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Abstract

With the rapid development of the smart grid and increasingly integrated communication networks, power grids
are facing serious cyber-security problems. This paper reviews existing studies on the impact of false data injection
attacks on power systems from three aspects. First, false data injection can adversely affect economic dispatch by
increasing the operational cost of the power system or causing sequential overloads and even outages. Second,
attackers can inject false data to the power system state estimator, and this will prevent the operators from
obtaining the true operating conditions of the system. Third, false data injection attacks can degrade the
distributed control of distributed generators or microgrids inducing a power imbalance between supply and
demand. This paper fully covers the potential vulnerabilities of power systems to cyber-attacks to help system
operators understand the system vulnerability and take effective countermeasures.
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1 Introduction

With their extensive incorporation of information and
communication technology, power systems are exposed
to cyber threats. By targeting the information exchange
process, malicious attackers can inject false data to cause
power outage, economic loss, and system instability.
False data injection (FDI) can also be employed to mask
existing power system faults. This will affect operator’s
visibility on the faults and prevent proper countermea-
sures from being taken.

For example, in 2015, the Ukraine power grid was
attacked and substation breakers were opened by mali-
cious entities [1]. To design proper protection measures
for the improvement of system resilience, it is necessary
to explore the way FDI affects the power system. Thus,
there has been a lot of research on the attacking mech-
anism and effect of FDI.

In general, the paths through which FDI adversely
affects a power system can be classified into three
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categories, i.e., the estimation of system states, the
generation of control commands, and the actuation of
control actions, as shown in Fig. 1. FDI can induce the
generation of inappropriate control commands by
directly targeting economic dispatch. In [2, 3], false load
data is injected into security-constrained economic
dispatch which causes the line flows to exceed their
overload tripping threshold, leading to line outage and
even cascade failure. In [4—6], economic dispatch is
intentionally affected to increase the operational cost or
to obtain illegal profit from power markets. In [7], the
potential risk of FDI attacks on economic dispatch is
investigated where the attackers do not have full know-
ledge of network information. FDI can also penetrate a
power system by attacking system state measurement
and estimation, and cause damage to the integrity of
power system state information. In [8], FDI is used as a
tool to attack the supervisory control and data acquisi-
tion (SCADA) system, while in [9], false data is injected
into the phasor measurement unit (PMU) to mislead the
control center. By doing this, cyber attackers can affect
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Fig. 1 Cyber-attacks on a power system

the operator’s visibility on the true operating condition
of the system, resulting in the failure of the operator to
take appropriate countermeasures. In [10, 11], FDI is
employed to induce arbitrary estimation errors of the
state estimator, whereas FDI is applied to power system
nonlinear state estimation in [12—15] and the corre-
sponding countermeasures are discussed. In addition,
FDI can modify the control input for the system, result-
ing in deteriorating power system stability. In [16], the
input signal for a follower distributed generator is cor-
rupted by FDI, causing the disagreement of a group of
distributed generators. In [17], FDI is used to induce a
synchronization problem for islanded microgrids, while
system breakers are controlled to trigger instability in
[18], and the gains of voltage control devices altered to
initiate transient instability in [19]. In [20], a malicious
attack is implemented through emulated inertia control
to cause instability of system frequency.

At present, investigation into the impact of FDI is
mainly based on the single-snapshot FDI model and/
or the steady-state power system model, while the re-
search considering the transient process of a power
system is not thorough and comprehensive. To avoid
being detected or reduce energy consumption during
the attack process, smart attackers may change the
injected data at every attack time instant. The use of
the steady-state power system model is also not
adequate to analyze the risk of FDI, as real power
systems are networked control systems. Even though
system state estimation and economic dispatch are
resilient to FDI, attackers can still disrupt power
system secure operation by attacking the automatic
generation control system. Accordingly, considering
FDI's dynamic characteristic and power system transi-
ent characteristic is of paramount importance to fully
reveal the risk of FDI and then design effective
countermeasures.

To unveil the risk of FDI in a comprehensive fashion,
this paper reviews the research on FDI attacks on
economic dispatch, state estimation, and power system
dynamic stability, as shown in Fig. 1.
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2 Attacks on economic dispatch
2.1 Overloads caused by FDI attack
In a real power system, generators are dispatched every
5-15min to minimize the operational cost. The load
data adopted for security-constrained economic dispatch
(SCED) is from the short-term load forecast, which uses
historical and/or real-time load measuring values as in-
put. False data which can pass the bad data detection
(BDD) can be deliberately injected to alter the load in-
formation for the SCED and to modify the enforcement
of branch flow limits, as shown in Fig. 2.

