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Abstract

In this paper, we elaborate a new strategy based on cooperative game theory models to encourage and manage the
interactions in a MicroGrid network. The proposed strategy optimizes the cooperation and the energy exchange in a
distributed μGrid network. The strategy consists of a two stage algorithm: Coalition formation algorithm which
was specifically created to approximate the optimal set of coalitions that return considerable savings. And the
Matching game to manage the energy exchange inside each coalition. The performance of our strategy was verified
through simulations. These latter show that the losses can be considerably decreased by the use of the proposed
strategy: the rate of the loss reduction can reach up to 20% if the two stages are applied on the network. Moreover,
the strategy proved to have a fast convergence which makes it operational for real implemented networks.
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1 Introduction
The smart grid [1] is considered as the innovation that will
bring new philosophies and concepts to the electric grid
by enabling the two-way communication between the util-
ity, the components of the grid (transmission network and
distribution network) and the end user. The projection of
the communication network on the electric grid seems
promoting, and gives the chance to countless possibilities
to arise.
Among these enthusiastic opportunities driven either by

future environmental concerns or by high-tech evolution
ambition, we find the smart microgrid (μGrid) system.
The US Department of Energy (DOE) defines the μGrid
as "A group of interconnected loads and distributed energy
resources (DER) with clearly defined electrical boundaries
that acts as a single controllable entity with respect to the
grid [and can] connect and disconnect from the grid to
enable it to operate in both grid-connected or islandmode".
The μGrid emerges to be the solution that will ensure

the transition of the electric grid from the centralized
to the distributed fashion by encouraging the use of the
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DERs. Besides, the implementation of μGrids can help
reduce the human intervention and automate various grid
functions, thus, tackling the complexity of the massive
deployment of the control strategies required in the future
electric grid. Therefore, each μGrid can be considered as
node of a larger network, and the smart grid can see the
light through the peer-to-peer interconnection of these
different nodes, i.e μGrids, that compose the network.
Yet, μGrids implementation faces major challenges,

from the installation and testing, passing through protec-
tion and stability, monitoring and communication, and
finally energy management.
Releasing benefits to consumers in the form of produc-

tivity gains and cost reduction will trigger the incentive
to implement such systems. To this end, the researchers
and government policies must handle the problem of
the optimal and efficient exploitation of the heteroge-
neous resources of energy. Works on this area focus on
the internal energy management of the μGrid system,
i.e, they consider the μGrid as an integral system and
aim to ensure the energy balance between the demand
and the supply. Optimal energy management strategies of
μGrids include: deterministic optimization, load shifting,
stochastic optimization, or a combination of those last.
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Optimizing energy usage inside every node proves to
be crucial but not sufficient to exploit the full capabili-
ties of the future electric grid. Indeed, one major aspect of
the μGrid network is the bidirectional exchange of energy
between its components. If the energy is exchanged with
the utility, i.e, the μGrid even sell/buy energy to/from the
utility. This will undergo a power loss due to the transmis-
sion/distribution lines and the transformers. However, by
allowing μGrids to collaborate, the costs resulting from
the losses will be significantly reduced, especially with the
integration of an efficient interactive distributed strategy.
In the last years, cooperative μGrids in distributed net-

works has become the focus of many contributions. The
works suggest strategies that manage and optimize the
energy exchange inside the μGrid distribution network.
The strategy presented in [2] for example has the origi-
nality of managing the exchange among μGrids that are
connected by both the alternating current (AC) and the
direct current (DC). The strategy respects the operational
constraints, and take benefit from the optimal power flow
(OPF) relaxation method to deal with the non-convex
power flow constraints. The split and merge rules of
the coalition formation games were exploited in [3]. The
authors calculate the stable partition that returns the opti-
mal payoff. The same logic was slightly reproduced in
[4]. To form the coalition, instead of using the split and
merge that is NP-hard, the authors propose a hierarchi-
cal priority based strategy that is characterized by its high
scalability in terms of number of μGrids.

1.1 Our contribution
The paper elaborates a new strategy based on the coop-
erative game theory models to encourage and to manage
the interactions in a μGrid network composed by a cer-
tain number of μGrid elements. The proposed strategy
optimizes the cooperation and the energy exchange in
a distributed μGrid network in order to minimize the
power losses. The novelty of the work lays in two points:

• Coalition formation algorithm: The proposed
algorithm to form the coalition which was specifically
created to be adapted to our system model and to
approximate the optimal set of coalitions that return
considerable savings.

