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Abstract

Demand Response (DR) provides both operational and financial benefits to a variety of stakeholders in the power
system. For example, in the deregulated market operated by the Electric Reliability Council of Texas (ERCOT), load
serving entities (LSEs) usually purchase electricity from the wholesale market (either in day-ahead or real-time
market) and sign fixed retail price contracts with their end-consumers. Therefore, incentivizing end-consumers’ load
shift from peak to off-peak hours could benefit the LSE in terms of reducing its purchase of electricity under high
prices from the real-time market. As the first-of-its-kind implementation of Coupon Incentive-based Demand
Response (CIDR), the EnergyCoupon project provides end-consumers with dynamic time-of-use DR event
announcements, individualized load reduction targets with EnergyCoupons as the incentive for meeting these
targets, as well as periodic lotteries using these coupons as lottery tickets for winning dollar-value gifts. A number
of methodologies are developed for this special type of DR program including price/baseline prediction,
individualized target setting and a lottery mechanism. This paper summarizes the methodologies, design, critical
findings, as well as the potential generalization of such an experiment. Comparison of the EnergyCoupon with a
conventional Time-of-Use (TOU) price-based DR program is also conducted. Experimental results in the year 2017
show that by combining dynamic coupon offers with periodic lotteries, the effective cost for demand response
providers in EnergyCoupon can be substantially reduced, while achieving a similar level of demand reduction as
conventional DR programs.

Keywords: EnergyCoupon, Incentive-based demand response, Critical peak pricing, Electricity market, Prospect
theory

1 Introduction
During the past decade, there has been an increasing
penetration of renewable energy resources (such as wind
and solar generation) in the power grid. For instance, the
Electric Reliability Council of Texas (ERCOT) wind and
solar generation has more than doubled in their fuel mix
in the past decade, from 7.5% in 2008 to 18.6% in 2018
[1]. On the other hand, demand response (DR) has been
identified as having the potential to become a flexible

resource to solve the reliability and efficiency issue of the
power grid incurred by renewable penetration [2]. De-
mand response is defined as “the changes of end-
consumers’ electricity consumption in peak hours from
their normal patterns” [3]. Many independent system op-
erators in the U.S. including the Electric Reliability Coun-
cil of Texas (ERCOT), New York ISO (NYISO), California
ISO (CAISO) and ISO New England, already have a num-
ber of ongoing day-ahead and real-time DR programs in
their operating areas for providing energy reserve and aux-
iliary services [4–6].
The story of demand response in the U. S begins in

the 1970s, growing with the popularity of household air
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conditioning [7]. A large number of DR programs have
been designed and implemented since then. With devel-
opment over almost 40 years, it is generally accepted
that DR programs can be categorized in two dimensions
by: 1) the subject who takes control over devices (direct
load control vs. self-controlled and market-based pro-
grams), and 2) the scale of target end-consumers (large
industrial/commercial customers vs. small residential
customers). The term “direct load control” indicates that
the DR operator (such as the utility) can remotely turn
on/off or modify the setpoint of customers’ equipment.
The amount of load shedding can be precisely controlled
at the expense of customers’ comfort and satisfaction
(for instance, an air conditioner might be turned off for
some hours during a hot summer day). In contrast,
market-based DR programs tend to use price signals or
other incentives to encourage customers’ self-motivated
load-control behaviors. Such programs usually have less
impact on customer comfort and satisfaction, but are
less precise and effective when a specified target of de-
mand reduction goal needs to be achieved.
Because of their profit-seeking characteristics and

higher electricity usage than small residential customers,
industrial and commercial customers usually have more
self-motivation and better performance than small resi-
dential customers in participating in DR programs. En-
ergy management systems have been developed to help
increase energy efficiency in data centers, retail stores,
telecoms providers etc., and to coordinate with market-
based signals (such as real-time electricity and gas
prices) [12]. On the other hand, residential customers
are often more concerned with their personal comfort.
Their acceptance of price-based mechanisms (such as
time-of-usage (TOU), critical peak pricing (CPP) [14],
and market-index retail plans offered by the utility) still
remains at a low level, with the majority of residential
end-consumers choosing fixed-rate electricity retail
plans. Given the fact that residential electricity con-
sumption leads electricity usage in the U.S (38%, as com-
pared with commercial at 37% and industry at 25%) [12],
the potential of residential DR is far from fully explored.
Table 1 summarizes some recent research and oper-
ational programs using different approaches to demand
response.

There has been some academic research [14, 16] and
commercial implementation (e.g. ENERNOC [17], Ohm-
Connect [18]) of market-based DR; however, as an alterna-
tive approach to current existing market-based solutions,
the efficiency gain of Coupon Incentive-based Demand Re-
sponse (CIDR) is still underexplored. CIDR aims at provid-
ing coupon-based incentives to reduce the electricity
consumption of residential end-consumers during peak
hours [19–21]. Compared to traditional DR programs, this
mechanism has the following advantages: it is purely volun-
tary, penalty-free to customers, and compatible with the
fixed-rate electricity retail plans which are most popular
among residential end-consumers. A program named Ener-
gyCoupon is the first-of-its-kind implementation of CIDR,
with further additional innovations such as: 1) dynamic DR
events to end-consumers with individualized reduction tar-
gets; and 2) periodic lotteries designed to convert coupons
earned in DR events into dollar-value prizes. A small-scale
pilot experiment was conducted in 2016, with substantial
load profile changes of the residential participants in the
posterior analysis [15].
In terms of 2) the periodic lottery, many academic, as

well as commercial, studies have shown how “nudge en-
gines”, such as games and lotteries could help to encour-
age the desired behavior of human. Reference [22] tries to
discover the social value of energy saving, [21] models the
CIDR system as a two-stage Stackelberg game, and [23–
25] use the “mean field games” framework to describe
end-consumers’ behaviors in the DR program with
lottery-based incentives. Furthermore, the lottery-based
incentive scheme has already been implemented in a plat-
form that aims at encouraging uniform temporal demand
on public transportation [26], and relieving congested
roadways [27]. However, apart from some ongoing experi-
ments [28, 29], there is not much work trying to adapt the
lottery idea to electricity DR programs.
Built upon our previous studies in 2016, a larger-scale

experiment was conducted in 2017, with much more
comprehensive designs and critical assessment.1 The im-
provements of experiment (‘17) include but are not lim-
ited to: 1) an extra comparison group for data analysis;
2) an improved baseline prediction algorithm (named as
the “similar day” algorithm); 3) two subgroups divided
from the treatment group facing fixed and dynamic DR
events separately. More facts and comparisons between
two experiments are listed in Table 2. We will show in
later sections that these changes help to analyze end-
consumers’ behaviors in-depth.
The main contributions of the EnergyCoupon program

are as follows:

Table 1 Classification of demand response programs

Customer type Direct load
control (centralized)

Market-based

Large commercial
and industrial

Research papers [8–10] Energy-management
systems [12]

Small residential Direct load control
programs [11]

Variable rate retail
plans [13], CPP [14],
EnergyCoupon [15]

1Unless otherwise specified, in the remaining part of this paper,
“experiment (‘16)” refers to our previous study conducted in the year
2016 and “experiment (‘17)” refers to the new one in 2017.
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1. Providing price and baseline prediction algorithms
suitable for DR programs;

2. Systematically documenting the experimental
design, data collection, and posterior analysis for
the selected residential customers;

3. Experimental result showing load shedding/shifting
effects, different behaviors over fixed/dynamic
coupon targets, financial benefits of the LSE and
end-consumers, impact of periodic lotteries on hu-
man behaviors, as well as the effective cost saving of
EnergyCoupon over traditional DR programs.

This paper is organized as follows: Section 2 introduces
the system architecture and the interface of the EnergyCo-
upon App. Key algorithms including price prediction, base-
line prediction, individualized target setting and periodic
lottery are explained in Section 3. Experimental design is
described in Section 4, and data analysis is shown in Sec-
tion 5. We finally conclude our findings in Section 6.

2 System overview
The EnergyCoupon system is designed to inform end-
consumers of an upcoming DR event along with individu-
alized targets, measure the demand reduction within the
DR event, provide statistics and tips for energy saving, as
well as conduct periodic lotteries. Figure 1 exhibits the
system architecture of EnergyCoupon. As the core com-
ponent in the architecture, an SQL database is hosted on

a server running 24/7, interacting with the data resources
(shown in blue blocks), mathematical algorithms (green
blocks), and the lottery scheme (pink blocks). The Energy-
Coupon App (both Android/IOS versions available) is de-
veloped and installed in the mobile phones of the
treatment group. The app (interface shown in Fig. 2) re-
ceives and shows coupon targets, tips and statistics from
the server, and also enables the app user to participate in
periodic lotteries. A brief overview of all the other crucial
components in Fig. 2 is as follows:

1) SmartMeterTexas: This is the source of the
electricity consumption of all end-consumers at 15-
min resolution [30]. In our study, we received this
information each day from a collaborating retail
provider. Data is used in both baseline prediction
and coupon target generation algorithms, which will
be introduced in Section 3.2 and 3.3.

2) ERCOT Data: This is the source of day-ahead and
real-time market prices, as well as the system load
in the ERCOT area [1]. Pricing data is used in the
price prediction algorithm described in Section 3.1.

3) Weather Data: This is the source of weather
information used in the price (Section 3.1) and
baseline prediction algorithms (Section 3.2).
Weather information was pulled from the website
of Weather Underground (a commercial weather
service provider) [31].

4) Price Prediction: This is an algorithm whose
purpose is to predict in advance whether a dynamic
DR event should be announced. Our goal is to
ensure that this can be done with a lead time of at

Table 2 Overview of EnergyCoupon experiments in year 2016
and 2017

Year 2016 2017

Experiment length (weeks) 12 12

Treatment group size 8 29

Comparison group existence No Yes

Baseline algorithm “Hybrid” “Similar day”

Active subjects defined by Energy saving Lottery participation

Number of active subjects 3 7

Fig. 1 System architecture

Fig. 2 EnergyCoupon app interface (The EnergyCoupon app
is still available on Play Store (Andriod) when this paper is
published (2020). Upon agreeing to the terms and
conditions, Android mobile users in Texas, US are able to
explore some of the functions (such as monitoring real-time
energy consumption and submit coupon in lottery)
although no EnergyCoupon event and lottery is held right
now.). a Main page, coupon targets and tips. b Usage
statistics. c Lottery interface
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least 2 h in advance of the event, so as to provide
the participants enough time to respond to DR
events. This algorithm is introduced in detail in
Section 3.1.

5) Baseline Estimate: This is an algorithm whose
purpose is to predict the “normal consumption” of
the end-consumer without considering the impact
of DR. This algorithm is designed to eliminate the
gaming effects described in [32], and tries to bal-
ance accuracy of the predication and its computa-
tional cost. Details are included in Section 3.2.

6) Tips and Usage Statistics: The following types of
usage statistics and personalized tips are
randomly shown on the user app interface such
as: (a) High price alert based on the price
prediction algorithm (Section 3.1) for the
upcoming hours. (b) Coupons acquired every day
and total coupons acquired last week. (c) Energy
consumption for the users in the past week, and
estimated electricity bill based on retail price. (d)
Gold, silver or bronze Medal as an indicator of a
user’s saving behavior in the past week compared
with other participants. All the above statistics as
well as a figure showing the detailed energy
consumption curve were included in an email
and sent to the user every week, which further
helps the user to better engage in the demand
response program.

7) Coupon Generation: DR events are determined
according to price prediction, and personalized
targets are generated based on the user’s predicted
baseline at the time interval when a DR event is
triggered. See Section 3.3 for details.

8) Lottery: Periodic lotteries enable the end-consumers
to convert his/her coupons earned into dollar-value
gifts. See Section 3.4 for more details.

3 Methods
In this Section, we elaborate on the key analytics behind
the experiment (‘17). The methodologies introduced in-
clude price prediction, baseline estimate, coupon gener-
ation, and lottery. These analytics are important not
only for this experiment, but also for designing other
possible demand response mechanisms.

