
lated to a specific lead time k.
The link imposed by the generic QR model for the PV

power αq-quantile is:

P̂h
αqh i ¼ β̂

αqh i
0 þ

XM

m¼1
β̂

αqh i
m � xmh ; ð1Þ

where β̂
hαqi ¼ fβ̂hαqi0 ;…; β̂

hαqi
M g are the M + 1 estimated

values of model parameters βhαqi ¼ fβhαqi0 ;…; βhαqiM g .
Note that (1) is linear with the parameters, although
some predictors can be obtained as multiplicative terms
between two or more variables (this allows the introduc-
tion of interaction effects among variables [26]).
Parameters are estimated in the training step by min-

imizing an error score on known data (i.e., supervised
training). The PS fits this purpose well, since it can be
applied directly on predictive quantiles and, for this rea-
son, it is applied in this paper in order to evaluate the
accuracy of PV power forecasts. The minimization prob-
lem is:

β̂
αqh i ¼ argmin

β αqh i
PS Ptra; P̂

αqh i
tra

� �
; ð2Þ

where PSðPtra; P̂
hαqi
tra Þ is the PS of the T forecasts P̂

hαqi
tra is-

sued for the training period of length T, calculated with
respect to the actual occurrences of PV power in the
training set Ptra ¼ fPt1 ;…; PtT g.
Although it is not directly explained in (2), the fore-

casts P̂
hαqi
tra are obtained from (1), and thus they are func-

tions of βhαqi and are dependent on the T ×M matrix
Xtra which contains the corresponding predictors for the
training period. It is:

P̂
αqh i

tra ¼ f QR β αqh ijX tra

� �
; ð3Þ

and therefore (2) can be rewritten in compact form as:

β̂
αqh i ¼ G Ptra;X trað Þ; ð4Þ

where G(∙) is a function obtained by combining (2)
and (3).

2.2 First stage: model selection
In the first stage of the proposed forecasting system,
the optimal model is selected among a pool of candi-
dates, which differ in the predictors used to generate
the predictions. In this paper, NWPs and 1-day
lagged PV power, together with their coupled interac-
tions, form the pool of candidate predictors. The con-
sidered NWPs are: total cloud coverage, clear-sky
irradiance, total irradiance, total precipitation, pres-
sure and air temperature [24]. Two hypotheses are
added to reduce the search dimension for the optimal
model: i) if a coupled interaction is a predictor of the
model, the two individual variables are forced to
occur in the model; ii) only models containing NWPs
of total cloud coverage, clear-sky irradiance and total
irradiance are considered because of their recognized
importance in PV power forecasting.
The underlying QR model selected under these hy-

potheses is the one which minimizes the PS across the Q
quantile coverages, i.e., the same optimal combination of
M∗ predictors is selected for the Q considered quantile
coverages. To avoid overfitting, the minimum PS is eval-
uated on the validation dataset Pval ¼ fPv1 ;…; PvV g ,
which is not used for training the model.

2.3 Second stage: Bayesian bootstrap quantile regression
Like traditional bootstrapping techniques, the Bayes-
ian bootstrap can improve the probabilistic forecasts
by using resampled data with replacement, which al-
lows for differentiating the output predictions. The
Bayesian bootstrap is specifically applied on the
underlying QR model selected in the previous stage,
in order to evaluate the posterior distribution of the
M∗ + 1 parameters. As shown in the remainder of this
subsection, BBQR consists of extracting weights from
a Dirichlet distribution R times (once for each boot-
strap replicate), building R multinomial distributions
using the occurrences and the weights, sampling with
replacement from these R distributions and calculat-

ing β̂
hαqi

from (2)–(4) on the bootstrapped data.
Therefore, the posterior distribution of the QR model

parameters is given by R samples β̂
hαqi
1 ;…; β̂

hαqi
M�þ1 for
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each parameter, and from these samples it is eventu-

ally obtains the bagged samples P̂
hαqi
h of PV power.

To facilitate the presentation of the BBQR formula-
tion, a brief recap on traditional bootstrapping [27, 28] is
provided.