Let AD denote the injected data. The limits for line
flows imposed by the SCED can be represented by [4, 5]:

Prp; = Sg(KpP® - Kp(D + AD)) (1)
—r<Pgpr<r (2)

where Pgp; is the branch flow vector and D is the actual
bus load vector. Kp and Kp are the bus-generator and
bus-load incidence matrices, respectively. Sg is the gen-
eration shift factor matrix and r is the normal capacity
rating of the lines.

In addition, the true load used in the SCED is denoted
by D and the true branch flow is given as:

P =Sp(KpP® - KpD) = Pep; + SpKpAD (3)

Combining (1) and (3) shows that the true branch flow
P satisfies the constraint as:

—-r+ SgKpAD<P<r + SgKpAD (4)

Equation (4) reveals that the true line flow is greater
than its limits, i.e, |P|>r. In real-time operation, if a
generator follows the dispatch commands generated by
the SCED under a FDI attack, severe transmission
overloads may be induced, causing triggering actions of
protection devices.

To launch a practical FDI attack, the injected data AD
needs to satisfy the following constraints [6, 7]:

1"AD =0 (5)
FDI
Attacks
Power Grid %  SCADA Y, BDD

é: Compromised

SCED Solutions

Fig. 2 lllustration of FDI attacks on economic dispatch
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- 1D<AD<tD (6)

Equation (5) means that the sum of load changes is
zero to guarantee power balance, while (6) constrains
the magnitude of the FDI attack at a load bus. Such con-
straints for a FDI attack are commonly employed in the
existing literature.

The above FDI attack model reveals the potential risks
for safe power system operation, as blackouts in a power
grid are usually caused by overloads and outages [21,
22]. As described in [23], three successive transmission
line and transformer tripping were the main causes of
the 2003 Northeast Blackout and the 2011 Southwest
Blackout, respectively. Once an ensemble of critical lines
known as initial contingency (IC) is identified [24, 25],
attackers can deliberately induce this initial contingency
by using an FDI attack. Given the capability of the IC,
sequential outrages and even cascade failures can be
initiated, as illustrated in Fig. 3.

2.2 Increase of operational cost caused by FDI attack

Attackers can increase the operational cost of a power
system by interrupting the SCED and changing the
transmitted load data. The attack vector can be
optimized by maximizing the operational cost, which is
formulated as a bi-level linear programming problem as:

¢ = max chP +cbJ (7)
Subject to (5) and (6) (8)
r})}}n chP +ckJ (9)
Subject to1”P = 17(D - J) (10)
F = SpKpP - SpKp(D + AD - J) (11)
Ppin SP<Pax (12)
~frnax SF<fimax (13)
0<J<D+AD (14)

where ¢, and ¢, are the generation cost and load shed-
ding cost vector, respectively. F is the calculated line
flow vector containing false data, f,,,, is the branch flow
limit vector, and J is the load shedding vector. P is the
generator output power vector, and P,,;, and P,,,, are

i Attack model
. . . Maximize the
IC identification
effect
- [
* S
. ystem Trigger IC IC initiate .
Inject the |, operation with by overload % sequence ¥ C'f‘“ad'?g
false data . failure risk
false data its branches outages

Fig. 3 lllustration of cascading failures caused by FDI [3]
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the lower and upper bounds for the generator output,
respectively.

The upper level (7)—(8) shows that the false data AD is
obtained by maximizing the load shedding after SCED.
In the lower level (9)-(14), the operational cost is
minimized with the corrupted load data D+ AD by
considering the generator output power limits (12),
transmission line flow limits (13), and load shedding
limits (14).

Karush-Kuhn-Tucker (KKT) and dual based methods
are widely used to solve the abovementioned bi-level
optimization problem [4, 26]. The KKT-based approach
requires the introduction of additional binary variables
to form the so-called big-M constraints, reducing the
computing efficiency of the algorithm. As regards the
duality-based method, the bilinear terms of dual
variables and the corresponding primal variables are
involved, and thus the optimization problem is not easy
to solve.

An alternative for attackers to construct the attack
vector by using a fast approach is presented in [5]. In
order to increase the operational cost, the loading levels
of the branches in set () are maximized through false
data injection. The resultant optimization problem to
determine the false data AD is described by:

- SIKpAD
max » 8/ —max— (15)
AP zzg; "
Subject to constraints (5) - (6) (16)

where [ denotes the transmission line and S; is the /-th
row of Sg.

The objective function is to maximize the loading
levels of the transmission lines in set Q. §; =1 if the flow
of line [ is positive, and &= — 1 otherwise. The term -
SIKpAD denotes the incremental power flow through
line / caused by the injected false data AD.

The false data AD can be obtained by solving (15),
based on which the optimizing operational cost problem
(9) with constraints (10)—(14) can be easily solved. Since
the attack vector is determined by solving the linear
programming problem (15), the run time is significantly
reduced compared to the KKT-based approaches.

