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Abstract

This work considers the problem of decentralized control of inverter-based acmicro-grid in different operation
modes. The main objectives are to (i) design decentralized frequency and voltage controllers, to gather with power
sharing, without information exchange between microsources (ii) design passive dynamic controllers which ensure
stability of the entire microgrid system (iii) capture nonlinear, interconnected and large-scale dynamic of the
micro-grid systemwith meshed topology as a port-Hamiltonian formulation (iv) expand the property of shifted-energy
function in the context of decentralized control of acmicro-grid (v) analysis of system stability in large signal point of
view. More precisely, to deal with nonlinear, interconnected and large-scale structure of micro-grid systems, the
port-Hamiltonian formulation is used to capture the dynamic of micro-grid components including microsource,
distribution line and load dynamics as well as interconnection controllers. Furthermore, to deal with large signal
stability problem of the microgrid system in the grid-connected and islanded conditions, the shifted-Hamiltonian
energy function is served as a storage function to ensure incremental passivity and stability of the microgrid system.
Moreover, it is shown that the aggregating of the microgrid dynamic and the decentralized controller dynamics
satisfies the incremental passivity. Finally, the effectiveness of the proposed controllers is evaluated through
simulation studies. The different scenarios including grid-connected and islanded modes as well as transition
between both modes are simulated. The simulation conforms that the decentralized control dynamics are suited to
achieve the desired objective of frequency synchronization, voltage control and power sharing in the grid-connected
and islanded modes. The simulation results demonstrate the effectiveness of the proposed control strategy.

Keywords: Decentralized control, Inverter-based acmicro-grid, Frequency and voltage control, Active and reactive
power sharing, Incremental passivity, Port-Hamiltonian framework, Shifted-energy function

1 Introduction
In recent years, renewable energy systems have been
increasingly employed to mainly reduce the cost of energy
prices and solve the environmental issues. A cluster of
elements such as loads, distributed generators (DG), dis-
tributed storage units and controllable loads, connected
through a medium or low voltage interconnecting power
grid is defined as a Microgrid system [1, 2]. When the
number of elements in each microgrid is increased, the
problem of controlling them can be very challenging in
a centralized way. Using communication links, especially
in large-scale system, might not be economical and prac-
tical. Moreover, due to the communication link delay or
failure, the reliability of the system may deteriorate. Thus,
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each microgrid has the responsibility of controlling their
own units locally. From the decentralized point of view,
the controller of microsource units only needs the local
variables [3].
Different decentralized control strategies including

droop-based and non-droop-based controllers have been
proposed for ac microgrid systems with different opera-
tion modes. Early work on decentralized parallel inverter
control concepts suitable for microgrid operation was
reported in [4]. Subsequent work [5, 6] extended the
droop concept to ensure sharing of harmonic currents
of non-linear loads. In further investigation of the droop
concept, some researchers [7–9] have proposed power-
angle droop control, in which the phase angle of the dis-
tributed source voltage, relative to a system-wide common
timing reference, is set according to a droop law. A static
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droop compensator is utilized for power sharing in [10].
An enhanced droop control featuring a transient droop
performance is proposed [11]. To improve the active and
reactive power decoupling performance, improved droop
controllers with virtual output impedance are reported
[11, 12]. To account for nonlinear loads, harmonic-based
droop controllers are investigated [13, 14]. To realize real-
time decentralized control strategies a decentralized con-
trol strategy extracted from off-line optimization results
is designed [15], but this control design requires prior
knowledge of the grid structure and extensive compu-
tations are needed if the grid structure changes. Fur-
thermore, the methods proposed in [16, 17] allow for
the seamless plugging-in, unplugging and replacement
of microsource units without spoiling microgrid stabil-
ity. Control design procedures with these features have
been termed plug-and-play [16, 18–21]. However, exist-
ing droop controllers are synthesized in the sense of
the small-signal model of the power transfer mecha-
nisms. To improve the performance of parallel operation,
a stationary-reference-frame droop-controlled model of
parallel-connected inverters is introduced and inner volt-
age and current control loops are proposed [22]. Decou-
pled droop control techniques are proposed and analyzed
in [23] to obtain independent association of frequency
with active power and voltage with reactive power. To
exploit the flexibility and fast dynamics of the inverter-
based distributed energy resources, a piecewise linear
voltage-current droop controller is introduced [24]. To
improve the reactive power sharing performance of droop
control, a virtual impedance optimization method for
reactive power sharing in networked microgrid is pro-
posed [25]. To control parallel-connected Inverters, a
synchronous reference frame virtual impedance loop is
proposed [26]. To soft synchronization of microgrid,
an approach using robust control theory is reported in
[27]. In [28], a reactive-power sharing scheme for two
inverter-based distributed generations with unequal line
impedances in islanded microgrids is reported. An adap-
tative droop control for balancing the state of charge of
multiple energy storage systems in decentralized micro-
grids is studied in [29]. Moreover, numerous control
methodologies have been proposed to improve the ac
microgrid performance [30–37]. A fully decentralized
control and a f P/Q droop control scheme of grid-
connected cascaded inverters are reported [30, 31]. A
cost-function-based decentralized power quality compen-
sation method realizing simultaneously bus voltage com-
pensation and inverter current sharing is proposed [32].
A dual control strategy for power sharing improvement in
islanded mode of AC microgrid is reported [33]. A decen-
tralized optimal servo control system for implementing
instantaneous reactive power sharing inmicrogrids is pro-
posed [34]. In [38], a passivity-based decentralized control

strategy for current-controlled inverters in ac microgrids
is reported. an adaptive droop control is proposed includ-
ing a fuzzy-based droop coefficient adjustment in [35].
Decentralized parallel operation of single phase invert-
ers in islanded mode is reported in [36]. In the study
by [37], two-stage adaptive virtual resistor (AVR) con-
trol scheme for low-voltage parallel inverters is proposed.
A decentralized control with unique equilibrium point
for cascaded-type microgrid is proposed in [39]. By far
the largest body of research work done in decentralized
microgrid control has been for radial architectures (see
also [3]). Notably, the droop control has several limita-
tions and challenges including: inability to guarantee large
signal stability, weak transient performance, weak perfor-
mance for mixed-line microgrids with resistive–inductive
line conditions, and coupled dynamics between active and
reactive power.
Early work towards stability analysis of decentral-

