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Abstract

Accurate classification of power quality disturbance is the premise and basis for improving and governing power
quality. A method for power quality disturbance classification based on time-frequency domain multi-feature and
decision tree is presented. Wavelet transform and S-transform are used to extract the feature quantity of each
power quality disturbance signal, and a decision tree with classification rules is then constructed for classification
and recognition based on the extracted feature quantity. The classification rules and decision tree classifier are
established by combining the energy spectrum feature quantity extracted by wavelet transform and other seven
time-frequency domain feature quantities extracted by S-transform. Simulation results show that the proposed
method can effectively identify six types of common single disturbance signals and two mixed disturbance signals,
with fast classification speed and adequate noise resistance. Its classification accuracy is also higher than those of
support vector machine (SVM) and k-nearest neighbor (KNN) algorithms. Compared with the method that only uses
S-transform, the proposed feature extraction method has more abundant features and higher classification accuracy
for power quality disturbance.
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1 Introduction
With the development of grid interconnection, grid-
connection of new energy generation, extensive applica-
tion of power electronic equipment and access of impact
load, the problem of power quality disturbance has
attracted more and more attention [1]. In-depth study of
the power quality influencing factors, accurate extraction
of feature quantities, and accurate classification of power
quality disturbance are required for improving and con-
trolling power quality [2].
The processes of power quality disturbance classifica-

tion consist of feature extraction and classification rec-
ognition. The methods of feature extraction mainly
include Fast Fourier transform (FFT), Short-time Fourier
transform (STFT), wavelet transform, S-transform,
Hilbert yellow transform (HHT), etc. FFT is a conversion

from the time domain to the frequency domain, and has
orthogonal and complete features. The frequency analysis
of a signal is considered from the perspective of the overall
composition of frequency, but the local frequency charac-
teristics of the signal cannot be analyzed. Thus, it is only
suitable for the analysis of steady-state disturbance [3].
STFT has fast computation speed and the algorithm is
easy to implement. It can detect and analyze the signal’s
local spectrum features, but its window function is fixed
with no ability of self-adaptation [4, 5]. Wavelet transform
has the ability of multi-scale time-frequency resolution,
which can be used for local analysis of signals, but signal
analysis can be easily influenced by wavelet base and
decomposition layer [6, 7]. S-transform is developed on
the basis of wavelet transform and STFT. It not only over-
comes their shortcomings, but also enables the analysis of
amplitude change with time of a certain frequency
component of the signal. Its window function changes
with frequency, resulting in higher frequency resolution
but also large amount of calculation [8, 9]. HHT is suitable
for time-frequency analysis detecting methods of non-
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stationary and nonlinear signals, but is easy to generate
modal aliasing during analysis [10]. At present, the main
methods for power quality disturbance classification are
artificial neural network, support vector machine (SVM),
decision tree, K-neighbor (KNN), etc. Artificial neural net-
work has long training time and is easy to fall into local
optimal solution [11, 12] whereas SVM is susceptible to
kernel function and cannot take into account both learn-
ing ability and generalization ability [13]. KNN classifica-
tion requires large amount of computation and large
memory [14], while the decision tree has the advantages
of simple structure, convenient expansion and fast classifi-
cation [15, 16].
Based on this, this paper mainly analyzes 6 types of

single power quality disturbances, and the compound
disturbances of swell + harmonic and sag + harmonic.
Wavelet transform and S-transform are combined to ex-
tract more abundant feature quantities in time and fre-
quency domains. According to the extracted feature
quantities, the classification rules suitable for the 8 dis-
turbance signals are established, and thus, accurate clas-
sification effect of disturbance signals can be obtained
quickly by constructing decision tree classifier. Due to
noise interference in actual power systems, the noise re-
sistance of the proposed method is verified by adding
gaussian white noise. The classification speed and accur-
acy of the proposed method are verified by simulation
comparison.

2 Methods
This paper classifies 8 different disturbances, including the
standard voltage(C0), voltage swell(C1), voltage sag(C2),
voltage interruption(C3), transient oscillation(C4), flick-
er(C5), harmonic(C6), swell + harmonic (C7) and sag +
harmonic(C8).