3 Attacks on power system state estimation

For a modern power system, many smart devices are
deployed to acquire the real-time data related to its
operation. By exploiting these measuring data, the
operators can monitor the system operation status and
take effective measures to mitigate potential risks.
However, the measurements need to be transmitted to
the control center over communication links, and, there-
fore, power systems face potential cyber-attacks because
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of the vulnerability of communication technologies. For
example, a malicious agent may inject false data to in-
duce the operators to make the wrong decision on the
system status.

3.1 FDI attack with complete network information
Measurements are used to estimate the system state and
because of the existence of measurement errors, opera-
tors predefine a threshold to detect bad data. If the
threshold is exceeded, the measurements are considered
to be bad data. Hence, if attackers want to launch a
successful attack by FDI, the injected false data has to
pass the bad data detection. Power system state estima-
tion can be expressed as [11]:

& = arg min|jz - Hx||, (17)
where x is the state vector and & is the estimated state
vector. z is the measurement state, H the Jacobian
matrix of the power system, and |-|l, the Euclidean
norm.

To detect the bad data, the residue r is defined as:

r = |lz - Hx|, (18)

The term on the right-hand side of (18) indicates the
difference between the measured and actual values. This
difference is caused by measurement errors and disrup-
tions. A threshold for r is pre-determined by the
operator, and data is considered to be bad if the thresh-
old is exceeded.

For illustration purposes, a power grid is divided into
regions A and N with a set of tie lines between them,
while the measurements in region A are assumed to
have been attacked by a malicious entity. The measure-
ment vector z is decomposed into z; and z,, where z;
contains all the measurements in the targeted region A
without the power flow measurements on the tie lines
and z, collects the rest of the measurements in region A.
Similarly, the state vector x is divided into x; and x,,
where x; collects all the buses in the targeted region A
without the boundary buses and x, contains the rest of
the buses.

To attack the measurements in region A, attackers
need to design an attack vector to pass the bad data
detection in state estimation. This means that the
false data injected by the attackers should prevent the
residual of the state estimation from exceeding its
threshold.

In the absence of the injected false data, the measure-
ment errors contribute to the residual. If the measure-
ments are noise-free, the residual is equal or close to
zero. In reality, measurement inaccuracy causes incon-
sistent measurements, leading to an increase of the re-
sidual. Less consistency of measurement implies a higher
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residual. Smart attackers may construct false data that
are consistent with the physical property of the power
system. Therefore, the false data z/1 designed by the at-
tackers is likely to follow Kirchhoff’s Current Law (KCL)
and Kirchhoff’s Voltage Law (KVL), given by:
le = H11x1 + lesz (19)
The measurements in the attack-free region are
unchanged.
The attacking mechanisms of FDI on power system
state estimation have been elucidated in [8-10, 12—15].

When the false data is not injected, the state estimation
equation is given by:

2] -1 R[]
V%) 0 H 22 562 (%)

where e; and e, are the measurement errors of z; and z,
respectively. It can be seen that z, is only a function of
x5. In the case of DC state estimation, H;;, Hy, and Hy,
are constant, while they are functions of the state vector

in AC state estimation.
When the false data is injected, measurement z; is re-

(20)

placed by the attack vector z’1 , and the corresponding

. / ’ T
measurement vector is denoted as z = [z, zo] . Then
the residual is represented by:

r= min”z/ —Hx/H2 (21)

To obtain a feasible estimate of the state vector «x'
o 1T

= [x1 &)

satisfied:

, the following constraint needs to be

Z, - (H11x1 +H129A62)

’ ’ -~
r st —Hx'H = .
2 Zz—H22x2

2
€1
€

0
€

= llell, <r=
2

@)

Equation (22) reflects the decrease of the overall re-
sidual as the false data is injected. This can be explained
by the fact that the false data injected in the attack re-
gion obey KCL and KVL, and hence have better
consistency than the original measurements. It should
be clarified that the decreased residual under FDI attack
does not necessarily imply that the false data is close to
the true value [11]. In fact, attackers can simultaneously
induce severe disruptions while maintaining a small re-
sidual by FDL

To construct the attack vector in (19), the line flows in
the attack region are computed by:
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py=Vig;- ViV, (gii cos(6; - 0;) + by sin(6; - 6’))
(23)
(24)

where V; is the voltage magnitude at bus i. b; and g are
the susceptance and conductance between line i-j, re-
spectively. p; and g; are the active and reactive power
flows between line i-j.