3.1 Price prediction
In demand response, end-consumers are incentivized to
perform a load shedding or load shift from peak hours
to off-peak hours (measured by wholesale electricity
price). In order to run our EnergyCoupon system in
real-time, we must be capable of predicting the high
price occurrences ahead of time. A lot of research has
been carried out on the topic on electricity price predic-
tion. For example, time series models have been used to

predict day-ahead electricity prices in [33, 34]. A com-
bination of wavelet transform and an ARIMA model is
used in this context in [35]. A hybrid solution method
using both time series and a neural network is presented
in [36]. In [37], spot price prediction is discussed, when
both load prediction and wind power generation are
involved.
However, our goals for price prediction are to some

extent different from previous work. Since our question
is whether or not to trigger the DR event for potential
peak prices, the precise prediction of the market price
will be less important; instead we only want to predict if
the 30-min average wholesale market price 2 hours later
is likely to be higher than a certain threshold (In Energy-
Coupon “high price” is defined as greater than or equal
to $50 per MWh). Furthermore, time series techniques
show good performance in handling data with repeating
periods, such as 24-hour period, and achieve high accur-
acy in predicting the following successive samples. While
the high prices that we target in our scenario have some
relation to time of day (typically, the late afternoon),
they do not have a precise correlation at a 24-hour
period, and are more related to events of that day (such
as the ambient temperature). Last but not least, for the
app such as EnergyCoupon, an online algorithm with
low computational complexity is preferred. Accounting
for all these concerns, we design and deploy a custom-
ized decision tree to deal with price prediction in our
system.
The decision tree is a well-known classifier, with se-

lected features in non-leaf nodes and labels in leaf nodes.
An advantage of the decision tree is the fact that it allows
for easy interpretability, which enables one to identify
which features are most relevant and why. Different from
the traditional approach, we have unbalanced error con-
cerns in our EnergyCoupon system, since a false high
price alert which might trigger more DR events will not
induce much loss to the EnergyCoupon program because
of the fixed budget for weekly lottery prizes (while the
coupons issued during the DR event might be slightly de-
preciated). However, a failure to catch an actual high mar-
ket price may have a more significant opportunity cost for
a potential saving in demand response. Hence, our deci-
sion tree should have higher tolerance to false positive er-
rors than false negatives. This requirement can be
captured by adjusting the penalty ratio between two kinds
of errors in the training stage, though one must be careful
while doing so because of the risk of overfitting the train-
ing set. An exhaustive search was conducted in the plane
of two parameters, minimum leaf size and penalty ratio
between the two types of errors, to address this trade-off
and set the values at 70 and 1:8 respectively. Details are
presented in [15] and omitted here given the focus of this
paper.
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Considering the DR procedure conducted in our system,
we believe that a 2-hour-advance notification is a reason-
able time window for participants to react. Given this goal,
we need to select features for our classifier from a large
body of data and possible features. Since weather deter-
mines air-conditioning usage that dominates household
electricity consumption in Texas, and it also has an crucial
impact on renewable energy availability, five fundamental
feature classes are chosen: Price(π), Demand(P), Tempera-
ture(T), Humidity(H) and Wind Speed(W). Furthermore,
we choose the temporal offsets in each feature class ac-
cording to the self and cross-correlation between the fea-
ture and the price label. In addition, a numerical study
was carried out to choose a proper threshold for our field
experiments, so as to label data (price) samples. Table 2 in
reference [15] shows a prediction accuracy of over 90% in
the validation data set. Full details on training data prepar-
ation, feature selection and performance evaluation are
beyond the scope of this paper. Readers may refer to [15]
for more information.

3.2 Baseline estimate
As defined by the U.S. Department of Energy, the base-
line is the “normal consumption pattern” by end-
consumers without the impact of DR [3]. A daily base-
line prediction algorithm is of crucial importance to our
EnergyCoupon program, since it affects the energy re-
duction measurement, as well as the number of coupons
the participant earns during a DR event. Energy reduc-
tion for an end-consumer i on interval k in a particular
day D, PD

DR;iðkÞ is calculated as the difference between

the consumer’s predicted baseline PD
base;iðkÞ and his/her

real electricity consumption PD
real;iðkÞ (as shown in eq.

(1)); PD
real;iðkÞ can be measured by the smart meter in-

stalled in the his/her household with high reliability.

PD
DR;i kð Þ ¼ PD

base;i kð Þ−PD
real;i kð Þ: ð1Þ

There are two major concerns within the design of a
baseline algorithm, namely (i) Baseline Manipulation:
the end-customer may intentionally increase thier usage
during certain periods of time in advance in order to
fabricate a reduced load appearance during a DR event,
and (ii) User’s Dilemma: if targets are set for the end-
customer with a baseline that depends on a short win-
dow of time in the past (such as the previous few days/
weeks), the baseline for a responsive user will continu-
ously reduce in the future, resulting in potentially un-
attainable reduction targets with the progress of
experiment. There exist several works [15, 32, 38] that
discuss these issues that pertain to conventional baseline
estimate algorithms widely used by some major inde-
pendent system operators (ISOs) in the U.S. [4, 5].

As one candidate solution to these concerns, the “hy-
brid” method adopted in our previous experiment (‘16)
computes a weighted average of the consumer’s own re-
cent consumption and the whole group’s consumption
[15]. However, in post-experiment analysis we discovered
that this algorithm neither (i) eliminated gaming effects,
nor (ii) provided good baseline prediction because of the
large diversity among residential end-consumers. How-
ever, we could not address them during the experiment in
2016, and had conjectured that a “similar day” algorithm
might be a better solution [15].
The proposed “similar day” algorithm derives from the

k-nearest neighbors algorithm (k-NN) and kernel regres-
sion [39, 40]. The main idea behind the algorithm is to
build up a statistical model of a particular home by using
a consumption data set of that particular end-consumer
for a year in advance of the experiment. Since we empir-
ically observe that the feature that best correlates with
energy usage is the ambient temperature, the algorithm
focuses on finding a window of temperature that has a
close fit with the temperature profile of the target time
window to predict in the following manner.
For instance, to predict a given 6-hour time window of a

certain end-consumer in the future, the “similar day” algo-
rithm first obtains the historical consumption for 1 year of
the same user before the experiment begins. Then can-
didate “similar” time windows are selected based on the
following criteria:

1) Selected time window(s) should have the same
length (6-hour) and time-of-day with the predicted
time period. Weekday/weekend days are treated
separately, e.g. only time windows on weekdays can
be selected when the target time window is on
weekday.