ized controlled intverters based on droop-control was
reported in [40]. A generalized approach for analyzing the
small-signal stability of interconnected inverter systems
was proposed. This result was extended in [41] with the
inclusion of reactive power-voltage magnitude droops
for the interface inverters. In [42], the authors propose a
method, based on the operating point, to set droop gains
adaptively. A computational approach to determining
radial microgrid stability, scalable to large systems, is
presented in [43]. Moreover, numerous methodologies
have been proposed to enhance the microgrid stability
performance via modifying the inverter control loops
[44–48]. These techniques and methods include a
combination of repetitive and deadbeat control with
feedforward compensation for disturbance rejection
[46], secondary control based on potential-function
[47], real-time small signal stability analysis for droop
gain schedule [45] and droop gain variation for
increasing virtual inertia [48]. The various analyti-
cal stability tools for microgrid controllers design are
reported in [49–56]. The small signal models of the
inverter based microgrid is established in [50, 51, 56].
The active load impacts on system small-signal stability
are analyzed in [52], it shows the active loads with a
large dc voltage controller gain may lead to instability.
A combination of small-signal and time-domain simu-
lation for a comprehensive stability analysis are used in
[49, 53, 57–59]. Another impedance-based stability crite-
rion for grid-connected inverters is reported in [55]. The
frequency regulation of microgrid by utilizing the kinetic
energy from the induction motor loads is studied in [60].
An adaptive droop adjustment based on the microgrid
small signal model is introduced in [42]. The authors in
[61] use the on-line grid parameter estimation combined
with small signal stability analysis to detect the islanding
and adjust the inverters droop control parameters. The
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droop scheduling scheme based on bifurcation theory
is presented in [62] to find the worst primary reserve
share that is closest to instability. A mode-adaptive droop
control method is proposed in [63]. Sufficient conditions
for voltage stability in a droop-controlled lossy microgrid
is reported in [64]. Furthermore, sufficient conditions
for stability of lossless microgrids based on energy
function are established in [65]. Two nonlinear droop
controls are proposed in [66, 67] to enhance microgrid
frequency regulation. Nonetheless, it may either require
multiple small signal stability analyzes to determine
the acceptable droop gains [66] or lead to instability
due to a high droop gain when the frequency is close
to the nominal value [67, 68]. Moreover, the complete
reviews and classifications of stability in microgrids are
presented [69–71].
In addition to the droop-based control strategies, non-

droop-based approaches for voltage and frequency con-
trol of the islanded microgrids have also been developed,
e.g. [72–77, 77–80]. A robust servomechanism controller
for a single-DG/ Multi-DG islanded system, which uses
the internal oscillator to control the frequency in an
open-loop manner, has been proposed in [73, 74, 78, 79].
In addition, the following methods have been proposed
for single-DER microgrids: a voltage controller, designed
using an H∞ approach and repetitive control technique,
to mitigate voltage harmonics of the point of common
coupling (PCC) [81] and a robust control scheme for a
microgrid designed based on an H∞ approach to provide
a robust performance [82]; and a robust servomechanism
approach for PCC voltage control [73]. However, these
methods are only applicable to single-DER microgrids.
In the study by [83], a decentralized servomechanism
controller based on robust approach for the islanded oper-
ation of radial connection of two distributed generation
(DG) units is proposed. In [84] state feedback is combined
with a decentralized LMI strategy to ensure stabilization
and frequency regulation, while [85] studies the per-
formance of decentralized frequency-control algorithm
based on integral action. To improve current-sharing,
a robust controller for parallel-connected inverter-based
DGs in lossy microgrid networks is reported in [86].
Although extensive research has been carried out on
the development of non-droop-based control of micro-
grids, they suffer from one or more of the follow-
ing drawbacks: in applicability to multiple-microsources,
inability to guarantee stability and/or performance with
respect to several microsources, and high-order controller
structures.
To overcome the disadvantages of the existing micro-

grid control approaches, various challenges associated
with large signal stability, seamless transition between dif-
ferent operation modes and low-complexity of the local
controllers must be addressed.

In this study, to deal with nonlinear, interconnected
and large-scale structures of microgrid systems, the
port-Hamiltonian formulation is used to capture the
dynamic of microgrid components and interconnection
controllers. In addition, the decentralized controllers are
also formulated as port-Hamiltonian systems that are con-
nected to the microsources with interaction ports. This
framework describes the dynamics in terms of the system
stored energy, interconnection and dissipation structures
[87–89]. Furthermore, we focus on a more accurate and
higher order model for the inverter-based microsources
than conventionally used in the literature [65, 80, 90].
In this work, to deal with large signal stability problem of

microgrid system, the shifted-Hamiltonian energy func-
tion is served as a storage function to ensure incremental-
passivity of system. Notably, the large signal stability
analysis is necessary to guarantee seamless transition
between islanded/grid-connected modes and the con-
vergence of equilibrium states of nonlinear microgrid
dynamic. Although historically energy functions have
played a crucial role to cope with accurate models of
power systems (see also [80, 90–97]), our approach based
on the incremental passivity allows us to cover an accurate
dynamic of microgrids and paves the way for the design of
decentralized controllers.
In the reported research works, the microgrids have

been almost studied in small-signal point of view while
no solution has been proposed regarding the controller
to face with large-signal stability. In this paper, authors
aim to model the microgrid components and propose
new decentralized passivity-based control strategy for an
microgrid consisting microsource units and local loads
based on port-Hamiltonian framework, shifted-energy
function, and incremental passivity to ensure stability of
the entire system and enhance its performance for tran-
sition between grid-connected to islanded modes and
guarantee the desired frequency synchronization, voltage
tracking as well as power sharing. This paper presents the-
oretical concepts, requirements, and necessary conditions
for stability and performance of microgrid with meshed
topology. Finally, in addition to stability and performance
analysis, the effectiveness of the proposed controller is
evaluated by set of simulation studies.
More precisely, the main contributions of the paper are

six-fold:
• Design decentralized frequency and voltage

controllers, to gather with power sharing, without
information exchange between microsources and
their local controllers,

• Design passive dynamic controllers which ensure
stability of the entire microgrid system,

• Capture nonlinear, interconnected and large-scale
dynamic of the micro-grid system with meshed
topology as a port-Hamiltonian formulation,
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• Expand the property of shifted-energy function in the
context of decentralized control of micro-grid,

• Serve the shifted-Hamiltonian energy function as a
storage function to ensure incremental passivity,

• Analysis of system stability in large signal point of
view.

The remainder of this paper is organized as follows.
In Section 2, the port-Hamiltonian formulation and
shifted-Hamiltonian energy function as well as incre-
mental passivity are defined as a background of this
study. The microgrid topology and structure are pre-
sented in Section 3. In Section 4, the microgrid com-
ponent dynamics are also formulated. In addition, the
microgrid units (e.g. microsource, load and distribution
line) are modeled based on port Hamiltonian formulation.
The open-loop analysis of overall microgrid is established
in Section 5. In Sections 6 and 7, the different passive
controllers for frequency and voltage control are also
proposed and analyzed in different operation modes. Fur-
thermore, to deal with large signal stability problem, the
shifted-Hamiltonian energy function is served as a storage
function to ensure incremental passivity of entire sys-
tem. Finally, the paper is closed with simulation results in
Section 8 and conclusions remarks as well as discussion of
future work in Section 9.

2 Background: port-Hamiltonian and incremental
passivity formulation

As mentioned, to deal with nonlinear, interconnected
and large-scale structures of microgrid systems, the
port-Hamiltonian formulation is used to capture the
dynamic of microgrid components and interconnection
controllers. In addition, the decentralized controllers are
also formulated as port-Hamiltonian systems that are con-
nected to the microsources with interaction ports. This
framework describes the dynamics in terms of the system
stored energy, interconnection and dissipation structures
[87–89]. Moreover, the port-Hamiltonain formulation is
described as follows:

Definition 1 A port-Hamiltonian system (in input-
state-output form) is given by:

ẋ = (J (x) − R(x))∇H(x) + g(x)u,
y = g�(x)∇H(x).