2.1 Feature extraction based on wavelet transform and S-
transform
2.1.1 Wavelet transform extracts energy feature quantity
Wavelet transform is used for multi-scale decomposition
of power quality disturbance signals. The obtained wavelet
coefficients reflect the distribution of signals on different
decomposition scales, and their differences after decom-
position of different disturbance signals can be used to
represent the signals’ feature quantities. Due to the large
amount of data of the wavelet coefficients as the feature
quantities, the wavelet energy of different decomposition
scales can be calculated through the wavelet coefficients
to significantly reduce the feature dimension.
Power quality disturbances are nonlinear mutation sig-

nals. In order to analyze the disturbances such as transient
oscillations and harmonics, which mainly cause high fre-
quency band mutation, and improve the operation speed
of the wavelet transform, the wavelet basis function needs

to satisfy the requirement of tight support, orthogonality,
higher vanishing moments and calculation speed. The
Daubechies (dbN) series wavelets in the basic wavelet have
the above characteristics and are most commonly used in
the Mallat algorithm. With the increase of N (the wavelet
order), dbN wavelet in time domain increases the support
interval of wavelet, while reduces the overlap of windows
between different scales and the spectrum leakage be-
tween frequency bands. Higher-order db wavelets have
higher vanishing moments, though larger N is not neces-
sary better as the vanishing moments are opposite to the
characteristics of tight support. Therefore, combined with
the characteristics of power quality disturbance signals,
db4 wavelet basis is selected in this paper for wavelet ana-
lysis. In order to reduce the spectrum leakage of wavelet
transform, the main frequency components of transient
components are distributed as far as possible in the center
of the wavelet frequency band, and the disturbance signals
are decomposed by 10 layers. The wavelet energy of each
decomposition layer [17] is:

EDj ¼
XN

k¼1
cdj kð Þ2 ð1Þ

where, cdj is the detail coefficient of layer j, and N is the
number of detail coefficient of layer j. The normalized
value distribution of wavelet energy for the 8 distur-
bances is shown in Fig. 1.
It can be observed from Fig. 1 that the wavelet energy

of each power quality disturbance signal is mainly con-
centrated in the 6th and 7th layers, while the 7th layer
wavelet energy of harmonic, swell + harmonic and sag +
harmonic is noticeably lower compared to the others.
To avoid contingency, each disturbance randomly gener-
ates 300 samples that are superimposed by 30 dB of
noise for testing. Finally, the 7th layer energy is set to
the feature F1, and when the threshold value is 0.56, the
harmonic and harmonic-containing disturbances are
recognized with high precision.

2.2 S-transform extracts feature quantity
The S-transform is a reversible time-frequency analysis
method proposed by Stockwell. Because the height and
width of window function vary with frequency, it has the
advantages of both the WT and STFT, and thus is
widely used. Continuous S-transformation is defined as:

S τ; fð Þ ¼
Z ∞

−∞
h tð Þg τ−t; fð Þe− j2πftdt ð2Þ

g τ−t; fð Þ ¼ j f jffiffiffiffiffiffi
2π

p e
− f 2 τ−tð Þ2

2
ð3Þ

where h(t) is the disturbance signal, and g(τ − t, f) is the
Gaussian window. In practical applications, the signal is
obtained by sampling. Let the sampled signal be h[kT](k =
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0,1,2…N − 1), where N is the number of sampling points
and T is the sampling period, then the expression of
discrete S-transformation is given as:

fS KT ; n
NT½ �¼PN−1

m¼0
H mþn

NTð ÞG m;nð Þe j2πmk
N ;n≠0

S KT ;0½ �¼ 1
N

PN−1

m¼0
H m

NTð Þ;n¼0
ð4Þ

where j, m, n = 0,1,2... N − 1, H(n/NT) and G(m, n) are
the FFT of signal H[kT] and Gaussian window respect-
ively, And are given as:

(
H ½kT �¼ 1

N

PN−1

k¼0
h½kT �e−

j2πnk
N

Gðm;nÞ¼e
−2π

2m2

n2

ð5Þ

The result of S-transformation is a two-dimensional
complex matrix, which is modeled to obtain the modu-
lus matrix. Its row vectors represent the change of amp-
litude of a certain frequency with time, and the column
vectors represent the change of amplitude with fre-
quency at a sampling moment. It reflects the time-
frequency characteristics of the signal. If there is disturb-
ance, it must be shown in the modulus matrix. Accord-
ing to the time-frequency matrix, the amplitude and
frequency mutation of the disturbance can be detected.
According to IEEE’s relevant standards for power qual-

ity disturbances and the principles of their generation, it
is concluded that swell, sag, interruption and flicker
occur mainly in amplitude mutation, with the amplitude
of flicker changing periodically. Harmonic and transient
oscillations occur mainly in frequency mutation. S-
transform has been carried out on standard signals and
the 8 disturbances. Based on the differences in time,
amplitude and frequency of each disturbance signal, the
following characteristics are extracted.