Since KCL is applicable in (19) for the non-boundary
buses in the attack region, the algebraic sum of the flows
of the lines connected to a bus equals the power injected
at this bus. For the boundary buses in the attack region,
parts of the lines linked to this bus belong to the non-
attack region (see Fig. 4). Hence, the resulting power
balance equations are expressed as:

P e Y00 @
Jj€Sia JjeSin

qﬁz%ﬁzfluzo (26)
JESiA JjE€Sin

ﬁij = Vtzgt] - Vlv/ (gl] cos (él - él) + bl] sin (él B él))

(27)

q,,j = - V?b,j - ViVj (gij sin(éi - é,) - bjj cos (a - 9,))
(28)

where p; and ¢; are the active and reactive power
injected into bus i. p;; and g;; are the active and reactive
power flows of line i-j out from the attack region.

From (27) and (28), we see that the measurements in
the non-attack region are not attacked. Thus, p;; and g;
in (25) and (26) are of the given values, which will
change the Jacobian matrix of the power injected into
the boundary buses.

i \

\

Attacking region
Fig. 4 A boundary bus in the attacking region
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Note that (17) results in the state variables on one
snapshot. To account for the dynamic behavior of FDI,
(17) can be easily reformulated as a summation of z - Hx
over T snapshots, and the resulting optimization prob-
lem can be solved in a similar way. The details can be
found in [27].

3.2 FDI attack with incomplete network information
Equation (19) indicates that the constructed attack vec-
tor z, depends on the estimates of voltage magnitudes
and phase angles of the boundary buses in the attack re-
gion. It also requires the attackers to have the topology
information of the whole power network as well as line
parameters [8—10, 12—15]. However, network informa-
tion of a power grid is confidential and the attackers are
likely to have difficulty in obtaining this. In addition,
there exist thousands of buses and lines in a modern
power system. This means that the attackers need to
deal with extensive information concerning network top-
ology. Therefore, the assumption that attackers are able
to acquire the estimated values from state estimation is
impractical.

To construct a practical attack model against state es-
timation, the above conditions are relaxed in [11], in
which the false data injection model requires only the
network information of the attack region (see Fig. 5) ra-
ther than that of the whole power network. In addition,
the attack vector in [11] does not directly rely on the es-
timates of phase angles but rather the angle differences
of the lines. The FDI attack model used in [11] is refor-
mulated by the following steps:

1) Substitute the measured voltages for the estimates
of voltage magnitudes at the boundary buses in the
attack region;

2) Replace the estimates of voltage magnitudes and
phase angles with the corresponding measurements
to determine the flows on the tie lines.

Attack Attack-free
region A region B

| |

|B . | Busj
us i
Tie lin

|Bus m . |

| Bus n

Fig. 5 A power system decomposed into attack and
attack-free regions
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By doing the above, the estimated state of the system
is no longer required in the design of the attack vector.

The phase angles at the boundary buses in the
attack region play an essential role in the implemen-
tation of the mentioned attack model. Even though
the measurements of phase angles can be accessed by
PMU, this would require the deployment of sufficient
PMUs to provide this information, and such solutions
can be hard to scale up. To successfully launch an
FDI attack on a power system without sufficient PMU
data, it is desirable for attackers to construct a more
practical attack model without requiring the measured
values of the phase angles. From the perspective of
the defender, it is also of paramount importance to
explore the possibility of attacking state estimation
using such an attack model.

According to (23) and (24), line flow in a power
system is computed using the angle difference of the
line. If the angle differences between lines are known,
the line flows can be determined. This means that
the actual phase angles at the boundary buses are not
required to determine the line flows, and the angle
differences of the line can be used to compute the
attack vector in (19) even in the absence of actual
bus phase angles. The following investigates how to
employ line angle differences instead of bus phase
angles to design the attack vector.

Equation (19) implies that phase angles at the bound-
ary buses are fixed to the estimates of the state estima-
tor. Accordingly, the angle differences between buses are
also fixed. Considering the actually estimated phase

angle at bus i to be 0;, the following expression holds:

éi_éj: (éi—l—a)—(é}-—l—a) (29)

Equation (29) shows that when the phase angles of
two boundary buses are changed by a, the correspond-
ing angle difference is unchanged. Thus, the phase
angles used for the calculation of the attack vector can
be obtained by the following steps [11]:

Step 1. Select an arbitrary value for a boundary bus;

Step 2. Choose the phase angles for the remaining
boundary buses based on the angle differences.

Due to the random value for the boundary bus, the
phase angles obtained by the steps above do not repre-
sent the actual ones. However, the angle differences are
the same as the actual ones, and thus the line flows are
unchanged. Therefore, there is no need for attackers to
acquire the actual values of the estimated phase angles
to construct the attack vector, and the only information
needed is the differences of the estimated phase angles.