(1)

With state x ∈ Rn, input u ∈ Rm and output y ∈ Rm

[87, 88]. In addition, J �(x) = −J (x) is interconnec-
tion matrix, R�(x) = R(x) ≥ 0 is dissipation matrix,
and ∇H(x) is also the vector of partial derivatives of
the Hamiltonian energy function H(x) with respect to the
state x.

It is shown that both the microgrid and the controller
dynamics admit a port-Hamiltonian representation which
are then interconnected to obtain a closed-loop port-
Hamiltonian system. This allows to easily identify the
Hamiltonian energy function and give conditions for sta-
bility of the equilibrium state.
In addition, to deal with large signal stability prob-

lem of microgrid system, the shifted-Hamiltonian energy
function is served as a storage function to ensure
incremental-passivity of system (see [88]). Notably, the
incremental-passivity of the shifted port-Hamiltonian sys-
tem is defined as follows:

Definition 2 Consider the port-Hamiltonian system (1).
Let ȳ = g�(x̄)(∇H (x̄)), by defining shifted-Hamiltonian
energy function (see [88]) to transfer the state variable x to
the desired equilibrium x̄ as follows:

H̄(x) := H(x) − (∇H (x̄))� (x − x̄) − H (x̄) . (2)

Then, the port-Hamiltonian system (1) is incremental pas-
sive if the mapping (u − ū) → (y − ȳ) is passive (see also
[88, 98, 99]), i.e., there exists a function H̄(x) such that:

˙̄H(x) = (∇H(x) − ∇H (x̄))�ẋ ≤ (u − ū)(y − ȳ).

Where x̄ is the desired equilibrium with corresponding
control ū.

3 Microgrid structure and topology
The microgrid is an emerging concept for an efficient
integration of renewable microsource units (see [1, 3,
100–103] and references herein). An inverter-based ac
microgrid consists of microsources (e.g. wind turbine and
solar panel equipped with inverters), distribution lines
and loads that are connected to main-grid via static switch
(common coupling point).

Definition 3 The inverter-based ac microgrid is com-
posed to several units, i.e. microgrid units, includ-
ing microsource, distribution line and load units (see
[3, 90, 100] and references herein). The microsource unit
is referred to unit injecting an amount of power into the
microgrid and load unit is also correspond to unit absorb-
ing an amount power from the micro-grid. In addition,
distribution unit is referred to unit transferring power
withinmicro-grid.Moreover, themain-grid unit is also cor-
responded to common coupling port injecting (absorbing)
an amount of power into (from) the microgrid (main-grid).

Remark 1 A microgrid topology can be viewed as an
unweighted directed graph G where microgrid units (e.g.
main grid, microsource, distribution and load units) cor-
respond to edges and buses correspond to nodes (Fig. 1).
Based on themicrogrid structure we call a bus: amain-grid
bus when amain-grid unit is connected to it; a microsource
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bus when a microsource unit is connected to it; a distribu-
tion bus when a distribution unit is connected to it; a load
bus when a load unit is connected to it. All buses associate
a potential bus and we call a bus a reference bus when
all the potential of the buses in the power system are mea-
sured with respect to it. The reference bus is assumed to
be at ground potential (also see [90, 92, 93] and references
herein).

The inverter-based microgrid model used in this work
consists of g = 1main-grid bus (in grid-connectedmode),
s microsource buses, � load buses and also one reference
bus. Therefore, the total number of buses (nodes or ver-
tices) of the G microgrid (graph) is N = n + 1, with
n = g + s + �. Without loss of generality, it is assumed
that the set of nodes (vertices) N can be partitioned into
four ordered subsets called NG,NS,NL and N0 and these
subsets are associated to main-grid, microsource, loads
nodes and the reference node respectively. We call V ∈
RN the vector of node potentials. The microgrid graph
consists of main-grid, microsource, load and distribution
line edges. In other word, there are main-grid edge asso-
ciated to a main grid unit, microsource edge associated
to a microsource unit and also a load edge associated to
a load unit and these edges define between main grid
node, every microsource node and also every load node
and the reference node respectively. Furthermore, distri-
bution edges associated to distribution units that connect
main-grid, microsource and load buses Therefore, there
are in total g = 1main-grid edge (grid-connectedmode), s
microsource, � load and d distribution edges. Hence, there
are in total e = g + s+ �+ d edges in micro-grid. Without
loss of generality, it is assumed that the set of edges E can
be partitioned into four ordered subsets called EG, ES, EL
and ED associated to main-grid (grid-connected mode),
microsource, load and distribution edges respectively. We
call (Ve, Ie) ∈ Re×e the vectors pair associated to edge volt-
ages and currents respectively. In addition, it is assumed
that all microgrid units share a port of the same dimension
p = pdq = 2 in dq-form.

Fig. 1 An inverter-based microgrid topology (MG: main-grid,MS:
microsource, L: load)

4 Inverter-based acmicrogrid: port-Hamiltonian
formulation

4.1 Main-grid Dynamic
As mentioned in previous section, a main grid unit (grid
connected mode) is called a unit injecting (absorbing) an
amount of power into (from) the network via common
coupling port. In order to describe the dynamic of the
main-grid edge EG, the following model is considered:

θ̇G = ωG,
EG = VG,

PG = v�
GiG, QG = v�

G

[
0 −1
1 0

]
iG.

(3)

Where θG and ωG are phase angle and phase frequency of
the main-grid. In addition, vG and iG are voltage and cur-
rent of main-grid. In addition, PG and QG are also active
and reactive power injected (absorbed) by main grid. It is
assumed that in grid-connected mode the frequency and
voltage of microgrid are stabilized by main grid. Further-
more, it is also assumed that microgrid can absorb (inject)
infinite amount of power from (to) main-grid. Hence, we
have:

0 = − dG(ωG − ω̄) + (PG − Pe),
0 = − aG(vG − V̄ ) + (QG − Qe).

(4)

Where V̄ and ω̄ are desired voltage and phase fre-
quency of micro-grid. In addition, Pe andQe are active and
reactive power of microgrid and dG and aG are constant
coefficients. Furthermore, we have ωG = ω̄ and vG = V̄ .
In grid-connectedmode, themain grid stabilizes voltage

and frequency. In addition, the voltage of main-grid can
be considered as follows:

vG = EG

⎡
⎣ sin(ωGt)
sin
(
ωGt + 2π

3
)

sin
(
ωGt − 2π

3
)
⎤
⎦ (5)

In dq form, the voltage of main-grid can also be repre-
sented as follows:

vGdq =
√
2
3
EG
[
sin(ωGt)
cos(ωGt)

]
= v̄Gdq (6)

Where main-grid connects to microgrid through a port of
dimension p = pdq = 2 in dq-form.