(1) The maximum value F2, minimum value F3 and
standard deviation F4 of the maximum amplitude vector
of time can be calculated as:

F2 ¼ max V 1t−A kTð Þ½ � ð6Þ
F3 ¼ min V 1t−A kTð Þ½ � ð7Þ

F4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN−1

k¼0
V 1t−A kTð Þ−V 1
� �2r

ð8Þ

where, V1t − A is the largest amplitude vector of time, k =
0,1,2... N − 1.
(2) Standard deviation F5 of the maximum frequency

amplitude vector of 100 − 600 Hz frequency band is cal-
culated as:

F5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1

X600

f¼100
V f − maxA−Vm
� �2r

ð9Þ

where Vf −maxA is the maximum frequency amplitude
vector, and Vm is the average value of the maximum
amplitude vector of the frequency band of 100 − 600 Hz.
N is a sampling point in the range of 100 to 600 Hz.
(3) Mean value F6 and standard deviation F7 of the

maximum frequency amplitude vector in the 700 − 1500
Hz frequency band are calculated as:

F6 ¼ fo
Δf

X1500

f¼700
V f − maxA fð Þ� � ð10Þ

F7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1

X1500

f¼700
V f − maxA−Vh
� �2r

ð11Þ

where f0 refers to the frequency resolution of 5 Hz. The
frequency range Δf is 700 − 1500 Hz, and Vh is the aver-
age value of the maximum amplitude vector of the

Fig. 1 Comparison of wavelet energy distribution of different power quality disturbance signals
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frequency band of 700 − 1500 Hz, N is the sampling
point in the 700-1500 Hz frequency band.
(4) The fluctuation time of the maximum amplitude

curve is F8. Amplitude varying from small to large or
from large to small is regarded as a fluctuation.

2.3 The establish of decision tree classifier model
Decision tree is a supervised learning algorithm, a kind
of classifier similar to tree structure. The decision tree
has the advantages of simple structure, convenient ex-
pansion and fast classification speed. It overcomes the
disadvantages of SVM which is affected by kernel func-
tion, and is unable to give consideration to learning abil-
ity and generalization ability, and large computation and
memory demand in KNN classification. Through classifi-
cation rules to build the classification decision tree
model. The structure of decision tree plays an important
role in the accuracy of classification. In order to reduce
the selection requirement of classification threshold and
improve the classification accuracy, binary tree structure
is adopted for classification.

Decision tree is usually used to recursively select the
best feature and segment of the training data according
to the feature, so as to optimize the classification process
of each sub-data set. This process corresponds to the
division of feature space and the construction of decision
tree classification rules. According to the feature extrac-
tion method in Section 2.1, 300 groups of random
disturbance samples are generated and 30 dB noise
superimposed. The feature quantities F1~F8 are calcu-
lated and statistically analyzed. The different disturbance
types and feature quantities are compared in Table 1.
According to Table 1, the optimal feature is selected

recursively and the following 14 classification rules are
established: (1) F1 > 0.56 and F5 < 0.01; (2) F1 < 0.56 and
0.01 < F5 < 0.06; (3) F4 > 0.002 and F7 < 0.02; (4) F4 <
0.002; (5) F4 < 0.002 and F7 < 0.02; (6) F4 > 0.002 and
F8 < 2; (7) F2 > 1.1; (8) F2 < 1.1; (9) F6 < 0.045 or F7 <
0.02; (10) F6 > 0.045 and F7 > 0.02; (11) F8 < 2 and
F3 > 0.9; (12) F8 ≥ 2 and F3 < 0.9; (13) 0.1 < F3 < 0.9;
(14) F3 < 0.1. The corresponding power quality dis-
turbance classification decision tree is constructed as
shown in Fig. 2.