The T × (M∗ + 1) occurrence matrix Y tra¼½P 0
tra X tra� is

initially obtained from the transposed training set P
0
tra

and the corresponding T ×M∗ matrix Xtra. The n th row
vector ytn ¼ fPtn ; x1tn ;…; xM�

tn
g , taken from the occur-

rence matrix Ytra, contains the target variable and the
predictors at the time step tn. It may be viewed as an
item coming from some generic, unknown multinomial
distribution F(y), with T available realizations (i.e., past
occurrences) yt1 ;…; ytT .

As shown earlier, the estimated parameters β̂
hαqi

of the
QR model come from (4), and therefore they can be
viewed as a function of G[F(y)]:

β̂
αqh i ¼ G F yð Þ½ �: ð5Þ

In bootstrap (either traditional or Bayesian [20, 27,
28]), the unknown distribution F(y) is searched for
among distributions of the type FT(y):

FT yð Þ ¼
XT

n¼1
ωtn ∙δytn ; ð6Þ

where δytn is a degenerate probability measure for the
n th vector ytn of occurrences, and ωtn is an assigned
weight. For consistency, the weights must satisfy the fol-
lowing conditions:

XT

n¼1
ωtn ¼ 1;ωtn ≥0; ∀n ¼ 1;…;T : ð7Þ

In a traditional bootstrap, the function G[F(y)] is esti-

mated upon R distributions F h1i
T ðyÞ;…; F hRi

T ðyÞ. With ref-
erence to the generic r th replicate, the functional

G½F hri
T ðyÞ� is calculated using the weights ωhri ¼ fωhri

t1 ;…

;ωhri
tT g , that are obtained by a random extraction from

the multinomial distribution:

f Mul T ; 1=T ; 1=T ;…; 1=Tð Þ: ð8Þ
and normalizing by T.
The Bayesian bootstrap differs from the traditional

bootstrap since the bootstrapped weights ωhri
t1 ;…;ωhri

tT
are not obtained by random extraction from distribu-
tion (8). Instead, the vector ω ¼ fωt1 ;…;ωtT g is the
object of Bayesian analysis, which aims at evaluating a
posterior distribution p(ω| Ytra) of this vector of
weights, given occurrence data Ytra. A prior

distribution p(ω) should be imposed upon the param-
eters ω to start the Bayesian inference [20, 27, 28]. A
convenient choice is to select a Dirichlet distribution,
which is a conjugate prior for the multinomial distri-
bution of y [20, 27, 28]. In such a case, the posterior
distribution p(ω| Ytra) is itself a Dirichlet distribution,
fDir(1,…, 1; 1,…, 1) [20, 27]. This allows applying a
Monte Carlo sampling method to get the Bayesian

bootstrapped samples β̂
hαqi
1 ;…; β̂

hαqi
M�þ1 of the M∗ + 1 es-

timated parameters of the QR model. The steps are:

i) R multivariate samples ω 1 , …, ω R are
independently extracted from the Dirichlet
distribution fDir(1,…, 1; 1,…, 1);

ii) G½F h1i
T ðyÞ�;…;G½F hRi

T ðyÞ� are calculated applying
(2)–(4);

iii) R Bayesian bootstrapped samples β̂
hαqi
1 ;…; β̂

hαqi
M�þ1

for each of the M∗ + 1 parameters of the QR
model are obtained using (5). From these
samples, it obtains R samples of the predictive

αq-quantile P̂
hαqi
h of PV power by applying (1).

The set of these samples are indicated with P̂
hαqi
h .

2.4 Third stage: extraction of a single value from the
Bayesian bootstrapped predictive PV power

The R samples P̂
hαqi
h of the predictive αq-quantile of

PV power can be interpreted as probabilistic predic-
tions for the predictive quantile. Sample quantiles and
confidence intervals of the predictive αq-quantile of

PV power can therefore be estimated from P̂
hαqi
h .