• Matching game: The use of matching game theory
to manage the energy exchange inside the coalition.
The matching strategy was selected due to its ability
to match the buyers to their "preferred" sellers in
order to manage a proper energy distribution among
the μGrids within the same coalition.

The paper is an extension of a contribution published
as a conference paper [5]. The conference paper pre-
sented the second stage of the strategy: the matching
game, which although had significant reduction of the

power losses, was not completely optimized. In this paper,
we further improve the performance of our strategy
by adding another stage: the coalition formation stage.
The coalition formation allowed us to divide the net-
work into subsets that return considerable savings. In the
manuscript, we compared the results and demonstrated
the effectiveness of the new strategy compared with the
old one.
The paper outline is as follows. The system architec-

ture is introduced in the next section, the section gives
also the mathematical model of the losses and the energy
exchange. Section 3 presents the clustering algorithm that
was used to form the network coalitions. In Section 4,
we propose a matching algorithm to manage the energy
exchange inside each coalition. The validation of the pro-
posed solution and the discussion of the output results are
given in Section 5. The final section resumes the chapter
and gives some relevant conclusions.

2 Systemmodel
A μGrid system is mainly composed of a demand load
and heterogeneous energy resources (Renewable energy
resource, energy storage system, distributed generation
units). We consider a μGrid network composed of N
μGrids, and the utility grid as shown in Fig. 1.
At each time step t, each μG i produces a power Gi(t)

and has a consumption load Li(t) to cover.

Definition 1 We define Di(t) = Li(t) − Gi(t) as the net
demand of the μGi.

The value of D leads us to split the N μGrids into two
sets: the set of buyers B and the set of sellers S.

• The sellers are defined as the set of μGs that have a
power surplus, ∀s ∈ S : Ds < 0.

• The buyers are defined as the set of μGs that have a
need, ∀b ∈ B : Db > 0.

The energy exchange is done per hour, thus, the
terms energy and power will be used interchangeably
(Energy(Wh) = Power(W ) × 1h = Power(W ))

2.1 The losses
In conventional networks, and depending on the trader,
the utility grid can be either a seller (if it provides energy

Fig. 1 Smart microGrid Network architecture
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to a buyer-μGrid) or a buyer (if it buy the surplus from
a seller-μGrid). The energy transfer in an electrical cir-
cuit (in our particular case: between an element μGi and
the electrical grid) undergoes a loss due to two main
reasons [6]:

1 The internal resistance of the distribution lines: The
fundamental expression of the dissipated power by
internal resistance is given as the squared current
passing through the circuit multiplied by the internal
resistance of the circuit.

2 The efficiency of the transformer: a transformer is
never 100% efficient. Therefore, some of the
electrical energy will be lost during the conversion of
energy in the transformer.

In this paper, we will adopt the same formula of the losses
as expressed in [3] andwhich take account of the two types
of losses cited above:

Elossi0 = Ri0

U2
0

× dist(i, 0) × E2i0 + βEi0 (1)

• Ei0: The amount of the transferred energy.
• Ri0: Resistance of the distribution circuit.
• dist(i, 0): Geographical distance between the μGi and

the electrical grid.
• U0: The transmission voltage over the distribution

circuit.
• β : The rate of loss during conversion in the

transformer.

If the μGrids choose to collaborate, the μGrid network
will increase its efficiency. On one hand, each μGrid will
choose a partner with which exchanging energy will yield
to less losses than with the utility. On the other hand, they
will avoid the second term of losses as expressed in the
Eq. (1) since the electrical energy will not pass through the
transformer.
The equation of losses, if the energy exchange takes

place internally between two μGrids (one playing the role
of buyer b, and the other as seller s) is as follow:
The dissipated energy, if the energy transfer occurs in

the internal μGrid network circuit, is formulated as:

Elosssb = Rsb

U2
1

× dist(s, b) × E2sb (2)

With:

• Esb: The amount of the transferred energy.
• Rsb: Resistance of the internal medium line between

the two μGs.
• U1: The transmission voltage over the medium line in

the μG network (U1 < U0).