4.2 Microsource dynamics
As mentioned in Section 3, the microsource unit is called
a unit injecting an amount of power to the network. In
this section, the dynamic of microsource unit is repre-
sented in port-Hamiltonian form. In order to describe
this dynamic, a microsource equipped with three-phase
inverter is considered (Fig. 2).
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Let s1, · · · , s6 denote the states of the switches S1, · · · , S6
in Fig. 2, where s = 0 when the switch is open and s = 1
when the switch is closed. The network switches topology
reveals that:

vao = vdcs1, vao = vao(1 − s4),
vbo = vdcs2, vbo = vbo(1 − s5),
vco = vdcs3, vco = vco(1 − s6).

(7)

Considering the constraints imposed by the circuit, i.e.,
short-cutting the voltage source is not allowed, leads to
the observation that the bottom and top switch can never
be closed at the same time. Furthermore, for continuity
considerations in each phase leg, we have:

s1 + s4 = 1, s2 + s5 = 1, s3 + s6 = 1.

The above equations imply that Eq. (7) can be rewritten
into a simplified form. Introducing the new variables sa =
s1 = s4, sb = s2 = s5 and sc = s3 = s6 yields the simplified
equations:

vao = vdcsa, vbo = vdcsb, vco = vdcsc. (8)

Definition 4 The Hamiltonian energy function of the
microsource, which denotes the total energy, is given by:

H(φ, q, qdc) =
∑

j=a,b,c

(
1
2

φ2
j

L
+ 1

2
q2j
C

)
+ 1

2
q2dc
Cdc

(9)

Where φ is the flux linkage across the inductors, q and qdc
the charge in the capacitors. In addition, L and C denote
the inductance and capacitance of the microgrid ac-side.
In addition Cdc denote the capacitance of microsource dc-
side.

Therefore, the microsource can be represented in port-
Hamiltonian form as follows:

⎡
⎣ φ̇

q̇
q̇dc

⎤
⎦ =

⎛
⎝
⎡
⎣ 03 03 ŝ

03 03 031
−s� 013 0

⎤
⎦+

⎡
⎣ 03 −I3 031

I3 03 031
013 013 0

⎤
⎦

−
⎡
⎣ RI3 03 031

03 03 031
013 013 Gdc

⎤
⎦
⎞
⎠
⎡
⎢⎣

∂H
∂φ
∂H
∂q
∂H
∂qdc

⎤
⎥⎦−

⎡
⎣ 03

I3
013

⎤
⎦ iSabc

+
⎡
⎣ 031
031
1

⎤
⎦ iS0 ,

vo,abc = [ 03 I3 031
]∇H(φ, q, qdc).

yA = [ v̄dcI3 03 −ī
]∇H(φ, q, qdc).

(10)

Where ŝ = (̂sa, ŝb, ŝc)� = ϒs, ϒ = 1
3

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦

and s = (sa, sb, sc). In addition, Gdc is the conductance of
microsource dc-side and x = (φ, q, qdc)� is state vector of
microsource unit. Furthermore, the yA and x̄ are auxiliary
output and desired states respectively.
The microsource modeling can be transformed to dq

form as follows:

⎡
⎢⎣

φ̇dq

q̇dq
q̇dc

⎤
⎥⎦ =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

02 02 udq
02 02 021

−u�
dq 012 0

⎤
⎥⎥⎦+

⎡
⎢⎣

ω̄LJ −I2 021
I2 ω̄CJ 021
012 012 0

⎤
⎥⎦

−
⎡
⎢⎣
RI2 02 021
02 02 021
012 012 Gdc

⎤
⎥⎦
⎞
⎟⎠
⎡
⎢⎢⎣

∂H
∂φdq
∂H
∂qdq
∂H
∂qdc

⎤
⎥⎥⎦−

⎡
⎢⎣

02

I2
012

⎤
⎥⎦ iSdq +

⎡
⎢⎣
021
021
1

⎤
⎥⎦ iS0 ,

vodq =
[
02 I2 021

]
∇H(φdq, qdq, qdc),

yA =
[
v̄dcI2 02 −īdq

]
∇H(φdq, qdq, qdc).

(11)

Fig. 2 The microsource equipped with three-phase inverter
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where J =
[

0 1
−1 0

]
and also ϒT0dq = T0dq.

Therefore, the microsource dynamic for i ∈ ES can be
described as follows:

⎡
⎢⎢⎣

φ̇dqi
q̇dqi
q̇dci

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

02 02 udqi
02 02 021

−u�
dqi

012 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

ω̄LiJ −I2 021
I2 ω̄CiJ 021
012 012 0

⎤
⎥⎥⎦

−

⎡
⎢⎢⎣
RiI2 02 021
02 02 021
012 012 Gdci

⎤
⎥⎥⎦
⎞
⎟⎟⎠
⎡
⎢⎢⎣

∂Hi
∂φdqi
∂Hi
∂qdqi
∂Hi
∂qdci

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

02

I2
012

⎤
⎥⎥⎦ iSdqi +

⎡
⎢⎢⎣
021
021
1

⎤
⎥⎥⎦ iS0 i ,

vodqi =
[
02 I2 021

]
∇HS (xi) ,

yAi =
[
v̄dci I2 02 −īdq

]
∇HS (xi)

(12)

Where we have:

⎡
⎣ φ̇dqi
q̇dqi
q̇dci

⎤
⎦ ∈ Rni , udqi ∈ Rmi ,

vodqi ∈ Rpi , iSdqi ∈ Rpi , iS0i ∈ R.

(13)

In addition, ni = 5,mi = 2 and pi = 2. The port-
Hamiltonian energy function is also defined asHi : Rni →
R.
The aggregated model of the microsource dynamics

can be obtained by collecting the port-Hamiltonian forms
given by Eq. (12) for i ∈ ES. Let the numbers:

nS :=
s∑

i=1
ni, mS :=

s∑
i=1

mi, pS :=
s∑

i=1
pi, pS0 := s.

(14)

the aggregated vectors:

vS,dq = col(vSdqi), iS,dq = col(iSdqi)

uS,dq = col(udqi), vS,dq = col(vodqi)

vS0 = col(vS0i), iS0 = col(iS0i)⎡
⎣ φS,dq
qS,dq
qdc,S

⎤
⎦ = col

⎡
⎣ φdqi
qdqi
qdci

⎤
⎦ ,

⎡
⎢⎢⎣

∂HS
∂φS,dq
∂HS
∂qS,dq
∂HS
∂qdc,S

⎤
⎥⎥⎦ = col

⎡
⎢⎢⎣

∂Hi
∂φdqi
∂Hi
∂qdqi
∂Hi
∂qdci

⎤
⎥⎥⎦
(15)

the interconnection and dissipation matrices:

JSu := bdg

⎧⎨
⎩
⎡
⎣ 02 02 udqi

02 02 021
−u�

dqi
012 0

⎤
⎦
⎫⎬
⎭ ,

JSc := bdg

⎧⎨
⎩
⎡
⎣ ω̄LiJ −I2 021

I2 ω̄CiJ 021
012 012 0

⎤
⎦
⎫⎬
⎭ ,

RS := bdg

⎧⎨
⎩
⎡
⎣ RiI2 02 021

02 02 021
012 012 Gdci

⎤
⎦
⎫⎬
⎭ .