Since it will be of use later in the paper, the generic

sample τq-quantile estimated from P̂
hαqi
h is denoted by

P̂
hαqihτq i
h .
Probabilistic PV power forecasts are usually given in

terms of predictive distribution or a set of predictive
quantiles at different coverage levels, and the redun-
dancy given by multiple samples for each quantile
level can lead to misinterpretation of the results in
practical utilization of forecasts. A dedicated proced-
ure is developed in this paper to reduce the redun-
dancy of the forecasts by extracting a single value
from the samples of the predictive αq-quantile of PV
power. This single value is treated as the final

predictive αq-quantile P̂
hαqi�
h of PV power returned by

BBQR. The procedure effectively exploits the
information contained in the available R samples, in
order to further improve the final probabilistic
forecasts.

The single value P̂
hαqi�
h is the sample quantile extracted
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from P̂
hαqi
h as:

P̂
αqh i�

h ¼ P̂
αqh i

τ�qh i
h ; ð9Þ

where the specific coverage τ�q of this sample quantile

is the object of an optimization problem aimed at min-
imizing the PS of the final forecasts calculated on the
validation set Pval, i.e.:

τ�q ¼ argmin
τq

PS Pval; P̂
αqh i τqh i

val

� �
: ð10Þ

Note that this procedure is made independent for each
quantile coverage α1, …, αQ, for simplicity. Therefore,
possible quantile crossing in the final PV power forecasts
is corrected by post-processing the results with simple
sorting in ascending order across the Q coverages.

3 Benchmarks and error indices
This section presents the benchmarks and the error in-
dices used to assess the validity of the proposal and to
compare the probabilistic forecasts.

3.1 Benchmarks
Five benchmarks are considered to provide a fair com-
parison of the results. They are listed below.

Simple QR (SQR): the first benchmark [10, 16] is
introduced to be used as a reference in which each
predictive quantile is directly provided as a single value,
rather than by passing through the bootstrap. This
allows assessing whether the bootstrap is effective or
not in improving forecasts. To provide a fair
comparison, the same model selection procedure
presented in Section 2.2 within the framework of the
proposed forecasting system based on BBQR is also
adopted for SQR.
Traditional Bootstrap QR (TBQR): the second
benchmark [29] is introduced in order to evaluate if the
Bayesian bootstrap is more effective than the traditional
bootstrap in increasing the skill of the final forecasts.
For fair comparison, the same QR model selection
procedure, the same Monte Carlo sampling method
and the same procedure to extract a single value from
the R samples, presented respectively in Sections 2.2,
2.3 and 2.4, are applied to TBQR.
Quantile Regression Neural Network (QRNN) and
Gradient Boosting Regression Tree (GBRT): the third
and fourth benchmarks of QRNN [30] and GBRT [31]
are introduced to provide independent references that
do not come from QR-based models.

QRNN is formulated to simultaneously predict several
PV power quantiles to reduce the quantile crossing ef-
fect [30]. The basic neural network architecture used to
develop QRNN is the multilayer perceptron with a single
hidden layer. Hyperparameter optimization is performed
through a validation procedure on the validation dataset
Pval, to maintain statistical fairness with the other
models. QRNN is implemented using the qrnn package
in R [32].
GBRT is developed individually for each considered

quantile, and the predictions are post-processed in a
sorting procedure to avoid quantile crossing. Also in this
case, the hyperparameter optimization is performed
through a validation procedure on the validation dataset
Pval, to maintain statistical fairness with the other
models. GBRT is implemented using the gbm package in
R [33].

Seasonal Persistence Model (SPM): the fifth benchmark
is based on the underlying daily periodicity of the PV
power pattern driven by the rotation of the Earth
around its own axis [16]. In practice, each predictive
quantile is the PV power observed the day before:

P̂
αqh i

h ¼ Ph − 24: ð11Þ
This benchmark is added in order to provide a naive,

unbiased reference for comparison.