2.2 The energy exchange
To deliver Db the electrical energy needed by a buyer, the
seller have to provide:

Esb = Db + Elosssb

⎧
⎨

⎩

Esb = Db + Rsb
U2
1

× dist(s, b) × E2sb if s, b ∈ μG
Ei0 = Db + Ri0

U2
0

× dist(i, 0) × E2i0 + βEi0 otherwise
(3)

The system (3) is composed of two quadratic equations
where Esb and Ei0 represent respectively the unknown.
Solving the equations yield to two different cases. Follow-
ing, we focus on the case where the seller and buyer are
μGs. The case when the utility grid get involved can be
treated similarly.

2.2.1 The equation admits real roots
If the equation admits real roots, we select the smallest
solution, which in fact, incurs less power losses. Let’s note
that solution Esb. The seller will send Esb and the buyer will
receive Db.

2.2.2 The equation admits no real root
The fact that the equation has no real root can be
explained technically by two reasons. Whether the energy
needed by the buyer exceeds the seller capacity, or the
seller has the total needed amount but the medium (the
cable) can not transfer it all. In this case, the seller will
transmit the minimum between the amount U2

1
2Rsb , which is

the maximum power that the cable can transfer and the
maximum available surplus |Ds|: Esb = min

(
U2
1

2Rsb , |Ds|
)
.

The buyer will receive: Esb − Rsb
U2
1

× E2sb

3 First stage of the game: coalition formation
Cooperative game theory is related primarily with coali-
tions, that is, groups of agents, who coordinate with each
other to increase their payoffs. The clustering algorithms
are one of the famous methods to set optimal coalitions.
Clustering is the unsupervised classification of patterns
into groups (clusters). Clustering algorithms divide a
dataset N into several disjoint subsets (clusters), so that
the characteristics in each subset shares some common
feature - which is often measured by the proximity level
according to some defined distance measure. Examples
of distance measures include: Hamming distance, Man-
hattan distance, and Euclidean distance. The last will be
utilised in the paper.
The general aim of the most commonly used cluster-

ing strategies is to obtain a partition which minimizes the
square error. We define the error errorc inside a cluster as
the sum of the distances of its elements from its center
basing on a distance measure function.
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errorc(c) =
∑

∀a∈c
dist(a, centroid(c)) (4)

The total error of a partition errorp is then the sum of all
the errors of the clusters included.

errorp(C) =
∑

∀c∈C
errorc(c) (5)

The optimum C∗ is defined by errorp(C∗) =
{min(errorp(C)),∀C ∈ C}, with C is the set of all possible
partitions of the setN . Testing all possible configurations
C is too expensive. In fact, the number of partitions of an
n-element set is the bell number Bn. Figure 2 shows how
exponentially the number of partitions increase with each
n increment. Thus, finding the optimum C∗ is an opti-
mization task itself. Clustering algorithms are algorithms
which approximate good C with a less computing effort.
In the following, we propose a hierarchical clustering

algorithm, which was inspired from the famous cluster
leader algorithm. Initially, each μG form its own clus-
ter. Depending on their energy status, the clusters are
split into two groups: sellers and buyers. The two groups
are then sorted in a descendant order in terms of energy
need/surplus. The first cluster Cb of the buyer group is
extracted, and its centroid1 is compared to the centroids
of the seller group. Cb is then merged to the first Cs in the
seller group that verifies the following condition:

loss(Cb,Cs) < loss(Cb,Utility) (6)

The condition (6) ensures that the cluster of the buyer
group is merged with a cluster of a seller group only if
the energy loss during the exchange between the two clus-
ters will be less than the energy loss during the energy
exchange between the buyer cluster and the utility. There-
fore, the energy exchange among clusters is neglected
since it will undergo more losses than if the energy is
exchanged between each cluster and the utility. We adopt
the expressions of losses defined in the Eqs. (1) and (2), the
energy to be exchanged as the minimum between D(Cb)
and D(Cs), and the distance to be used is the distance
between the two centroids. The centroid of the result-
ing cluster is then updated, and its energy status too:
Dnew = DCs + DCb . And depending on whether Dnew
is positive or negative, the new cluster joins the group
of buyers or sellers. The sorting of the updated group is
redone, and the process continues until no cluster wants
to be paired up. The characteristics of the hierarchical
clustering algorithm are resumed in three main points:

• The sorting of the elements in a hierarchical way,
• The comparison of the centroids of the clusters and

not the leaders of the clusters,
• Instead of comparing the distance, we compare the

power loss of the energy exchange.