2) Selected time window(s) should have the similar
ambient temperature with the predicted time
period (measured by Euclidean distance in
eq. (2))

TD;l;t
MSE ¼ 1

Nt

XNt

k¼1

TD;t kð Þ−Tl;t kð Þ� �2
: ð2Þ

D, l represent the index of the target day and a par-
ticular historical day, t ∈ {1, 2, 3, 4} is the index of the
time window representing the time period of hour end-
ing 1–6, 7–12, 13–18 or 19–24, and Nt is the number of
samples in each section. Therefore, the day-ahead base-
line in this section is calculated as the average consump-
tion of all corresponding Ns similar time windows for
the same end-consumer,
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PD;t
base;i kð Þ ¼ 1

Ns

XNs

k¼1

Pl;t
base;i kð Þ; ð3Þ

Therefore, the “similar day” algorithm 1) predicts the
baseline calculating the average consumption of the simi-
lar 6-hour time window in the history, and 2) effectively
eliminates the gaming effect of participants since no re-
cent behavior (consumption data after the experiment be-
gins) of the consumer is considered. Because of the
benefits mentioned above, the “similar day” algorithm was
implemented in both baseline estimate and data analysis
in the recent EnergyCoupon experiment (‘17) in 2017.
The accuracy of the “similar day” algorithm in baseline

prediction has been evaluated right before the experi-
ment started in 2017. Results shows the average mean
absolute percentage of error (MAPE) was around 20%
on average for all participants, which is about the same
level (15% - 30%) with other machine-learning method-
ologies applied to individual households [41]. The “simi-
lar day” algorithm has been extended to other areas such
as non-intrusive load monitoring (NILM) and has
achieved over 80% accuracy in all tested datasets [42].

3.3 Individualized target settling and coupon generation
In the EnergyCoupon program, there are two types of
DR events: “fixed” and “dynamic” events. Both types of
event last for 30 min, and can only be triggered between
1 and 7 pm each day. However, these two types of event
follow quite different triggering methodologies:
Fixed DR events: We conduct a statistical analysis of

historical prices in ERCOT’s real-time market [1], and
observe that high wholesale market prices more often
occur at certain hours in the day than others, and the
“high risk” hours vary over the month of the year. By fol-
lowing this discovery, no more than three “fixed” DR
events will show at the fixed “high risk” hours every day,
and the fixed hours may be different from month to
month, and from weekdays to weekends.
Dynamic DR events: These are DR events that are

triggered when the 2-hour ahead price prediction algo-
rithm (introduced in Section 3.1) indicates that price is
likely to be higher than $50/MWh. There is no restric-
tion on the number of “dynamic” events in a day.
Sometimes we use the term “hybrid event” to denote

the situation when both types of DR events can be trig-
gered for the user.
After the time period of a DR event is determined by

either methodology, a multi-layer coupon target is gener-
ated based on the individual predicted baseline (as
shown in Fig. 3). Based on reaching the different level of
reduction (such as 30% and 70%) from the baseline, the
participant will be given a different number of coupons.
In the EnergyCoupon app, this procedure is visualized as

comparing the participant’s real-time consumption with
different colored areas (white, yellow and green) of the
baseline. When the consumer’s consumption lies be-
tween 70% of baseline or above, no EnergyCoupon is
earned for this event; otherwise, the consumer will be
awarded 2 EnergyCoupons when his/her consumption
lies between 30% and 70% (the yellow area) and 5 Ener-
gyCoupons if under 30% of the predicted baseline (the
green area). We will use “coupon” as the synonym of
EnergyCoupon in the rest this paper.
Figure 4 summarizes the logic flow of a coupon target

generated based on algorithms introduced in Section 3.1
to 3.3.

3.4 Lottery algorithms
We use a lottery system to convert EnergyCoupons into
monetary rewards. There is much work that has devel-
oped the concept of “prospect theory” to model the behav-
ior of humans when exposed to lottery schemes [43–46].
The general finding is that humans are much more risk-
seeking under larger low-probability rewards engendered
by using a lottery system. Hence, lotteries have the poten-
tial of attaining larger reductions from the user population
than a fixed reward. We observed this same effect during
earlier numerical studies [25], and hence employed a
lottery-based reward system in all our field trials.
In our experiment, weekly lotteries are conducted to

convert end-consumers’ coupons earned during DR
events into dollar-value prizes. In each lottery, a partici-
pant is allowed to bid any number of coupons between
zero and the total number of coupons in his/her ac-
count; the more coupons he/she bids, the higher prob-
ability he/she will win the prize. A pyramidal lottery
scheme is designed, with three Amazon gift cards of face
value of $20, $10 and $5 as the first, second and third
prizes each week. The brief lottery procedure is to con-
duct a top-down drawing at each level of the pyramid,
remove the coupons of the winning user, and move to
the lower level and continue. Hence, each participant

Fig. 3 Individual target setting
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will have at most three chances of winning a prize with
progressively smaller rewards at each drawing. Note that
if a participant chooses to only bid a portion of his/her
coupons at a particular lottery game, the remaining cou-
pons can be saved in his/her account for future use.
Therefore, a participant can be strategic in choosing the
number of coupons that he/she bids in each game.

4 Experimental design
4.1 Brief summary of experiment (‘16)
A small-scale preliminary EnergyCoupon experiment
was conducted between June and August in 2016, with 7
end-consumers in a residential area in Cypress, Texas,
United States enrolled. During the 12-week experiment,
each participant received a number of 30-min-length DR
events along with individualized coupon targets, between
1 and 7 pm every day, and was allowed to participate in
lotteries with total prize of $35 Amazon gift cards each
week. Peak time estimate, individualized target settling,
coupon generation and lottery scheme followed the
algorithms described in Section 3. A Hybrid baseline
prediction method was used for the baseline estimate,

and the “similar day” algorithm was used in posterior
data analysis.
The experiment revealed a load shifting effect from

peak to off-peak hours; it yielded substantial savings for
the LSE, about $0.44/(week·user) on average, and $1.15/
(week·user) per active user. Readers can refer to [15] for
more details.