(16)

interaction port and microsource port matrices:

FS :=bdg

⎧⎨
⎩
⎡
⎣ 02

−I2
012

⎤
⎦
⎫⎬
⎭ , FS0 := bdg

⎧⎨
⎩
⎡
⎣ 021
021
1

⎤
⎦
⎫⎬
⎭

AS :=bdg

⎧⎨
⎩
⎡
⎣ v̄dciI2

02
−ī�dqi

⎤
⎦
⎫⎬
⎭

(17)

and the total Hamiltonian function HS : Rns → R is
defined as follows:

HS :=
s∑

i=1
Hi (18)

The aggregated model of the microsource dynamics can
be written as:
⎡
⎣ φ̇S,dq
q̇S,dq
q̇dc,S

⎤
⎦=(JSu +JSc−RS)

⎡
⎢⎢⎣

∂HS
∂φS,dq
∂HS
∂qS,dq
∂HS
∂qdc,S

⎤
⎥⎥⎦+ FSiS,dq + FS0 iS0 ,

vS,dq = F�
S ∇HS (xS) ,

ySA = A�
S (x̄S)∇HS (xS) .

(19)

Remark 2 The following general port-Hamiltonian form
is considered for microsource dynamics:
⎧⎪⎪⎨
⎪⎪⎩

ẋS = [JSu + JSc − RS
]∇HS (xS) + FSwS + FS0wS0 ,

ySA = A�
S (x̄S)∇HS (xS) ,

yS = F�
S ∇HS (xS) ,

yS0 = F�
S0∇HS (xS) .

(20)

Where xS = (
φS,dq, qS,dq, qdc,S

)
is state vector of

microsource units;HS(xS) is Hamiltonian energy function;
JSu and JSc are interconnection matrices and RS is dis-
sipation matrices; (wS, yS) = (

iS,dq, vS,dq
)
is conjugated

interaction port variables;
(
wS0 , yS0

) = (
iS0 , vdc,S

)
is also

conjugated microsource port variables. Other matrices can
be defined as follows, FS interaction port matrix and FS0
microsource port matrix. Furthermore, the ySA is auxiliary
passive outputs.
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4.3 Distribution line dynamics
A distribution line unit is called a unit that transfer power
in the microgrid and also absorb or inject a little amount
of power compared to microsource and load units. It is
assumed that all distribution line units are describing by
mixed lines (i.e. R − L series). A circuit representation
of series line is illustrated in Fig. 3. The model consists
of an R − L unit (resistive-inductive line). Therefore, The
model of the distribution line unit is simply given by the
following port-Hamiltonian formulation:

φ̇ = − [R ⊗ I3]∇H(φ) + v,
i = ∇H(φ).

(21)

Where φ is the magnetic flux in the inductor.

Definition 5 The Hamiltonian energy function of the
distribution line,H(φ) : R3 → R, is described as follows:

H(φ) := 1
2
φ�(L ⊗ I3)−1φ. (22)

In order to describe the port-Hamiltonian model in dq
form, we have:

φ̇dq = [ω̄LJ − RI2]
∂H
(
φdq
)

∂φdq
+ vdq,

idq = ∂H
(
φdq
)

∂φdq
.

(23)

Where J =
[

0 1
−1 0

]
. In addition, H

(
φdq
)
: R2 → R is

Hamiltonian energy function and described as follows:

H
(
φdq
)
:= 1

2
φ�
dq(L ⊗ I2)−1φdq. (24)

Therefore, the distribution line dynamic for i ∈ ED can be
described as follows:

φ̇dqi = [ω̄LiJ − RiI2]
∂H
(
φdqi

)
∂φdqi

+ vdqi ,

idqi = ∂H
(
φdqi

)
∂φdqi

.
(25)

Where we have:

φdqi ∈ Rni , vdqi ∈ Rpi , idqi ∈ Rpi . (26)

Where ni = 2 and pi = 2. In addition, port-Hamiltonian
energy function defines asHi

(
φdqi

)
: Rni → R.

The aggregated model of the distribution line dynamics
can be obtained by collecting the port-Hamiltonian forms
given by Eq. (25) for i ∈ ED. Let the numbers:

Fig. 3 R − Lmodel of a distribution unit

nD :=
d∑

i=1
ni, , pD :=

d∑
i=1

pi. (27)

the aggregated vectors:

iD,dq = col
(
idqi
)
, vD,dq = col

(
vdqi
)
,

φD,dq = col
(
φdqi

)
,

∂HD
∂φD,dq

= col
(

∂Hi
∂φdqi

)
.

(28)

the interconnection and dissipation matrix:

JDc := bdg {ω̄LiJ} ,
RD := bdg {RiI2} .

(29)

interaction port matrices:

FD := bdg {I2} (30)

and the total Hamiltonian energy functionHD : RnD → R:

HD :=
d∑

i=1
H
(
φdqi

)
(31)

The aggregated model of the distribution line edges can
be written as:

φ̇D,dq = (JDc − RD
) ∂HD

∂φD,dq
+ FDvD,dq,

iD,dq = F�
D

∂HD
∂φD,dq

.
(32)

Remark 3 The general port-Hamiltonian formulation of
the distribution line dynamics is given by:

{
ẋD = [JDc − RD

]∇HD (xD) + FDwD,
yD = F�

D∇HD (xD)
(33)

4.4 Load dynamics
A load unit is called a power unit that absorbs an amount
of power from the micro-grid. Without loss of general-
ity, it is assumed that all load units are describing by
R − C parallels. A circuit representation of load unit
(resistance-capacitance parts)is illustrated in Fig. 4. The
model of the load unit is simply given by the following
port-Hamiltonian system:

q̇ = − [R ⊗ I3]∇H(q) + i,
v = ∇H(q).

(34)

Where q is the charge in the capacitor.
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Fig. 4 R − C model of a load unit

Definition 6 The Hamiltonian energy function of load
unit,H(q) : R3 → R, is described as follows:

H(q) := 1
2
q�(C ⊗ I3)−1q (35)

In order to describe the port-Hamiltonian model in dq
form, we have:

q̇dq = [ω̄CJ − RI2]
∂H
(
qdq
)

∂qdq
+ idq,

vdq = ∂H
(
qdq
)

∂qdq
.

(36)

Where J =
[

0 1
−1 0

]
. In addition, H

(
qdq
)
: R2 → R is

Hamiltonian energy function and described as follows:

H
(
qdq
)
:= 1

2
q�
dq(C ⊗ I2)−1qdq. (37)

Therefore, the load dynamic for i ∈ EL can be described
as follows:

q̇dqi = [ω̄CiJ − RiI2]
∂H
(
qdqi
)

∂qdqi
+ idqi ,

vdqi = ∂H
(
qdqi

)
∂qdqi

.
(38)

Where we have:

qdqi ∈ Rni , idqi ∈ Rpi , vdqi ∈ Rpi . (39)

In addition, ni = 2 and pi = 2. The port-Hamiltonian
energy function is also defined asHi

(
qdqi
)
: Rni → R.