1centroid of a cluster is its center: centroid(c) = 1
|c|

∑
a∈c a

Fig. 2 Number of partitions for n-element set

The Algorithm 1 highlights the main steps of the
adjusted clustering algorithm.
Once the resulting set of coalitions is formed, every

coalition will need to manage the energy exchange of
the μGs within it. For this end we propose in the next
section an algorithm that optimizes the energy exchange
by reducing the power losses in a coalition.

4 Second stage of the game: matching game
The matching is another branch of the cooperative
game theory. It is a process during which we establish
correspondences, according to a preference function,

Algorithm 1 Hierarchical Leader Cluster Algorithm
Require: N : Set of elements to be clustered,
Require: D, μGrid network parameters,
Require: dist(i, j): Distance matrix, dist(i, 0): Distance
between μGi and the utility,
return C: Approximate optimal partition of the setN
∀i ∈ N : Ci = {i}
S: Set of Ci with Di < 0
B: Set of Ci with Di > 0
while condition do

condition = false
OS: Descendant order of the set S according to Di
OB: Descendant order of the set B according to Di
for ∀b ∈ OB do

Cs is the first seller cluster whose centroid verifies
the condition indicated in the equation 6
C′ = Cb ∪ Cs, OS = OS − {Cs}, OB = OB − {Cb}
Update Centroid of C′
Update Energy Status of C′ and classify it as seller
or buyer
condition = true
BREAK

end for
end while
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between the elements b of a group B and elements s of a
group S (Cf. Fig. 3).
The objective of the matching consists in returning a

stable set M of ordered pairs (b, s) in which each s and
b appear in at most one pair. The matching is said to be
unstable, if there exists one unstable pair (b, s). A seller
s and a buyer b form an unstable pair in the matching if
there exists a second pair (b′, s′) in the matching with the
following properties:

• s prefers the buyer b′ over b,
• b prefers the seller s′ over s

In 1962, David Gale and Lloyd Shapley proved that it is
possible to solve the problem of stable marriages. They
also presented an algorithm that returns the solution [7].
In this section, we will use the Gale-Shapley algorithm to
create a stablematching between the elements s of the sell-
ers’ group and the elements b of the buyers’ group.
The process works in a loop. At each iteration, each mem-
ber b proposes to it preferred seller among the sellers
to which it has not yet proposed (without considering
whether the seller is already paired-up). Each seller then
considers all the received proposals, then retains the buyer
it prefers from the proposals (but defers from accept-
ing it) and rejects all the others. The process stops when
no b wants to make any further proposals. Each seller
then accepts the last proposal it retained and this con-
stitutes the set of the stable matching. Gale and Shapley
proved mathematically that this algorithm always con-
verges and returns a stable matching. The matching algo-
rithm assumes that the number of elements in group B is
equal to the number of elements in group S. Nonetheless,
in our case study, each coalition may have unequal num-
ber of buyers and sellers. Therefore, we have adjusted the
matching algorithm to meet our case requirements.
The steps bellow describes the entire process of the

matching adapted to be applied to our particular case
study.

stage 0 The μGrid coalition is separated into two disjoint
sets: a set B of buyers and a set S of sellers.

stage 1 The list of preferences of every μG is established
based on the relation of preferences.

stage 2 The matching algorithm is applied.

Fig. 3Matching concept

stage 3 The exchange of energy is performed on every
pair of the resulting matching M.

stage 4 The list of the game participants is updated.
stage 5 The last three steps (stage 2, 3 and 4) are repeated

in rounds until either the set of buyers or sellers
becomes empty.