4.2 Subject in experiment (‘17)
A larger-scale EnergyCoupon experiment was conducted
in the summer of 2017, with 29 anonymous residential
end-consumers in The Woodlands, TX recruited to
form the treatment group. All participants were the cus-
tomers of a local retail electric provider. Their participa-
tion was purely voluntary, and participants were free to
quit the experiment at any time (though there was no
one that actually quitted).
In addition, the retail electric provider also provided

us with some residential electricity consumption data of
another 16 anonymous households for the same period
of time. These end-consumers formed the comparison
group, and they neither participated in the DR event nor
the periodic lotteries. The relationship between the
treatment and comparison group is in Fig. 5a.

4.3 Procedure in experiment (‘17)
All the treatment and comparison group participants
had a smart meter installed in their household before
the experiment, which made their 15-min interval elec-
tricity consumption data available on SmartMeterTexas.
com, a websited endorsed by the Public Utility Commis-
sion of Texas [30]. With the permission of all partici-
pants, we were able to obtain their ESIID, register an
account for them, and download their historical and
real-time electricity consumption data periodically
through the secure backend server located on the cam-
pus of Texas A&M University.
In test Week 0 (Jun 10-Jun 16, 2017), the treatment

group subjects were asked to download and install the
EnergyCoupon App, get familiar with the interface, prac-
tice how to undertake energy reduction by following indi-
vidualized coupon targets, and participate in a trial lottery.
The electricity consumption data during this period of

Fig. 4 EnergyCoupon algorithm flow chart

Fig. 5 Subjects in experiment (‘17). a Treatment vs.
comparison group. b Subgroup 1 vs. Subgroup 2. c Active
vs. Inactive subgroups. Numbers in brackets are group sizes

Ming et al. Protection and Control of Modern Power Systems            (2020) 5:12 Page 7 of 14

http://smartmetertexas.com
http://smartmetertexas.com


time was neither considered as experimental data, nor
used as the historical data in the baseline estimate.
During the experiment, the treatment group subjects

were able to see the all daily “fixed” coupon targets at
the beginning of each day, or “dynamic” coupon targets
at least 2 hours prior to the DR event. A subject who
wanted to save energy and earn coupons could turn off,
or change the setpoints of his/her appliances during the
30-min-length DR event period without the need of no-
tifying the organizer. The subject’s electricity consump-
tion would be recorded by the smart meter installed in
the house, and data would become available and down-
loaded to the server within 36 h after the DR event.
Thereafter each subject would be awarded coupons
based on his/her coupon target achievement during the
DR events.
In the first 3 weeks (Jun 17, 2017 to Jul 7, 2017), all

the subjects in the treatment group were faced with “hy-
brid” coupon targets for their demand response. Starting
from Week 4 (Jul 8, 2017), and till the end of the experi-
ment, subjects were randomly assigned to two subgroups
(Subgroup 1 and 2, or S1 and S2 for short) of almost
the same size (14 subjects in S1 and 15 in S2). Subjects
in S1 only received “fixed” coupon targets, while those in
S2 only received “dynamic” coupon targets (Fig. 5b).
The “similar day” algorithm was used in the baseline

estimate, and coupon target generation followed the al-
gorithm in Section 3.3. DR events can only be triggered
between 1 and 7 pm each day.
Weekly lotteries were conducted during the experiment,

with each lottery cycle beginning at 12:00 am on Saturday
and ending at 11:59 pm on the Friday of the following
week. Lotteries are designed according to the schema ex-
plained in Section 3.4. In the posterior analysis at the end
of the whole experiment, we further categorized all the sub-
jects into another two subgroups according to their lottery
engagements: “Active” subgroup contains “active” subjects
who participated in at least 5 out of a total of 11 lotteries,
and the remaining treatment group subjects are regarded
as “inactive” subjects and are assigned to the “Inactive” sub-
group. Figure 5c shows the relationship between two di-
mensions of categorization (based on coupon targets and
lottery engagement), as there are a total of 7 active subjects
among all participants, with 2 belonging to S1 and 5 be-
longing to S2. In contrast, among the remaining 22 inactive
subjects, 12 of the inactive subjects belong to S1 and 10 be-
long to S2.
As we have briefly described in Section 1, some major

differences exist between the designs of the EnergyCo-
upon experiment (‘16) and (‘17). The change of the algo-
rithm from “hybrid” to “similar day” and the removal of
normalization in the baseline estimate help to increase
the baseline prediction precision, as well as eliminate the
gaming effect. The availability of the comparison group

provides an alternative means of measuring energy sav-
ing for the treatment group, and the assignment of S1
and S2 helps to reveal more intricate behavior of the
treatment group subjects.

5 Results and discussion
In this section, we present an analysis of the data col-
lected in our experiment (‘17).

5.1 Energy saving for the treatment group
There are two ways to measure the electricity reduction
for the treatment group during the experiment by means
of comparing their electricity consumption with (i) the
comparison group, or (ii) their own predicted baseline.
Figure 6 exhibits the energy consumption ratio (we will
call it “ratio” for short in Section 5.1 and 5.2) of the
treatment and comparison groups following method (i).
The ratio is defined as the group’s weekly consumption
between 1 and 7 pm divided by their own historical
consumption during the same period in the previous
year (2016). A lower ratio indicates a relatively higher
behavior change of making more energy reduction dur-
ing the experiment than that in the previous year.
Figure 6 also shows the energy saving for the active

subjects during the experiment. While the ratios for in-
active and comparison groups are overall close to each
other in most weeks during the experiment, there is
clear gap between the active subjects (red curve) and
these two groups. It seems that active subjects who have
more lottery engagement also have more significant
better-than-average energy saving behaviors, with the
maximum of around 40% in Week 8.

Fig. 6 Energy consumption ratio at 1–7 pm for experiment
(‘17) based on the consumption of same days in 2016
(Historical consumption data for some treatment group
subjects in Week 9, 2016 is not available. We use dashed
lines to show the less reliable trend between Week 8–9
and 9–10.)
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The disadvantage of method (i) is that multiple vari-
ables between 2 years such as temperature are not well-
controlled. Therefore, energy saving for the treatment
group cannot be characterized precisely.