The aggregatedmodel of the load dynamics are obtained
by collecting the port-Hamiltonian forms given by Eq. (38)
for i ∈ EL. Let the numbers:

nL :=
�∑

i=1
ni, , pL :=

�∑
i=1

pi. (40)

the aggregated vectors:

iL,dq = col
(
idqi
)
, vL,dq = col

(
vdqi
)
,

qL,dq = col
(
qdqi

)
,

∂HL
∂qL,dq

= col
(

∂Hi
∂qdqi

)
,

(41)

the interconnection and dissipation matrix:

JLc := bdg {ω̄CiJ} ,
RL := bdg {RiI2} .

(42)

interaction port matrices:

FL := bdg {I2} . (43)

and the total Hamiltonian functionHL : RnL → R for load
dynamics:

HL :=
�∑

i=1
H
(
φdqi

)
. (44)

The aggregated model of the distribution load dynamics
can be written as:

q̇L,dq = (JLc − RL
) ∂HL

∂qL,dq
+ FLiL,dq,

vL,dq = F�
L

∂HL
∂qL,dq

.
(45)

Remark 4 The general port-Hamiltonian formulation of
the distribution load dynamics is given by:{

ẋL = [JLc − RL
]∇HL (xL) + FLwL,

yL = F�
L ∇HL (xL) .

(46)

4.5 Microgrid overall dynamic
The microgrid overall dynamic is obtained by collect-
ing the aggregated unit dynamics Eqs. (3), (5), (20), (33)
and (46). Therefore, the overall dynamic can be rewritten
in port-Hamiltonian formulation as follows (Fig. 5):

0 = wG − w̄G = iGdq − īGdq ,
ẋS = [JSu + JSc − RS

]∇HS (xS) + FSwS + FS0wS0 ,
ẋL = [JLc − RL

]∇HL (xL) + FLwL,
ẋD = [JDc − RD

]∇HD (xD) + FDwD,
yG = ȳG = v̄Gdq ,

ySA = A�
S (x̄S)∇HS(x),

yS = F�
S ∇HS (xS) ,

yL = F�
L ∇HL (xL) ,

yD = F�
D∇HD (xD) ,

yS0 = F�
S0∇HS (xS) .

(47)
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Fig. 5Microgrid Overall Dynamic: port-Hamiltonian formulation

Let collecting the numbers (14), (27) and (40) as follows:

nT := nS + nL + nD, mT := mS,
pT := pS + pL + pD, pT0 := pS0 ,

(48)

Collecting interconnection matrices of the microgrid unit
dynamics (16), (29) and (42):

JTu :=bdg
{
JSu , 0, 0

}
, JTc := bdg

{
JSc ,JLc ,JDc

}
,

JSu :=bdg

⎧⎨
⎩
⎡
⎣ 02 02 udqi

02 02 021
−u�

dqi
012 0

⎤
⎦
⎫⎬
⎭ ,

JSc :=bdg

⎧⎨
⎩
⎡
⎣ ω̄LiJ −I2 021

I2 ω̄CiJ 021
012 012 0

⎤
⎦
⎫⎬
⎭ ,

JLc :=bdg {ω̄CiJ} , JDc := bdg {ω̄LiJ} .
(49)

Collecting dissipation matrices of the microgrid unit
dynamics (16), (29) and (42):

RT := bdg {RS,RL,RD} ,

RS := bdg

⎧⎨
⎩
⎡
⎣ RiI2 02 021

02 02 021
012 012 Gdci

⎤
⎦
⎫⎬
⎭ ,

RL := bdg {RiI2} , RD := bdg {RiI2} .

(50)

and collecting interaction port matrices of the microgrid
unit dynamics (17), (30) and (43):

FT :=bdg {FG, FS, 0, FD} ,

FG :=1, FS := bdg

⎧⎨
⎩
⎡
⎣ 02

−I2
012

⎤
⎦
⎫⎬
⎭ ,

FL :=bdg {I2} , FD := bdg {I2} .

(51)

and collecting microsource port matrices (17):

FT0 := bdg
{
FS0 , 0, 0

}
; FS0 := bdg

⎧⎨
⎩
⎡
⎣ 021
021
1

⎤
⎦
⎫⎬
⎭ . (52)

and collecting overall auxiliary passive outputmatrices (19):

AT := bdg {AS, 0, 0} ; AS := bdg

⎧⎨
⎩
⎡
⎣ v̄dciI2

02
−ī�Sdqi

⎤
⎦
⎫⎬
⎭ . (53)

The overall port-Hamiltonian form of inverter-based
microgrid can be represented as follows:

0 = wG − w̄G,
ẋT =[JTu +JTc − RT

]∇HT (xT )

+ FTwT + FT0wT0 ,
yG = ȳG,
yTA = A�

T (x̄T ) ∇HT (xT ) ,
yT = F�

T ∇HT (xT ) ,
yT0 = F�

T0∇HT (xT ) .

(54)

Where the overall Hamiltonian energy function HT :
RnT → R is given by:

HT := HG + HL + HD (55)

Furthermore, in overall microgrid dynamic (54), the state
space vectors are defined as follows:

xT =

⎡
⎢⎢⎢⎢⎣

φS,dq
qS,dq
qdc,S
qL,dq
φD,dq

⎤
⎥⎥⎥⎥⎦ ∈ RnT , wT =

⎡
⎣ iS,dq

iL,dq
vD,dq

⎤
⎦ ∈ RpT ,

yT =
⎡
⎣ vS,dq
vL,dq
iD,dq

⎤
⎦ ∈ RpT , wT0 = iS0 ∈ RpT0 , yT0 = vS0 ∈ RpT0 ,

(56)

As mentioned in Section 3, the microgrid topology can be
define based on graph G. In addition, the incidence matrix
D ∈ R

∨×e of the microgrid graph is obtained by treating
buses as nodes and power units (main-grid, microsource,
distribution lines and loads) as edges and given by:
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D =

⎡
⎢⎢⎢⎢⎣

σ̂ IG 0 0 0 σ̂DG
0 ISV 0 0 DSV
0 0 ISF 0 DSF
0 0 0 IL DL

−σ̂1�
G −1�

SV −1�
SF −1�

L 0

⎤
⎥⎥⎥⎥⎦ (57)

Where σ̂ = (1 − σ) and σ shows the microgrid different
operation modes, i.e. σ = 0 for grid-connected and σ =
1 for islanding mode. In addition, 1× is correspond to a
column vector with all its entries equal to one and the of
size of vectors defines as follows:

1G ∈ Rg ,
[
1SV 1SF

] ∈ Rs, 1L ∈ R� (58)

Notably, in islanding mode, the microsources are divided
to grid-forming (stabilizing frequency) and grid feeding
(stabilizing voltage and power). Hence, the sub-matrices,
DSV andDSF , are refereed to these divisions. Furthermore,
the sub-matrix D′ represents the incidence matrix of the
G′ microgrid graph, that is obtained by eliminating the
reference node and edges that are connected to it.