At stage 1, the preference list of the network elements
(sellers and buyers) is be established based on the losses.
For instance, we say that b prefers s3 over s1 and we write
s3 >b s1 if the energy lost during the exchange between b
and s3 is lower than the energy lost if the exchange hap-
pens between b and s1: Elosss3b < Elosss1b . The preference list of
b is Prefb ={s3, s1, . . . , s2} if Elosss3b < Elosss1b < · · · < Elosss2b .
The stage 2 applies the classical matching algorithm on

the coalition. In most cases, the number of buyers and
sellers involved in the matching is unequal. Therefore, at
every round, some elements won’t be matched and should
wait until the next round to enter the game again. For
example, if C = {b1, b2, s1, s2, s3} and b1 (resp. b2) pairs up
with s3 (resp. s1) then s2 will be neglected and will enter
the game in the next round.
At stage 3, we calculate the energy Esb to be exchanged

between each pair (b, s) following the Eq. (3).
According to the resulting Esb, stage 4 updates the

energy status of the participants. Each μG having its net
demand updated to zero is declined from the next rounds
of the game.
The process that includes the matching, the energy

exchange and the energy status update is executed repeat-
edly as long as there is at least two elements each in
different group in the coalition. The process ends if the
remaining elements are all buyers or all sellers.
The Algorithm 2 explains step by step the matching

strategy. The strategy requires as inputs, the distance
matrix dist(i, j) that stores the distance between every two
elements of the coalition, the energy status vector D and
the grid technical parameters. The algorithm returns a
matrix that stores in every (b, s) position the energy that
will be exchanged between the two elements b and s.

5 Simulation results: analysis and discussion
We consider for the simulations a network for which the
technical parameters are described in the Table 1. The net
demand D is composed of two stochastic terms. On one
hand, there is the term G related to the renewable energy
generation which is intermittent. On the other hand, the
consumer behaviour is unpredictable and impacted by
several factors such as his/her consumption preferences
and priorities and the life style. Therefore, the net demand
D of each μGrid is considered to be a Gaussian random
variable with zero mean and a standard deviation that is
uniformly distributed between 3.16 MW and 10MW. The
number N of μGrids in the network varies from 3 to 30
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Algorithm 2 μGrid Matching Game
Require: A coalition C, Net Demand D and Distance

dist(i, j)(i,j)∈C
Require: μGrid network technical parameters

return Matrix of the local energy exchange
Eexch(|C|, |C|)
Stage 1: Establishment of the preference lists Prefs and
Prefb for ∀s ∈ S and ∀b ∈ B respectively based on the
equation of the losses (Eq. 2)
repeat

Stage 2: Execution of the matching
while ( ∃b ∈ B or ∃s ∈ S ) unmatched do

s:= First seller on b’s list to which b has not yet
proposed
if s is unmatched then

pair-up s and b
else if s prefers b to its partner b′ then
pair-up b and s, b′ becomes unmatched

else
s rejects b, b remains unmatched

end if
end while
stage 3: Exchange of energy between the pairs of the
resulting matching
solve the equation 1 of the system 3
if Equation has real roots r then

Eexch(s, b) = min(r > 0)
else

Eexch(s, b) = max(|Ds|, U2
1

Rsb )
end if
stage 4: Update the energy status vector
Ds = Ds + Eexch(s, b)
Db = Db − (Eexch(s, b) − Elossexch(s, b))
if Ds = 0 then

delete s from S the group of sellers
else if Db = 0 then

delete b from B the group of buyers
end if

until S = ∅ or B = ∅
stage 5: Buy/sell the remaining energy from/to the util-
ity.

elements, and are distributed randomly in a square of a
length L, and the utility grid is located in the center of the
square.
The Table 2 summarizes the initial state of aμGnetwork

of 15 elements.
The partition set resulting from the application of the

proposed clustering algorithm is summarized as shown in
Table 3.
The matching algorithm is applied to each of the

clusters. In the following, we give the procedure and the

Table 1 Network parameters

Parameter Signification Value

N Number of μGrids in
the network

Varies between 3 and 30

L Length of the square 50 km

β Power loss rate in the
transformer

0.02

U0 Voltage of the
medium voltage lines

50 kV

U1 Voltage of the low
voltage lines

22 kV

R Resistance of the lines 0.2 ohm/km

numerical result of the application of the matching on the
cluster C1=[1,2,4,10,15].
The net demand vector

D =[ 114.049, 8.948,−133.733,−110.613, 22.498]

Stage 1:
Sellers= [4 10] Buyers= [1 2 15]
We consider the following preference lists:

Pref (b = 1) =[ 10, 4]Pref (s = 4) =[ 15, 1, 2]
Pref (b = 2) =[ 10, 4]Pref (s = 10) =[ 15, 1, 2]

Pref (b = 15) =[ 10, 4]

Repeat, iteration 1:

Stage 2 :