5.2 Comparison between active and inactive subjects in
treatment group
As introduced above, method (ii) calculates energy con-
sumption ratio using the subject’s own estimated base-
line as the denominator. Figure 7 shows ratios of active
and inactive subgroups and the whole treatment group.
We will show in the following paragraphs that the obser-
vation of energy saving using method (ii) is similar to
method (i) in some sense.
The performance of the inactive subgroup is quite

consistent, with the ratio around 1.0 in most weeks, and
never falls below 0.9. This is in line with our intuition
that less engagement in the lottery is a sign of lack of en-
thusiasm about energy saving via the EnergyCoupon pro-
gram. Since inactive subjects form the majority of the
treatment group (as shown in Fig. 5), the gap between
the inactive subjects and the average value is minor, and
this is partially because the majority of subjects in the
treatment group are inactive subjects.
In contrast, the curve for the active subgroup is far

below the other two curves, indicating a significant en-
ergy saving and load pattern change for active subjects
during the experiment. Energy savings for the active
subgroup gradually increase in the first few weeks and
reaches a peak at about 40% in Week 8. After Week 9,
the saving begins to decline, until being only 10% in
Week 11. The rebound of the ratio can be explained by
the arrival of Hurricane Harvey, which was in the area
for the end of Week 10 and whole of Week 11. Flooding
and potential house repair likely distracted many of the

subjects from participating in the DR program during
that time.
To better visualize the load pattern change for the active

subjects, 1 week during the experiment (7/29–8/4/2017)
was selected as an example, and the daily average of elec-
tricity consumption vs. baseline is illustrated for both ac-
tive and inactive subgroups (Fig. 8). It can be calculated
that for this particular week, energy saving during 1–7 pm
for active subjects was 28.9%, while that of inactive sub-
jects was only − 0.2%. The close-to-zero energy saving for
inactive subjects is unsurprising, and it also supports the
precision of our baseline estimate algorithm to some ex-
tent. However, the surprising finding from Fig. 8a is the
load shedding effect in non-peak hours (25.0%). This ob-
servation clearly conflicts with the assumption of pure
load shifting in our previous paper [15]. Therefore, an as-
sumption could be created that there is some “inertia” in
demand response; incentivized energy reduction in peak
hours would influence that of off-peak hours.

5.3 Comparison between subjects in treatment group
facing fixed/dynamic coupons
Starting from Week 3, and until the end of the experiment,
the treatment group subjects were randomly assigned into
two subgroups S1 and S2 facing “fixed” and “dynamic” cou-
pon targets, respectively. We aim to discover how different
types of coupon targets could have an impact on end-
consumers’ energy saving. The energy savings for two sub-
groups S1 and S2 during 1–7 pm are exhibited in Fig. 9a.
As observed from Fig. 9a, the subjects in S1 and S2

cannot be considered homogeneous, as the energy sav-
ing (35% vs. -5%) was quite different in Week 1–3 when
they are facing the same “hybrid” coupon targets. For
the following weeks (3–10) when subjects were sepa-
rated with different coupon targets, we see an “activa-
tion” phenomenon by the dynamic coupon targets, as
S2’s saving jumps from − 5% to 15%, while no such ef-
fect is observed for S1 subjects. In week 11, the energy
saving for S2 returns to the initial level. This can be at-
tributed to the hurricane, as mentioned before.

Fig. 7 Energy consumption ratio at 1–7 pm for active/
inactive subjects by week, based on their baseline

Fig. 8 Daily consumption vs. baseline for active/inactive
subjects during the week (7/29–8/4/2017). a active subjects,
b inactive subjects
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Figure 9b illustrates the coupon target achievement ra-
tios for active subjects in two subgroups. The ratio is de-
fined as the proportion of DR events that the subjects at
least earn one coupon (which is equal to a reduction of at
least 30% energy saving from their baseline). Comparing
Fig. 9a and b, an interesting finding is that although S1
has overall higher energy saving than S2 in all periods,
both subgroups reach a similar level of coupon
achievement.
One possible explanation for this observation is that

S1 subjects facing “fixed” DR events would prefer to pro-
gram their home appliances (such as AC) in advance to
hit all coupon targets, and do not change their setpoints
frequently, while S2 subjects facing “dynamic” DR events
tended to check the app and DR events more frequently
and tried to “play” to catch the coupon targets which
only started to appear 2-hours before real-time. Figure 10
shows the load patterns for two active subjects in S1 and
S2 as an example, and how the subject in S1 reducing
the consumption for the whole afternoon vs. S2 moving
his/her consumption to catch the yellow targets.

5.4 Financial benefit analysis
In our earlier analytical model and numerical studies, we
assumed that all the subjects perform pure load shifting
from peak to off-peak hours [15]. With such an

assumption, the DR program would lead to a win-win
situation with positive financial benefits to both the retail
provider and active end-consumers. The brief explanation
of this is that with pure load shifting in DR, the retailer
will not lose its retail revenue, and can purchase electricity
at the time period with lower wholesale market prices. At
the same time, end-consumers earn reward for their en-
ergy saving behavior. However, our finding of load shed-
ding behaviors in Section 5.2 conflicts with this pure load
shifting assumption. Therefore, it is not obvious that the
retail provider and end-consumers can still reach a win-
win situation as described before. Below is the analysis we
have using the newly gathered data in the experiment
(‘17).
The net benefit for the retail provider consists of three

parts: (i) the saving in (wholesale) electricity purchase in
high-price hours, (ii) the decrease of sales revenue due to
the load shedding effect, and (iii) the cost of rewards issued
to lottery winners. Our calculation shows that the saving in
three parts is $2.6, $-2.7 and $-4.0(week•subject). Because of
the load shedding effect, the benefit in (a) is not enough to
cover the loss in (b) and the retail provider suffers a net loss
of around -$4.0 for each active user per week. Note that
this loss is localized to the year 2017, because of the low oil
prices, and consequent low electricity peak prices in the
summer of that year. The same DR program conducted in
other years such as 2019 might have yielded substantial
benefits because of the record-breaking high prices [47]
(Table 3).
An active subject, in contrast, on average receives $4.0

lottery rewards per week from the retail provider; at the
same time, the load shedding effect leads to the decrease
of his/her electric bill by around $2.7 per week. There-
fore, our EnergyCoupon program brings positive finan-
cial benefit to active subjects.
Although the DR program may not bring a win-win

situation to both the retail provider and end-consumers, it
still does increase the social welfare on the demand side,
as the summation of benefits is positive ($2.6/(week•active
subject)). We can also conclude that the financial benefit
of the retail provider in the DR program is closely related
to the load shifting /load shedding pattern of each subject;
in experiment (‘17), the load shift is minor and load shed-
ding is major, and cost saving from its wholesale electricity
purchase may not cover the loss of its retail revenue,
which leads to a net financial loss to the retail provider.
The profit of the retail provider can also be affected by

other factors such as 1) real-time electricity price. The

Fig. 9 Behavior comparisons between subjects in Subgroup
S1 and S2. a Average energy saving at 1–7 pm. b Coupon
target achievement percentage