D′� = [ σ̂DG DSV DSF DL
]

(59)

In addition, the sub-matrix of microsource incidence
matrix is also decomposed to capture the information
about the microgrid different operation modes (grid-
connected and islanding).
In this section, the vector of node voltages V and the

vector of edge voltages and currents (Ve, Ie) are defined as
follows:

V :=

⎡
⎢⎢⎢⎢⎣

VG
VSV
VSF
VL
0

⎤
⎥⎥⎥⎥⎦ ∈ R

∨
, Ve:=

⎡
⎢⎢⎢⎢⎣

vG
vSV
vSF
vL
vD

⎤
⎥⎥⎥⎥⎦ ∈ Re, Ie:=

⎡
⎢⎢⎢⎢⎣

iG
iSV
iSF
iL
iD

⎤
⎥⎥⎥⎥⎦ ∈ Re

(60)

Where the reference node is considered to be a ground
potential.
Using Kirchhoff ’s current and voltage laws we get then:

0∨ = DIe, Ve = D�V (61)

Then, recalling the definition of incidence matrix given
in (57), we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = iG + σ̂DGiD,
0 = iSV + DSV iD,
0 = iSF + DSF iD,
0 = iL + DLiD,
0 = σ̂1�

GiG + 1�
SV iSV + 1�

SF iSF+1�
L iL.

(62)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vG = VG,
vSV = VSV ,
vSF = VSF ,
vL = VL,
vD = D�

GVG + D�
SVVSV + D�

SFVSF+D�
L VL.

(63)

Therefore, the overall interconnection law is obtained as
follows:

w = T y, (64)

By defining w := col
(
iG, iSF , iSV , iL, vD

)
and y :=

col
(
vG, vSF , vSV , vL, iD

)
, the overall interconnection matrix

is obtained as follows:

T =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −σ̂DG
0 0 0 0 −DSV
0 0 0 0 −DSF
0 0 0 0 −DL

σ̂D�
G D�

SV D�
SF D�

L 0

⎤
⎥⎥⎥⎥⎦ (65)

Note that the overall interconnection law is power pre-
serving. In fact

w�y = y�T �y = 0, (66)

Where the matrix T is skew-symmetry. We also have:

wT = TTyT +

⎡
⎢⎢⎣

0
0
0

σ̂D�
G

⎤
⎥⎥⎦ vG = TTyT + GTȳG, (67)

where the vG is the voltage of main-grid. Therefore the
matrix TT is defined as follows:

TT =

⎡
⎢⎢⎣

0 0 0 −DSV
0 0 0 −DSF
0 0 0 −DL

D�
SV D�

SF D�
L 0

⎤
⎥⎥⎦ (68)

Remark 5 By adding the dynamic of main-grid in grid-
connected mode (3) to overall port-Hamiltonian model-
ing (54) and using the interconnection law (68), we then
have:

0 = wG − w̄G,

ẋT =
[
JTu + JTc − RT + FTTTF�

T

]
∇HT (xT )

+ GTȳG + FT0wT0 ,
yTA = A�

T (x̄T )∇HT (xT ) ,
yT = F�

T ∇HT (xT ) ,
yG = ȳG,
yT0 = F�

T0∇HT (xT ) .

(69)

Where the matrix FTT F�
T is skew-symmetry.

In addition, by using iG = ∇HT (xD) , so we have:

0 = wG − w̄G = −σ̂DGiD + w̄G

= −σ̂DG∇HT (xD) + w̄G.
(70)
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Remark 6 The microgrid overall port-Hamiltonian sys-
tem (69) satisfies the power balance equation:

ḢT = [∇HT (xT )]�ẋT
= −[∇HT (xT )]�RT [∇HT (xT )]
+ [∇HT (xT )]�

{
GTȳG + FT0wT0

}
≤ [∇HT (xT )]�

{
GTȳG

}+ [∇HT (xT )]�
{
FT0wT0

}
= w�

GȳG + y�
T0wT0

(71)

Therefore, the overall port-Hamiltonian system veri-
fies the dissipation inequality with Hamiltonian storage
functionHT . Where the term:

– ḢT accounts for the stored power (difference
between supplied and absorbed power) in micro-grid;

– [∇HT (xT )]�RT [∇HT (xT )] represents the
dissipated power in micro-grid;

– w�
GȳG + y�

T0
wT0 represents the supplied power in

micro-grid.

5 Microgrid open-loop analysis
The set of assignable equilibrium to the microgrid overall
dynamic (69) is given by:

0 = w̄G − w̄G,

0 =
[
JTu (ū) + JTc − RT + FTTTF�

T

]
∇HT (x̄T )

+ GTȳG + FT0wT0 ,
ȳTA = A�

T (x̄T )∇HT (x̄T ) ,
ȳT = F�

T ∇HT (x̄T ) ,
ȳG = ȳG,
ȳT0 = F�

T0∇HT (x̄T ) ,
(72)

Where x̄T ∈ RnT is the desired equilibrium with corre-
sponding control ū.

Proposition 1 Suppose now that there exists an equilib-
rium x̄T . Then, the shifted Hamiltonian energy function (2)
transfers the state variable xT to the desired equilibrium
x̄T .

H̄T (s) := HT (s) − (∇HT (s̄))� (s − s̄) − HT (s̄) . (73)

Proof By defining z := ∇HT (s), z̄ := ∇HT (s̄), λ :=
∇HS(s) and λ̄ := ∇HS (s̄) and recalling the equations (69),
we have

˙̄HT (s) = (∇HT (s) − ∇HT (s̄))�ṡ

= (z − z̄)�
{[
JTu + JTc − RT + FTTTF�

T

]
z

+ GTȳG + FT0wT0

}
= (z − z̄)�

{[
JTc − RT + FTTTF�

T

]
(z − z̄)

+ JTu(u)z − JTu (ū) z̄
}

˙̄HT (s) = −(z − z̄)�RT (z − z̄)
+ (z − z̄)�

{
JTu(u)z − JTu (ū) z̄

}
.

(74)

Where the definition (72) and the skew-symmetry of
the matrix

[
JTc + FTTTF�

T
]
are used to obtain the final

equation. Therefore, for the second part of equation
Eq. (74), we have:

(z − z̄)�
{
JTu(u)z − JTu (ū) z̄

}
= (z − z̄)�

{
JTu(u) (z − z̄) + JTu(u)z̄ − JTu (ū) z̄

}
= (z − z̄)�

{
JTu (u − ū)

}
z̄

(75)

Then, recalling the equations (47), we have

(z − z̄)�
{
JTu (u − ū)

}
z̄

= (λ − λ̄
)� {JSu (u − ū)

}
λ̄

= (λ − λ̄
)� {AS (s̄)} (u − ū) = ỹ�

SA ũ.

(76)

Where ỹSA = A�
S (s̄) (∇HS(s) − ∇HS (s̄)). Therefore,

the overall port-Hamiltonian system Eq. (69) verifies the
incremental passivity with shifted-Hamiltonian storage
function H̄T .