Assuming there is a path k that links two neighboring
buses, as shown in Fig. 6, it can be proved that the fol-
lowing equation holds for a specified direction:
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Fig. 6 A path connecting two neighboring buses
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(30)

From (30), for the path {/ € S;} connecting bus b and 4,
the angle difference between the two buses can be com-
puted by summing the angle differences of lines in this
path. This means that attackers do not need to acquire
the actual values of estimated phase angles at the bound-
ary buses. To compute the angle difference without
knowledge of the actual phase angles, the following ap-
proximations are considered:

COS(Gi—ei) = 1, sin(@,- —01‘) = 6,'—9}', Vl' = Vj ~ 1

(31)
Substituting (31) into (27) yields
0;-0;
o~ — 32
Pjj P (32)
Thus, the angle difference can be computed as:
0; - 0; ~ xyp; (33)

Equation (33) shows that the line power measurement
can be employed to compute the angle difference, while
the error of the angle difference is partly caused by the
use of the approximations in (31). Therefore, the accur-
acy of the angle difference obtained by (33) depends on
the conditions under which (31) holds. It is known that
the difference reduces with the increase of the X/R ratio
of a line. Thus, to reduce the error induced by (31), an
optimal path k in the attack region is identified by maxi-
mizing the average X/R ratio of p; as [11]:

1 X

Pr = — o
Mk leSk Rl

(34)

As shown in (22), to avoid being detected by the bad
data detection, the overall residual with the injected false
data should be smaller than the predefined threshold.
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Therefore, the false data following KCL and KVL is
injected in the attack region, while the line flows are
computed by (23) and (24). The injected power at the
non-boundary bus is the sum of the flows over the lines
connected to this bus, whereas the injected power at the
boundary buses is obtained by (25) and (26). The pre-
sented algorithm to construct the attack vector can be
summarized as follows.
Step 1. Set initial values to the state vector as

0| |6
Vi | Vo
Step 2. Obtain the attack vector [p ¢ P Q]” using the
current state vector x = [0 V]%;
Step 3. Evaluate whether the injected power at a bus

and the active/reactive line flows are confined within
lower and upper bounds, as:

(35)

Pmin SPSPmax
~ Pmax <p Spmax
~ Gmax £gs 4 max

(36)

This can reduce the chance of being detected as the
operator can access the information of the flow distribu-
tion. If the conditions hold, it terminates; otherwise, it
goes to the next step.

Step 4. Compute the incremental Ax=[AO AV]” by
optimizing the objective function as:

10
min » 17, (37)
=1
Ap Hl H2
Aq H3 H4 AO
Subjectto | AP | = | Hs Hs [AV}
AQ H;, Hg
AV 0 1

Prin<P + AP + S1 — S2<Prax

~Pmax =P + AP +SS —S4S19max
~dmax<q + Aq + 85— S6Sqmax
Vmin<V 4+ AV 4+ 87 = Sg <V max

ebr, minSGe + GAQ + 59 - SIOSQhr‘ max

where the slack variable S, is non-negative, and H; = dp/
00, H,=0p/dV, H3=09q/08, H,=0q/dV, Hs=0P/d0,
Hg = 0P/0V, H; =0Q/d0, Hg = 0Q/dV. The expressions of
H,-H, are provided in [28], while the expressions of Hs-
Hg need to be determined. G represents the transition
matrix which transforms the phase angle vector into the
phase angle difference vector. For the boundary buses in
the attack region, using (26) leads to:
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éP;

50, (38)

= - Vi Z ( _gij sin@,-j + b[j COSGL‘]') V,

JjeSia

For the non-boundary buses in the attack region, the
non-zero entries can be determined using a similar way
to that shown in [28].

Step 5. Update the state vector as:

0 0 A6
)= [v]+ o)
and then go back to Step 2.
By using Step 1-5, attackers can attain an attack vec-
tor against power system state estimation. This method
can avoid bad data detection while requiring no infor-

mation on the network topology of the whole system
and phase angles at buses.

(39)

4 Attacks on power control system

The power control system plays a vital role in maintain-
ing power supply in response to customer demand. An
imbalance between supply and demand can cause system
frequency instability, threatening the operational security
of the power system. A central control scheme is com-
monly employed in traditional power systems, and the
scheme features a single control center which collects
information from and sends control commands to all
agents. However, such a central control architecture no
longer meets the need of current power systems. For ex-
ample, geographically dispersed distributed generators
are increasingly integrated into the power grid. These
are not suitable for coordination by central control be-
cause of the requirement of plug and plug operation [29,
30]. Central control is also not applicable to microgrid
operation, where distributed generators are required to
supply power in island mode [31]. Because of its reliabil-
ity, scalability, and flexibility, distributed control is pre-
ferred over central control [32-34]. However, in
distributed control, local controllers have access to local
information and neighbor information, and hence are
vulnerable to cyber-attack. A malicious entity can dis-
rupt data exchange among neighboring local controllers
by launching FDI attacks [16-20].