Fig. 10 Energy consumption curve for two active subjects
on 7/19/2017. a Subject No. 19 (in Subgroup 1). b Subject
No. 18 (in Subgroup 2)

Table 3 Financial benefit of the retail provider and active
subjects

Subjects Retail provider Active subjects

Savings ($/(week·subject)) 2.6 − 2.7 − 4.0 = − 4.1 4.0 + 2.7 = 6.7
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high real-time electricity price would increase the value
of demand reduction and therefore increase the profit
for the retailers; 2) the management of the lottery
budget, with a proper choice of prize, could possibly de-
crease the total cost of the lottery while keeping demand
reduction at an acceptable level; 3) possible subsidies on
demand response programs in some countries or grids.
It is worth noticing that since factors mentioned above

could vary with different human participant groups, in dif-
ferent physical areas, or even in different years in the same
area, there is no general conclusion as to whether Energy-
Coupon (or other DR programs) would help the retail pro-
vider to save money or not.

5.5 Influence of the lottery on human behaviors
As discussed in Section 3.4, the lottery scheme is consid-
ered to provide an incentive to promote desirable behav-
iors (such as more energy saving and participation) of the
treatment group. Table 4 lists some numbers showing the
influence of periodic lotteries on participant behavior.
The first column in Table 4 shows that winning a lot-

tery prize has a positive impact on future energy saving,
as lottery winners make an average of energy saving im-
provement of 10.7% in the next lottery cycle.2 In con-
trast, the average energy saving improvement for
participants who win nothing is close to zero (− 0.03%).
The second and third columns clearly demonstrate that
lottery winners on average tend to have higher engage-
ments than other participants in the next lottery (56.6%
vs. 40.0%), and the next three lotteries (80.5% vs. 70.0%).
Therefore, we can summarize that the lottery prize has a
positive impact on both energy-saving and lottery en-
gagement in future lottery cycles.

5.6 Comparison with previous CPP experiment
In this subsection, we compare our EnergyCoupon ex-
periment with a typical price-based DR experiment con-
ducted in Anaheim, California, United States in the year
2005 [14]. Critical peak pricing (CPP) was used in this
experiment. Here, CPP days are selected based on a
price prediction algorithm, and on CPP days during
noon-6 pm. Subjects in the treatment group receive
$0.35 for every kWh reduction from the baseline. Some
comparisons of these two experiments are listed in
Table 5.
We observe that our experiment reached a similar

level of energy reduction to that of the CPP experiment
(10.7% to 12%). Since our EnergyCoupon provides DR
events every day compared to only 12 CPP days in the
CPP experiment, the EnergyCoupon project helps to
save a much higher amount of energy in total.

In addition, effective cost is calculated as an indicator of
cost saving efficiency for each experiment, as it is defined
as on average the money the retailer has to pay for partici-
pants’ reducing 1 kWh of electricity during peak hours.
This value in our experiment is calculated by the total
value of lottery prizes divided by the energy reduction for
all treatment group subjects. Data analysis shows an
effective cost in our experiment of $0.053/kWh, which is
only 1/7 of that in the CPP experiment (which is directly
given as $0.35 in the experimental design).

5.7 Cost saving decomposition
Table 5 shows the significant difference between the ef-
fective costs of two demand response experiments. As
an indicator of relative cost effectiveness, effective cost
saving ratio (ECSR) is defined as the ratio of effective
cost (normalized by retail price) between two experi-
ments. If we use the CPP experiment [14] as the refer-
ence case, the ECSR of EnergyCoupon is calculated as

ECSR ¼ CCPP

CEnergyCoupon
¼ 368%

58%
¼ 6:34 ð4Þ

ECSR > 1 indicates that EnergyCoupon is more cost-
effective than CPP.
There are different factors that may contribute to the

high ECSR value shown in eq. (4), such as (i) the innova-
tive coupon design in CIDR mechanism, (ii) the develop-
ment of the EnergyCoupon mobile app that improves

2As an example, 1% improvement means if this week’s saving is 10%,
next week will be 11%.

Table 4 Subjects’ behavior change due to lottery

Subjects Energy saving
improvement
(1–7 pm)

Next lottery
participation
prob. (%)

Prob. of at least 1
participation in next
3 lotteries (%)

All winners 10.7 56.6 80.5

Other participants −0.03 40.0 70.0

Table 5 Comparison between EnergyCoupon and previous
experiment

Comparison item Critical peak pricing EnergyCoupon

Category Price-based DR Incentive-based DR

Treatment group size 71 29

Experiment length Jun - Oct Jun – Aug

Number of DR days Certain CPP days (12) Daily (77)

Peak hours Noon – 6 pm 1–7 pm

Energy reduction 12% 10.7%a

Effective cost compared
with retail priceb

368% 58.8%

aElectricity reductions for active and inactive and inactive subjects are 34.8%
and 7.36%, respectively
bWe choose retail price in Anaheim in 2005 as $0.095/kWh [48], and average
retail price in Woodland, TX in 2017 as $0.090/kWh [13]
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the communication with participants as well as (iii) the
lottery scheme that encourages more participation be-
cause of human risk seeking behavior.
In this section, we are interested in how the lottery

scheme (factor (iii)) contributes to the cost saving in our
EnergyCoupon program. If we assume that all the fac-
tors listed above contribute independently to ECSR and
can be measured by multipliers, then

αβ ¼ ECSR ¼ CCPP

CEnergyCoupon
¼ 6:34 ð5Þ

where α, β are multipliers representing the contribution
of the lottery scheme (factor (iii)) and other factors
((i),(ii)...) respectively.
The value α can be estimated using cumulative prospect

theory. As a behavioral game theory, this theory describes
the individual choice between risky probabilistic alternatives
[44]. It models the probability weighting and loss aversion,
which lead to the overweighting of small probabilities and
underweighting of moderate and high probabilities. In the
game with potential outcomes x1, x2, ..., xn and respective
probabilities p1, p2, ..., pn, a gain prospect f = (x1, p1; x2, p2;
...; xn, pn) describes a prospect results in the multiple out-
come xi with probability pi, i ∈ {1, 2, ..., n}, and
(i) xi < x j iff i < j; i; j∈f1; 2; :::; ng
(ii)

Pn
i¼1pi ¼ 1.