Table 2 The initial state of the network -example-

Microgrid Coordinates (x, y) Energy (MWh)

1 3.697, 1.893 114.049

2 4.638, 1.627 8.948

3 1.849, 1.339 76.924

4 3.822, 3.510 -133.733

5 2.857, 4.173 -114.864

6 0.079, 1.565 -11.032

7 0.239, 2.723 33.131

8 0.926, 2.301 -14.796

9 0.102, 3.653 13.929

10 3.974, 2.389 -110.613

11 0.310, 3.091 14.744

12 2.751, 4.085 -67.714

13 1.501, 1.740 153.951

14 2.226, 2.807 -84.295

15 3.623, 2.619 22.498
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Table 3 Output of the clustering algorithm

Cluster 1 2 3 4 5

Elements [1,2,4,10,15] [3,6,8] [5,7,9,11] 12 [13,14]

1 ← 4
2
15 ← 10

Stage 3:

Esb(4, 1) = 124,
Esb(10, 15) = 22.5,

Stage 4:

D = [0, 8.948, −9.312, −88.026, 0]
Sellers = [4 10], Buyers = [2]

Repeat, iteration 2

Stage 2:

2 ← 10

Stage 3:

Esb(10, 2) = 8.98

Stage 4:

D =[ 0, 0, −9.312, −79.044, 0]
Sellers = [ 4 10], Buyers = [ ]

return Esb
Stage 5: Sellers 4 and 10 sell respectively a net amount
of 9.312 and 79.044 to the utility grid(Cf. Fig. 4)
Figure 4 draws a summary of the energy that was

exchanged in the given example. b1 will buy from s4 all of
the energy it needs, b2 and b15 will buy all of their energy
from s10, while both sellers will need to transfer the rest of
the energy they still have after the exchange to the utility.

Fig. 4 Energy Exchange -Example-

The matching algorithm has a has a fast convergence, and
it is efficient enough to be implemented in real scenarios.
In fact, Fig. 5 shows that it took only 9 iterations in the
average for a coalition of 30 μgrids to converge.
To have a more precise idea, the simulation was run

repeatedly and the results were averaged over the total
number of runs. This will help us avoid the impact of the
uncertainty of demand vector or the randomness of the
μGrids location on the results.
For comparison purposes, we used an adjusted

leader cluster algorithm which instructions are listed in
Algorithm 3. The algorithm begins with the first element
stored in a cluster. We extract step by step the elements
n from the set N subject to clustering. The distance
between the element n and every cluster, formed so far,
is then calculated. The distance can be calculated in
different ways: We can calculate the distance between
n and the nearest/farthest element of the cluster or the
distance between n and the first element that constituted
the cluster (the leader). If a cluster l exists with dist(n, l)
smaller than a specified maximum distance DM, then
n is added to this cluster. Otherwise, n creates another
cluster and becomes the first element of this cluster. The
clustering algorithm was adjusted to be adapted to our
case study, and the adjustment lays in two major points:

• Instead of comparing the element n to the leader list,
the element n is compared to the centroids of each
cluster, which omit the concept of the leader list,

Algorithm 3 Leader Cluster Algorithm
Require: N : Set of elements to be clustered,
Require: dist(i, j): Distance matrix,
Require: dist(i, 0): Distance between μGi and the utility,

return C: Approximate optimal partition of the setN
C = {1}, Centroid = {1}
for ∀elt ∈ 2 to N do

Threshold = Eloss
(elt,0)

for ∀c ∈ 2 to length(C) do
l = Elosselt,centroid(c)
if l < Threshold then

Threshold = l, ref = c
end if

end for
if Threshold = Elosselt,0 then

C(length(C) + 1) = elt
Centroid(length(C)) = elt

else
C(ref ) = C(ref ) ∪ {elt}
Update Centroid of C(ref )

end if
end for
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Fig. 5 Average iterations to final state -Matching-

• Instead of comparing the distance, we compare the
power loss of the energy exchange, and the threshold
is the loss that the power transmission will undergo if
the energy is to be exchanged with the utility.

The figures give the plot of 4 different methods:

• The hierarchical leader cluster: The matching is
applied on every cluster of the coalition.

• The adjusted leader cluster: The matching is applied
on every cluster of the coalition.