3.2 Error indices
Two error indices are used to quantify the accuracy of
the forecasts. The first index is the abovementioned PS,
which is a strictly proper score [25] that simultaneously
addresses the reliability and the sharpness of forecasts
[16, 25]. Its formulation is:

PS Ph; P̂
αqh i

h

� �
¼ αq − I Ph; P̂

αqh i
h

� �� �
∙ Ph − P̂

αqh i
h

� �
;

ð12Þ

where the indicator function IðPh; P̂
hαqi
h Þ is:

I Ph; P̂
αqh i

h

� �
¼ 1 if Ph≤ P̂

αqh i
h

0 if Ph > P̂
αqh i

h

8<
: ð13Þ

A comprehensive PS can be obtained averaging
across multiple forecast issues (e.g., the V issues in
the validation set) and summing over the Q quantiles.
PS is negatively oriented, so a smaller PS indicates
better forecasts. The Normalized PS (NPS) is provided
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in our numerical experiments to get scale-
independent results. It is:

NPS ¼
PS Ph; P̂

αqh i
h

� �

Prated
; ð14Þ

where Prated is the rated power of the PV system.
The second error index is the Average Absolute

Coverage Error (AACE), and it addresses the reliabil-
ity of the forecasts, i.e., the correspondence between
the estimate and the nominal coverages of the pre-
dictive quantiles [34]. Because of its intrinsic proper-
ties, it can only be formulated for multiple forecast
issues. For sake of clarity it is referred in (16) to the
validation set (although it can be easily adapted to
other data sets). In such a case, the estimated αq-
coverage α̂q is:

α̂q ¼ 1
V
∙
XV

n¼1
I Pvn ; P̂

αqh i
vn

� �
; ð15Þ

and the Absolute Coverage Error (ACE) on the nom-
inal αq-quantile is:

ACE αqh i ¼ αq − α̂q
�� ��: ð16Þ

The AACE across the Q coverages can be obtained as
a percentage value as:

AACE% ¼ 100
Q

∙
XQ

q¼1
ACE αqh i: ð17Þ

The AACE is negatively oriented, so a smaller AACE
indicates more reliable forecasts.

4 Results and discussion
The proposed forecasting system is assessed using two
actual PV power datasets.
Dataset #1 consists of data collected at a PV installa-

tion within the ReIne smart grid laboratory in
Switzerland [35]. Data span February 1, 2016 to Novem-
ber 30, 2018, and are initially pre-processed to correct
potential outliers, missing and bad data, and to average
the measurements in order to obtain hourly PV power
data.
Dataset #2 consists of zone-1 data published in the

framework of the Global Energy Forecasting
Competition 2014 [8] at an unspecified location in
Australia, and data span April 1, 2012 to June 30,
2014. Since these data were already pre-processed by
the competition organizers and arranged with an

hourly resolution, no further processing is applied on
dataset #2.
NWPs are provided in both cases by the European

Centre for Medium-range Weather Forecast (ECMWF)
[24] for the locations at which the PV systems are in-
stalled, and for the same time intervals related to data-
sets #1 and #2. All the weather forecasts refer to the
midnight run, i.e., NWPs are available at 24:00 of day D-
1 for the entire day D, in order to suit the desired fore-
casting framework [24].
Data are normalized in the 0–1 range to accommodate

for the very different intervals spanned by the variables.
The normalized value ~zh of the occurrence of the generic
variable z at time h is:

~zh ¼ zh − zmin

zmax − zmin
; ð18Þ

where zmin and zmax are the minimum and maximum
values registered for the variable, respectively.
The available datasets are partitioned in three sub-

sets. Dataset #1 is split into a training set spanning
February 1, 2016 to December 31, 2017 (i.e., T =
16800), a validation set covering first 6 months of
2018 (i.e., V = 4344), and a test set only used to assess
the accuracy of forecasts, covering the remaining 5
months of 2018 (i.e., 3672 forecast issues). Similarly,
dataset #2 is split into a training set from April 1,
2012 to October 31, 2013 (i.e., T = 13896), a valid-
ation set covering the following 5 months (i.e., V =
3624), and a test set covering the remaining 3 months
of 2014 (i.e., 2184 forecast issues).
The number R of bootstrapped is searched for in the