4.1 FDI attack on distributed generator

Considering a converter-based distributed generator i,
P; and P;,, are the active power output and the
maximal power, respectively. Using the d-gq transform-
ation, the d- and g- axis voltages can be computed by
Uy =U; and U, =0. Assuming the d- and g- axis cur-
rents are I; and I, respectively, the active power
output can be obtained by:
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Py = Ugidgi + Uyl = Uil y; (40)
If the power converter is controlled by a grid-feeding
scheme [31], I; should converge to its reference value
Ly; rerin a sampling period of T. In the k™ iteration, Li; ref
can be determined by
Idi_ref(k) = Pi, maxai(k)/ui(k) (41)
where the design parameter a; denotes the utilization ra-
tio defined by P; / P;ma. When I; converges to I;; ,orin
the k™ iteration, Pi(k) = P;, max @i(k).

According to (41), the active power output of distrib-
uted generator i can be regulated by altering the
utilization ratio a;. Since the rated power of converter-
based distributed generators is relatively small, multiple
distributed generators are used in a distribution network
for increased capacity. Such a system can be considered
as a virtual power plant (VPP), as shown in Fig. 7, where
P,,., accounts for the total active power transmitted to
the transmission network.

To track the dispatch command P, the group of dis-
tributed generators in a VPP are coordinated using a
leader-follower consensus algorithm [16]:

a(k + 1) = Aa(k) + BKa(k) + KC (42)
where a(k) = [ag(K), ..., @, 1(K)]". B=[ - Prax Oy (o))"
with Pmax :[PO,max, ees Pn—l,max]T and C= [Pref+ Ploss +
P O; (n,l)]T. A =[a;] is a weighted matrix with ;>0

n-1
and a; =1- a;. K is the controller gain and O is
j=0,ji
the zero matrix. Pj,,; and Py, represent the aggregated
load power consumption and power loss in the VPP,
respectively. By selecting proper A and K, the conver-
gence of (4) can be proved [16]. When convergence is
achieved, utilization ratios of all distributed generators
reach an agreement and Py, is steered to its preference
value Pz
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Fig. 7 lllustrative diagram of distributed control of
distributed generators
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Equation (42) shows that the communication network
among distributed generators plays a key role in the
regulation of the active power output of the VPP. If the
local controller of a certain distributed generator is
attacked by FDI attacks, its utilization ratio will be pre-
vented from converging to the consensus value, resulting
in failed tracking of Py, to P,r[35, 36].

Attackers can attack the controller of a distributed
generator by injecting false data into the actuator and
making it send the same control command to its
geographical neighbors. Assuming that r distributed gen-
erators are subjected to FDI attacks and considering
ap(k) = apy = [aM,. .., aM]T and aw(k) = [a, , 1(K),. .., @,
LK) are the utilization ratio vectors of misbehaving
and well-behaving distributed generators, respectively,
the algorithm (42) can be rewritten as:

ao(k+1) 1-KPy max —KPpr,max — KPyw, max
laM(k + 1) ] - [ 0r><l Irxr 0r><(n -r)
C{\V(k + 1) Ap Apm Ay
[ Ulo(k) :I |:1<(Pref + Pluad + Pluss)‘|
X C[M(k) + 0r><1
(Xw(k) O(n—r)xl
(43)

where [, , is the identity matrix. [Ag Aar Aw] is equal to
the n-r rows of A + BK. Ppgmax = [P1,maxr - Prmax) T and
P\V,max = [P(r+ 1),maxs* = Pn,max T'

Note that the first term on the right-hand side of

(43) can be represented by the sum of the matrix

N 1 O1xr 01><(n -r)
A= 101 Lxr Op(n-r) and its perturbation
Ay Ay Aw
P P P
matrix A= — | Omax TM max W, max Hence
0n><1 0n><r Onx(n -r)

perturbation theory can be employed to analyze
system stability [37].

It is observed that A is a lower block-triangular matrix
with the eigenvalues ;=1 for i=1,. ., r+ 1, and the ei-
genvalues A; for j=r+2,. ., n-r. Since the blocks Ay, Aap
and Ay are the same as the original system in (42), A; lo-
cates in the open unit disk. Assuming v, and u, are the
respective left and right eigenvectors of A with v,u, =1,
when K is sufficiently small, the perturbation on A;=1
can be characterized by [16]:

-P
viau = e 777
|:0r><(n+1) [ ! r+1]
_ |~ Praxtt = Praxtry1
0r><1 Orxl
(a4)
T

where V=[v{,. ., v[ 1, U=[u] 5, ., vi_ ], and Ppuc =
T
PO,maxx' R3] Pn,max] .
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VAU has a negative eigenvalue and an eigenvalue 0
with algebraic multiplicity r. Accordingly, A +A has an
eigenvalue 1 with algebraic multiplicity r if K is suffi-
ciently small. The rest of the eigenvalues lie in the open
unit disk. This indicates that A +A is stable. It is
straightforward to verify that the system is stable at the
steady state {aj, aj,” a’{VT}T with:

ay = min{ max{dao,0},1}, a;, = ay (44)

Gy = (- Aw) o An] | (45)
am
where &0 = (Pref + Pload + Ploss _PM, max@M _PW. maxaT)V
)/ P 0, max-

The analytical results show that the well-behaving dis-
tributed generators converge to the space spanned by «
and a,;. Thus, when the false data is injected by at-
tackers, utilization ratios of distributed generators fail to
agree, preventing the active power output of a VPP from
tracking the dispatch command. In addition, according
to [16], the adjustable range of P,,,,, can be narrowed by
FDI attacks in a large group of distributed generators.
This degrades the controllability of the VPP.

4.2 FDI attack on microgrid

In a typical microgrid, a power inverter includes a DC
power source, inverter bridge, power sharing unit, out-
put filter, and voltage and current control loops. The
output power dynamics of inverter i are:

{ dpi/dt = — 0P + @ (Vodiiodi + Voqiioqi (46)

dQ;/dt = ~ 0 Q; + @ (Vodiiodi ~ Vogilogi

where v,;; and v,,; are the d- and g-axis components of
the output voltage. i,y and i, are the d- and g-axis
components of the output current. P; and Q; are the
active and reactive output power. w. is the cut-off
frequency of the output filter.

The large-signal dynamic of the inverter is given by
[38].

{ dx;/dt = f(x:) + g(x:)u;
¥; = hi(x:)

where x;=[0;, Pis Qi Gai Pgiv Yair Vair lidio ligir Vodi Voqiv
fodi» Gogi]- The detailed model of the inverter can be
found in [38].

The power sharing function is realized by droop con-
trol expressed as [39-43]:

O = Wpi = Mp;P;
Vimagi = Vi = nqui

(47)

(48)

where v,,,,; and w; are the reference voltage and fre-
quency, respectively. m1,,; and n,; are the respective droop
coefficients, and w,,; and V,,; are the set points.
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Droop control makes voltage and frequency deviate
from their set points. The cooperative control structure
is used to alter w,; and V,; in (48) to steer voltage and
frequency to their reference values. Each converter can
exchange information with its neighbors. Differentiating
(48) yields:

(bi = (:z)m' - Wlpipi (49)

The auxiliary control input is defined as:
C;)i = U; (50)

and the cooperative control law is given by [44—50]:

eo, = Y ay(wi(t) - (1)) + g;(@i(t) - wry)

JEN;

(51)

where N; contains the inverters that neighboring inverter
i, and g; represents the non-zero gain for inverter i.
The auxiliary input u; is:
wi(t) = - cuew,(t) (52)
where ¢, is a coupling gain, and the set point in (49)
satisfies:

Wy = /(l/ll + Wlpipi)dt (53)

From (50)—(53), the auxiliary input u; uses the neigh-
bor’s frequency to mitigate system frequency deviation.
The information exchange among neighboring inverters
is vulnerable to malicious attacks, which can make the
frequency deviation fail to go back to zero. Since the
traditional bad data detection evaluates the validity of
the received data in a centralized way, it is not applicable
to distributed control of microgrids.

Two types of attacks, namely controller attacks and
communication channel attacks, are considered as
shown in Fig. 8 [51]. Attacks on controllers inject false
data into actuators/sensors to attack the local controller,
and FDI attacks on actuators can be modeled as [52, 53]:
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Fig. 8 lllustrative diagram of consensus-based control of
inverter j under FDI attacks
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u = u; + puf (54)

where uf is the false data injected into actuator i. u{ is
the corrupted control input and #; is the original auxil-
fary input. p; is the attack signal, and when attack
occurs, y;=1, otherwise, y;=0. Note that the attack
signal can be either non-constant or constant. A non-
constant attack signal that is viewed as noise can be
handled by noise filtration techniques, while the attack
signal is considered to be constant here [54].

If the whole controller is hijacked, the frequency

corruption of inverter i can be expressed as

W] = ©; + 17,07 (55)
where ¢ is the false frequency data injected into con-
troller i. w¢ is the corrupted inverter frequency and w; is
the reference frequency in (48). ;=1 represents the
presence of attack.