For instance, in EnergyCoupon, on average each active
subject has an approximately 7.0% chance to win each
prize ($20, $10 and $5) in the weekly lottery; the prob-
ability for an inactive user to win each prize is around
2.3%. Therefore, the prospect of each active/inactive
subject faces (fa and fb) can be described as

f a ¼
�
0; 0:79; 5; 0:07; 10; 0:07; 20; 0:07Þ

f b ¼ 0; 0:931; 5; 0:023; 10; 0:023; 20; 0:023Þð ð6Þ

and n = 4 for both prospects.
The prospect theory defines the utility of a certain

prospect f as

V fð Þ ¼
XN

i¼0

πiV xið Þ ð7Þ

where V is the utility function, πi are decision weights
calculated as

πi ¼ ω piþ; :::;þpnð Þ−ω piþ1þ; :::;þpn
� �

; 0≤ i≤N

ð8Þ
and ω is the probability weighting function. Equation (7)
can be explained as the utility of a prospect f equalling the
sum of all decision weights πi times the utility of the cor-
responding outcomes xi. It is worth noting that decision
weight πi has close correlation with the probability pi but
they may have different values. Deviation of πi from pi

represents the way the lottery scheme “distorts” human
beings’ feeling for the probabilities.
Furthermore, we introduce the equivalent of prospect f

as c, which can also be described as

V cð Þ ¼ V fð Þ ð9Þ
Therefore, the equivalent for prospect fa as ca represents

the fixed-return an active participant receives that would
make him/her indifferent between choosing the fixed re-
turn ca or play in the lottery fa. The same explanation ap-
plies to cb (inactive users). Given the total number of
active users Na and inactive users Nb, the total equivalent

c ¼ caNa þ cbNb ð10Þ
would be an estimate of total direct cash needed in the
experiment to maintain the same level of incentive to
the treatment group, if no lottery scheme is adopted. In
the EnergyCoupon experiment, Na = 7 and Nb = 22,
which reflect the number of active/inactive participants.
As the next step, we would like to get an estimate of

value ca and cb. Combining the definition of fixed-return
equivalent (9) with eq. (10), we have

V cð Þ ¼
XN

i¼0

πiV xið Þ: ð11Þ

Since in our experiment each lottery prize is relatively
small (xi < $200, i ∈ {1, 2, 3, 4}), the utility function V is
linear and can be removed from both sides of (7) [46] as

c ¼
XN

i¼0

πixi: ð12Þ

By combining eq. (12) and (8) we can calculate the
equivalent per active/inactive user. We take a typical ac-
tive user as an example. The equivalent ca of prospect fa
can be calculated as

ca ¼ π2 � 5þ π3 � 10þ π4 � 20
π2 ¼ ω 0:07� 3ð Þ−ω 0:07� 2ð Þ ¼ ω 0:21ð Þ−ω 0:14ð Þ
π3 ¼ ω 0:07� 2ð Þ−ω 0:07ð Þ ¼ ω 0:14ð Þ−ω 0:07ð Þ
π4 ¼ ω 0:07ð Þ

ð13Þ
The value of ω can be estimated from Fig. 1 in reference

[44], as median c/x in prospect (0, 1 − p; x, p) is an estimate
of ω(p). From the curve x < 200 we get the value ω(0.21) =
0.26, ω(0.14) = 0.22 and ω(0.07) = 0.16. Therefore

ca ¼ 0:26−0:22ð Þ � 5þ 0:22−0:16ð Þ � 10

þ 0:16� 20 ¼ 4:0
ð14Þ

Similarly we can calculate the equivalent cb = 2.4. Ac-
cording to eq. (10), the total equivalent for all
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participants c = 4.0 × 7 + 2.4 × 22 = $80.8. Total equiva-
lent c shows the estimate of direct cash needed in our
experiment to maintain the same level of incentive to
the treatment group, if no lottery scheme is adopted.
Therefore, multiplier α is estimated as the ratio of
equivalent cash divided by total weekly lottery prizes α =
80.8/35 = 2.3. According to eq. (5), β = 2.75 and we can
conclude that the lottery scheme and other EnergyCo-
upon designs have similar levels of contribution to redu-
cing the effective cost in our experiment.

6 Concluding remarks
This paper presents the design and critically assesses the
empirical experiment of a coupon incentive-based demand
response program for end-consumers over a two-year
period in the Houston area, United States. Different from
traditional price-based DR programs, EnergyCoupon has
the following features: (1) Dynamic time-of-use DR events
and individualized coupon targets; (2) End-consumers re-
ceive coupon targets and usage statistics through a mobile
app; (3) Voluntary participation in demand response events,
and (4) Periodic lottery that allows the participant to con-
vert their coupons into dollar-value prizes.
Data analysis shows the significant load shedding effect

for the treatment group; however, not much load shift-
ing effect is observed. In addition, we observe the posi-
tive impact of lottery prizes on the growth of desirable
behavior, such as energy saving improvement and lottery
participation. Our posterior analysis also shows that
EnergyCoupon has much lower effective cost (¢5.3/
kWh) compared to previous CPP projects (¢35.0/kWh);
Using prospect theory we estimate that the design of
system architecture and lottery scheme have equal-level
contributions to the cost saving.
This paper is generalizable towards other Internet-of-

Things-enabled demand response activity, and could
shed light on the overall discussion of incentive-based
versus price-based demand response. Future work would
examine the value added by obtaining consumer behav-
ior data in this experiment. Another possible avenue of
future work is to further develop a platform that allows
for the end-consumers to aggregate and participate in
wholesale-level ancillary services.
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