range 1000–10,000, considering the size of the two data-
sets. Four tests with R = 1000, 2000, 5000, 10000 were
run, and the performances in these four cases were
checked on the validation datasets Pval. A good com-
promise was found by selecting R = 5000 for both data-
sets. 5000 is the value used eventually to predict the PV
power in the test periods.
Forecasts are issued for Q = 19 nominal quantile cover-

ages α1, …, α19 = 0.05, …, 0.95. All forecasts are devel-
oped in the R environment, exploiting packages
quantreg [36] and bayesboot [37], qrnn [32] and gbm
[33]. In the following subsections, the extensive results
for dataset #1 are presented, whereas the results for
dataset #2 are presented in a more compact form, to
avoid verbose presentation.

4.1 Results for dataset #1
The outcome of the first stage of the proposed
forecasting system determines the model selected for
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the specific PV system. For dataset #1, the selected
model is:

P̂
αqh i

h ¼ β̂
αqh i

0 þ β̂
αqh i

1 ∙tcch

þ β̂
αqh i

2 ∙tih þ β̂
αqh i

3 ∙csih

þþβ̂
αqh i

4 ∙Ph − 24

þ β̂
αqh i

5 ∙tcch∙tih

þþβ̂
αqh i

6 ∙tcch∙csih

þ β̂
αqh i

7 ∙tih∙Ph − 24; ð19Þ

where tcch, csih and tih are NWPs of total cloud cover-
age, clear-sky irradiance and total irradiance, respect-
ively. The number of predictors of the selected model is
therefore M∗ = 7.
The forecast results for the test set of dataset #1

are shown in Table 1 via NPS (summed across the
Q = 19 quantiles and averaged through the test set)
and AACE. BBQR returns a NPS smaller than SQR,
TBQR, QRNN, GBRT and SPM benchmarks by 2.2%,
0.6%, 5.4%, 1.4% and 51.0%, respectively. Bootstrap-
ping increases the accuracy of forecasts, since both
the bootstrapped methods (BBQR and TBQR)

outperform SQR, although the Bayesian-based pro-
cedure slightly outperforms the traditional bootstrap-
ping procedure in terms of NPS.
Further details on the skill of forecasts can be

evaluated from the results of the experiments. Fig-
ure 2 shows the NPS, averaged through the test set
of BBQR, SQR and TBQR forecasts for each nominal
quantile level. Figure 3 shows the NPS (summed
across the Q = 19 quantiles and averaged through the
test set) of BBQR, SQR and TBQR forecasts versus
the forecast lead time. The similar patterns illus-
trated in these two figures are determined by the
same underlying QR model used in all three fore-
casting methods. It can be determined that peak
NPS occurs for middle coverage levels, whereas the
NPS changes with the lead time for two reasons: i)
forecasts inevitably tend to lose accuracy as lead
time increases, and ii) the “bell-shaped” PV power

Table 1 Forecast results for the test set of dataset #1

Method NPS [−] AACE [%]

BBQR 0.2547 2.22

SQR 0.2604 5.41

TBQR 0.2562 2.38

QRNN 0.2692 5.08

GBRT 0.2583 5.72

SPM 0.5193 –

Fig. 2 NPS of probabilistic forecasts versus the nominal
quantile coverage for the test set of dataset #1

Fig. 3 NPS of probabilistic forecasts versus the forecast lead
time for the test set of dataset #1

Fig. 4 Reliability diagrams of the QR-based probabilistic
forecasts for the test set of dataset #1
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patterns have small errors in proximity to dawn and
dusk.
BBQR forecasts are also the most reliable, as the

AACE is reduced by 59%, 6.7%, 56.3% and 61.2%,
with respect to SQR, TBQR, QRNN and GBRT, re-
spectively. SPM AACE is not presented, since SPM
forecasts are the same for each quantile coverage.
To compare the probabilistic QR-based forecasts in
detail, Fig. 4 shows the reliability diagrams, outlining
the estimated coverages versus nominal, of BBQR,
SQR and TBQR. Both BBQR and TBQR show simi-
lar patterns, with slightly overestimated coverages in
the range 0.5 to 0.8. However, the SQR coverages
are overestimate for all nominal levels.
In order to provide a graphical interpretation of the

PV power forecasts versus time, Fig. 5 shows the
BBQR prediction intervals for 1 week of the test
period. Prediction intervals are given for rates 90%,
50% and 10%, and they are plotted together with the
actual PV power.