Fig. 2 Decision tree of power quality disturbance classification

Table 1 Analytical comparison of the disturbances and feature quantities

Disturbance types F1 F2 F3 F4 F5 F6 F7 F8

C0 > 0.56 ≈1 ≈1 ≈1 < 0.0009 ≈0 ≈0 0

C1 > 0.56 > 1.1 ≈1 > 0.018,< 0.29 < 0.01 < 0.1 < 0.009 1

C2 > 0.56 ≈1 > 0.1,< 0.9 > 0.017,< 0.32 < 0.01 < 0.12 < 0.01 1

C3 > 0.56 ≈1 < 0.1 > 0.12,< 0.36 < 0.01 < 0.13 < 0.02 1

C4 > 0.56 ≈1 ≈1 < 0.002 < 0.004 > 0.045,< 0.3 > 0.02,< 0.13 0

C5 > 0.56 > 1.1 > 0.1,< 0.9 > 0.002 ≈0 < 0.04 < 0.002 ≥2

C6 ≤0.56 ≈1 ≈1 ≈1 > 0.01,< 0.06 < 0.006 < 0.012 0

C7 ≤0.56 > 1.1 ≈1 > 0.015,< 0.29 > 0.01,< 0.06 < 0.006 < 0.012 0

C8 ≤0.56 ≈1 > 0.1,< 0.9 > 0.02,< 0.33 > 0.01,< 0.06 < 0.006 < 0.012 0
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2.4 Simulation experiment results and discussion
The mathematical model for power quality disturbances
described in [9] is considered. Random noise-free dis-
turbance samples with parameters are generated through
MATLAB simulation for testing (300 samples of C0 ~
C8 each). The sampling frequency is 6.4 kHz, the funda-
mental frequency is 50 Hz, the weekly wave sampling
points are 128, and the data length is 1280 points.
Wavelet transform is used to extract the normalized
wavelet energy of the 7th layer, and S-transform is used
to extract the feature quantities of the disturbances in
time and frequency domains. The extracted feature vari-
ables are inputted into the constructed decision tree
classifier to realize the recognition of the power quality
disturbance signals. Considering that actual power sys-
tem is affected by noise, 20 dB, 30 dB, 40 dB, 50 dB
Gaussian white noises are superimposed onto the sam-
ples respectively to generate a total of 13,500 samples.
To verify the effectiveness of the power quality dis-

turbance classification method based on time-frequency
domain multi-feature and decision tree, Table 2 com-
pares the classification accuracy of the disturbance sig-
nals by using only S-transform (method 1) and the
combination of wavelet transform and S-transform
(method 2) to extract feature quantities under different
noise conditions. Table 3 shows the classification effect
of decision tree, SVM and KNN on disturbance signals
under different noise conditions, whereas Table 4 shows
the time required for classification of each detection
algorithm under the condition of SNR = 30 dB.
It can be seen from Table 2 that the classification

effect of method 2 is better than that of method 1. The
classification accuracies of both feature extraction
methods decrease with the reduction of SNR, though
the reduction of classification accuracy of method 1 is
more significant than that of method 2. When SNR = 20
dB, the accuracy of method 2 is 97.1%, which is 4.5%

higher than that of method 1. It indicates that the fea-
ture extraction method of wavelet transform + S-
transform has better noise resistance and richer feature
quantity than those of S-transform.
As shown in Table 3, the classification accuracies of

DT, SVM and KNN algorithms decrease with the in-
crease of noise intensity. When SNR = 20 dB, the accur-
acy of DT is 5.29% higher than that of SVM and 1.03%
higher than that of KNN. In addition, as can be seen
from Table 4, DT classification is faster than the other
two methods.

3 Conclusion
For the various types of power quality disturbance, this
paper proposes a power quality disturbance classification
method based on time-frequency domain multi-feature
and decision tree, for power quality improvement and
governance. By combining the advantages of wavelet and
S-transform, 8 time-frequency domain eigenvalues are
extracted from 6 single disturbances and 2 compound
disturbances. According to the extracted feature quan-
tities, the classification rules of decision tree are estab-
lished, and the decision tree model for classification is
constructed. Simulation results show that the method is
effective, and the extracted feature quantities can be ef-
fectively used for the classification, and classification of
decision tree. Compared with only using S-transform,
the proposed feature extraction method has richer fea-
ture quantities, higher classification accuracy and robust-
ness to noise. For the feature quantities extracted in this
paper, the classification accuracy of decision tree classi-
fier is higher and the calculation speed faster than those
of SVM and KNN.
The example in this paper is based on MATLAB simu-

lation platform. Further research will try to apply the
proposed method to practical power quality disturbance
classification. Additional types of power quality disturb-
ance will be included and the classification method will
be made more universal.
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