If the communication channel between two neighbor-
ing inverters is attacked by FDI, the local controller
receives the corrupted frequency signal [7, 11, 55-57].
FDI attack on the communication channel can be
modeled by:

o] = o1+ 70 (56)

where w? is the false data injected into controller i, and
w{ is the corrupted inverter frequency transmitted to
inverter j. 57; = 1 implies the presence of attack.

The next step is to reveal the vulnerability of the
cooperative control of a microgrid under FDI attack.
Considering the cooperative control protocol (51) is
under attack, the synchronization error will not return

to zero for an intact inverter if it is reachable from a
corrupted inverter [17]. For example, considering «*

= (@) (o)) and u = [(uf)" ... (1)) are
the respective attack vectors injected to sensors and
actuators, the global synchronization error dynamic is
obtained by applying the control strategy (50) and (52)
as well as FDI attacks (54)—(56), as:
e, = —co(L+Gle, (57)

where L is the Laplacian matrix defined as L=D - A,
while more properties of L can be found in [58-60]. D =
diag{N;} with N; being the set of inverters that send data
to inverter i (the neighbors of inverter i). A = [a;] with
a; being the weights of communication links between
inverter i and ;.

Let t =n(L + G)e® + pu, n= diag(y;), and p = diag (
#:), the solution to (57) is:
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—e- C“(L+G)tew (O)

t
+/ o CollG) (- 1) gp
0

eu(t)

(58)

Given that (L + G) is a positive definite matrix, the first
term in (58) approaches zero for c,>0. Using e*t

= (Ar)" yields:

eo(t)— i /0 (= oL+ G)(t-1))"idr (59)

If m is the first integer such that [j! = (L + G)"); is
not zero, node i is reachable from node j, and m is the
length of the shortest directed path from j to i. Conse-
quently, there exists lZ»q 20 for 0<m <N - 1 if inverter i
is reachable from the compromised inverter .

5 Results and discussion

In current research on the impacts of FDI on power sys-
tems, the adopted FDI model is often static on a single
snapshot, ignoring the complexity of the attack behavior.
The risk of FDI cannot be fully revealed as attackers are
capable of constructing a subtly dynamic attack to avoid
detection. Future effort should be dedicated to a more
detailed FDI model to account for the dynamic behavior
of attacks.

Although there is a lot of literature on the influence of
FDI on power system state estimation, studies on its in-
fluence on power system dynamic state estimation are
limited. Power system dynamic state estimates can be
used as controller inputs (e.g. wide-area damping con-
trollers) to improve control performance, while attackers
can decrease control performance by attacking the dy-
namic state estimation. To promote proper countermea-
sures, it is necessary to investigate the impacts of FDI on
power system dynamic state estimation.

Most research on FDI impact on power system stabil-
ity focuses on breaking the frequency stability by causing
an imbalance between supply and demand. Future re-
search needs to be conducted to study the interaction
between FDI and small signal/transient stability. In the
modern-day power grid, the wide area measurement sys-
tem is greatly exploited for detection of power system
anomalies. The data from the phasor measurement units
(PMUs) is communicated to the control center to moni-
tor and damp inter-area oscillations [61]. The communi-
cation between the PMU and the control center can be
corrupted by FDI attacks. This can degrade the damping
of inter-area oscillations and induce small-signal
instability.

6 Conclusion
With the rapid development of the smart grid, and wide em-
ployment of information and communication technology in
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the traditional power grid and microgrid, the power industry
is facing cyber threats. This paper has conducted a compre-
hensive investigation into the potential risks of false data in-
jection attacks on power systems. State-of-the-art models
and methods are reviewed to explain how attackers might at-
tack the system by injecting false data. First, an attack vector
can be constructed by solving a linear programming prob-
lem, and false data is injected to significantly increase the op-
erational cost of the power system. Economic dispatch can
also be adversely affected by designing optimal FDI attacks
and triggering an initial contingency that consequently initi-
ates sequential outages. Second, an undetectable FDI attack
can be constructed to disrupt power system state estimation,
Such an attack can be launched using the full/local network
information. Third, frequency instability can be caused by
injecting false data that prevents the active power output of a
power inverter from tracking its dispatch command.
Attackers can also compromise the cooperative control of a
microgrid by attacking the controllers. Finally, an assessment
of research results is provided, and the findings can help to
fully reveal the potential risks of FDI and promote compre-
hensive protection measures.

7 Methods section

The aim of this paper is to investigate the mechanism of
how FDI affects power systems. This is achieved from
the perspectives of economic dispatch, power system
state estimation, and distributed control of distributed
generators/microgrids. The mathematical models for
economic dispatch and power system state estimation
are presented. The design of a successful FDI attack is
then formulated as an optimization problem, which can
be solved in the MATLAB environment. For the
cooperative control of distributed generators/microgrids,
a rigorous mathematical proof method is used to con-
struct the FDI attacks.
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