4.2 Results for dataset #2
The results for dataset #2 are presented in a more com-
pact form, to avoid duplication. Table 2 shows the NPS
and AACE for BBQR and the benchmarks. As seen,
BBQR returns an NPS that is smaller than the bench-
marks for this dataset, too. The respective reductions are
around 4.7%, 2.4%, 6.3%, 2.0% and 53.4%, compared to
SQR, TBQR, QRNN, GBRT and SPM. Bootstrapping is
again proved to increase the accuracy of forecasts since
both bootstrapped methods (BBQR and TBQR) outper-
form the SQR. The Bayesian-based procedure slightly
outperforms the traditional bootstrapping procedure in
terms of NPS.

The AACE of BBQR forecasts is again the smallest,
accounting for reductions of 41.3%, 7.7%, 30.4% and
34.9% with respect to SQR, TBQR, QRNN and GBRT,
respectively. Figure 6 shows the reliability diagrams of
the probabilistic QR-based forecasts. BBQR and
TBQR show similar patterns, with slightly overesti-
mated coverages in the range 0.5 to 0.8, whereas the
SQR coverages are underestimated for all nominal
levels.

5 Discussion
The results obtained in the experiments denote the
ability of BBQR to slightly increase the performance
of the probabilistic predictions. Compared to trad-
itional bootstrap approaches, the NPS is reduced in
the range from 0.6% to 2.4%, and the overall reliabil-
ity is slightly increased. The proposed method also
performs well when compared with the state-of-the-
art consolidated probabilistic models in energy fore-
casting, such as QRNN and GBRT.
These promising results indicate the applicability

of Bayesian bootstrap techniques for estimating the
parameters of different models, thus not limiting the

Fig. 5 BBQR prediction intervals during 1 week of the test set of dataset #1

Table 2 Forecast results for the test set of dataset #2

Method NPS [−] AACE [%]

BBQR 0.2364 2.50

SQR 0.2480 4.26

TBQR 0.2422 2.71

QRNN 0.2522 3.59

GBRT 0.2412 3.84

SPM 0.5078 –
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analysis to QR-based models, in order to consolidate
the technique in probabilistic energy forecasting.
Some limitations apply to the type of prior and pos-

terior distributions of the parameter. As shown in the
methodology section, although conjugate priors ease
the process of Bayesian bootstrap sampling, numerical
methods (e.g., Metropolis-Hastings or Gibbs sampling)
can be applied to draw samples from the posterior
distributions of parameters even if the prior is not
conjugate, thus allowing for generalizing the approach
under different assumptions.

6 Conclusions
This paper provides a new insight on bootstrapping
in energy forecasting. A novel forecasting system
based on Bayesian bootstrap is applied to day-ahead
prediction of PV power. A Bayesian bootstrap is used
to provide information regarding the parameters of an
underlying QR model, and a Monte Carlo sampling
method is specifically developed in order to generate
the final forecasts.
The proposed forecasting system is compared to sev-

eral benchmarks, to assess the efficacy of the Bayesian
bootstrap with respect to traditional bootstrap and
others not using a bootstrapping technique. Numerical
experiments based on actual PV power data and on
NWPs confirm that BBQR is a valid approach with
slightly increased accuracy and reliability of PV power
forecasts.
This paper opens new research perspectives in further

applications of Bayesian approaches and the Bayesian
bootstrap in probabilistic energy forecasting, and in the
development of techniques to extract final forecasts
from bootstrapped results.
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