• The grand coalition: The matching is applied on the
whole network, no clustering algorithm is performed
to form clusters.

• The optimal set: The matching is applied on all the
set of partitions, and the partition that return the
optimal solution is returned. Due to the
computational complexity of this method, only the
results of the networks having few nodes (5, 7 and 10
μGs) were calculated.

• The classical model: The energy is exchanged
between each node and the utility.

Figures 6 and 7 draw the average power loss per μGrid
resulting from the scenarios cited above as the number of
μGsN in the network varies.

Fig. 6 Average loss per μgrid

Fig. 7 Average loss per μgrid (2)

The Fig. 6 shows the results of the power losses for
the four scenarios cited above. For smaller networks, we
notice that the performance of a non-cooperative scenario
is better than the grand coalition scenario, and this is
explained by the fact that in smaller networks, nodes are
far from each other. Therefore, the exchange of energy in
a cooperative way is more likely to engender additional
losses. By forming coalitions, we avoid this problem and
we can see through the figure that the performance of
the system is significant even for low density networks.
However, the more elements we have in the network, the
less is the distance between them, the more beneficial is
the cooperation, and this is why the curve of the grand
coalition scenario diverge from the curve of the non-
cooperative for high density networks. Adjusted leader
cluster and hierarchical leader cluster have approximate
performance: the adjusted leader cluster is better for low
density networks (N < 13) while the hierarchical leader
cluster outperforms for higher density networks.
In terms of computational complexity, the hierar-

chical leader cluster proved to be more efficient that
the classical algorithm (Cf. Fig. 8). Although start-
ing approximately at the same value, the number of

Fig. 8 Number of iterations to convergence
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iterations needed by the adjusted leader cluster to con-
verge increases and reaches almost 4 times the num-
ber of iterations the hierarchical leader cluster needs for
convergence.

6 Conclusion
In this paper, a novel cooperative strategy for μGrid
networks was proposed. The fundamental aim of the
strategy was the reduction of the losses during the energy
exchange. The strategy consists of a two stage algorithm;
a first stage that forms coalitions and divide the network
into subsets that return considerable savings, and a second
stage that manages optimally the energy exchange inside
each coalition. Our proposed strategy was compared to
numerous other scenarios, and simulations showed that
the use of the strategy can reduce the power loss in the
network. In fact, by applying only the second stage of the
strategy, the losses can be reduced by 5%, this rate can
reach up to 20% if the two stages are applied on the net-
work. The strategy proved also to have a fast convergence
which implies that it has a light computational complexity
and this makes it operational for real implemented
networks.
To make our strategy more adopted to real scenar-

ios, some improvements have to be made. To this end,
we aim at extending our model by considering dif-
ferent system operators rather than on unique utility
supplier. The definition of the prices for the energy
exchange is a crucial point that should be introduced
since it express the energy market competitiveness.
And last but not least, the strategy should be coupled
with an electrical control strategy to make sure opera-
tional constraints are satisfied (e.g, voltage and frequency
stability).

7 Methods
7.1 The characteristics of participants
The participants of the study are: the microgrids and the
utility.
The utility grid is characterised by the following

parameters:

β :power loss rate in the transformer,
U0 :voltage of the medium voltage lines,
R :resistance of the lines,

(x, y) : coordinates of the utility in the network.

Each microgrid is characterised by the following
parameters:

D : The net demand of a microgrid,
U1 : voltage of the low voltage lines,
R :resistance of the lines,

(x, y) : coordinates of the microgrid in the network.

7.2 Aim, design and setting of the study
The objective of the study is to reduce power loss dur-
ing energy exchange between the participants. To this
end, we designed a model to achieve the goal following
two steps:

1 coalition formation: we designed an algorithm that
groups the microgrids that are nearer to each other
than to the utility in the same cluster. Inside the
cluster, the microgrids exchange energy internally,
and any remaining excess/need will be then
exchanged with the utility.

2 matching game: an algorithm designed to manage
the internal energy exchange inside the cluster in
order to further decrease the energy loss.

7.3 Methodologies
For the coalition formation, we took benefit of a famous
coalition formation algorithm: the leader cluster and
adjust it to fit with our study. The matching game also
known as Gale-Shapley algorithm was applied as it was
designed by its owners to each cluster in order to match
every buyer with a seller. The two algorithms combined
compose the contribution of our study.
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