6 Microgrid closed-loop stability analysis and
control in grid-connectedmode

In this section, we show that both the microsource
dynamic as well as the decentralized controller admit a
port-Hamiltonian representation (Fig. 6), and in particu-
lar are passive systems. As a result, the interconnection
between the controller and the nonlinear microsource
system is power-preserving, implying passivity of the
closed loop system as well.

Remark 7 In grid-connected mode, it is assumed that
the frequency and voltage of microgrid are stabilized by
main grid. Therefore, the microsources work to manage
active and reactive injected into micro-grid.

In this section, in order to control the microsource out-
put current iSdqi and dc voltage the following decentralized
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Fig. 6Microgrid in grid-connected mode

passive controller (proportional-integral) is considered:

η̇dqi = uCi = −yBi ,
udqi = yCi = −KPdqi yBi + KIdqiηdqi ,

yBi = B�
i (x̄i)∇HS (xi)

= [ v̄dciI2 v̄dci ω̄CiJ −īSdqi
]∇HS (xi) .

(77)

In compact form, we have:

η̇C,dq = uC = −yB,
u = col

{
udqi

} = yC = −KPyB + KIηC,dq
(78)

Where KP = bdg
{
KPdqi

}
,KI = bdg

{
KIdqi

}
and HCi =

1
2

(
ηCdqi

)�
KIdqi

(
ηCdqi

)
.

In this section, the combination of controller dynamic
(decentralized passive controller) (78) with other micro-
grid unit dynamics is analyzed in port-Hamiltonian form.
Hence, the aggregated model of the microsource (12) and

controller dynamics (78) can be then written as:

⎡
⎢⎢⎣

η̇S,dq
φ̇S,dq
q̇S,dq
q̇dc,S

⎤
⎥⎥⎦ = (JSCu + JSCc − RSC

)
⎡
⎢⎢⎢⎢⎣

∂HSC
∂ηS,dq
∂HSC
∂φS,dq
∂HSC
∂qS,dq
∂HSC
∂qdc,S

⎤
⎥⎥⎥⎥⎦

+ FSCiS,dq + ESCrS,dq
+ FSC0 iS0 , vS,dq = F�

SC∇HSC (xSC)

(79)

Where udqi = yCi = −KPdqi yBi + KIdqiηdqi . In addition,
the new Hamiltonian energy function is obtained by com-
bination of microsource and controller energy functions,
Hence, we have:

HSC := HS + HC (80)

Similar to Section 4.5, the overall model can be obtained
by collecting the unit dynamics (3), (32), (45) and (79) and
also interconnection overall law (68), so we have (Fig. 7):

0 = wG − w̄G,

ẋT =
[
JTu + JTc − RT + FTTTF�

T

]
∇HTC (xT )

+ GTȳG + ETrT + FT0wT0 ,
yTA = A�

T (xT )∇HTC (xT ) ,
yT = F�

T ∇HTC (xT ) ,
yG = ȳG,
yT0 = F�

T0∇HTC (xT ) ,

(81)

Where the numbers are obtained by collecting
the (14), (27) and (40):

nT := nSC + nL + nD, mT := mS,
pT := pS + pL + pD, pT0 := pS0 .

(82)

Where nSC = nS + nC with nC =∑s
i=1 pi .

Fig. 7 Overall microgrid dynamic in grid-connected mode: microsources equipped with decentralized port-Hamiltonian control dynamics
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In addition, collecting interconnection matrices of the
microgrid unit dynamics (29), (42) and (79):

JTu := bdg
{
JSCu , 0, 0

}
, JTc := bdg

{
JSCc ,JLc ,JDc

}
,

JSCu := bdg

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

02 −v̄dci I2 −v̄dci ω̄CiJ īSdqi
vdci I2 02 02 −α

vdci ω̄CiJ 02 02 021
−i�Sdqi α� 012 0

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

JSCc :=bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

02 02 02 021
02 ω̄LiJ −I2 021
02 I2 ω̄CiJ 021
012 012 012 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
,

JLc := bdg {ω̄CiJ} , JDc := bdg {ω̄LiJ} .
(83)

Where α = KPdqi yBi . Collecting dissipationmatrices of the
microgrid unit dynamics (29), (42) and (79):

RT := bdg {RSC ,RL,RD} ,

RSC := bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

02 02 02 021
02 RiI2 02 021
02 02 02 021
012 012 012 Gdci

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
,

RL := bdg {RiI2} , RD := bdg {RiI2} .

(84)

and collecting interaction port matrices of the microgrid
unit dynamics (30), (43) and (79):

FT := bdg {FG, FSC , 0, FD} ,

FG := 1, FSC := bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

02
02
−I2
012

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
,

FL := bdg {I2} , FD := bdg {I2} .

(85)

and collecting microsource port matrices (79):

FT0 := bdg
{
FSC0 , 0, 0

}
; FSC0 := bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
021
021
021
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
,

(86)

and collecting reference signal matrix (79):

E�
T = bdg

{[
gCiI2 02 02 012

]}
. (87)

Proposition 2 Suppose now that there exists an equilib-
rium x̄T , refer to system (81). Then, the following shifted

Hamiltonian energy function transfers the state variable
xT to the desired equilibrium x̄T .

H̄TC(s) := HTC(s) − (∇HTC (s̄))� (s − s̄) − HTC (s̄) .
(88)

Proof By defining τ = ∇HC
(
ηdq
)
, τ̄ = ∇HC

(
η̄dq
)
and

recalling the shifted Hamiltonian energy function (73) and
equations (75) and (81), we then have:

˙̄HTC(s) = (∇HTC(s) − ∇HTC (s̄))�ṡ

= (z − z̄)�
{[
JTu + JTc − RT + FTTTF�

T

]
z

+ GTȳG + FT0wT0

}+ (τ − τ̄ )�η̇dq

= −(z − z̄)�RT (z − z̄)

+ (z − z̄)�
{
JTu (u − ū)

}
z̄ − (ηdq − η̄dq

)�K�
IdqyB

= −(z−z̄)�RT (z−z̄) + (λ−λ̄
)� {BS (s̄)} (u − ū)

−
{
(u−ū)�+(λ−λ̄

)� {BS (s̄)}KPdq

}
B�
S (s̄)

(
λ−λ̄

)
= −(z − z̄)�RT (z − z̄)

− (λ − λ̄
)� {BS (s̄)}KPdq{BS (s̄)}� (λ − λ̄

)
= −(z − z̄)�RT (z − z̄) − ỹ�

SBKPdq ỹSB .
(89)

Therefore, the overall port-Hamiltonian system (81) with
the decentralized passive (proportional-integral) control
dynamic using microsource output current (78) satisfies
the incremental passivity.

7 Microgrid closed-loop stability analysis and
control in Islandedmode

In islanded mode, the voltage and frequency of microgrid
are stabilized by the inverter-based microsources (Fig. 8).
Therefore, in order to control the frequency and voltage as
well as regulate active and reactive power (or current) the
microsources are divided into grid-forming (frequency
control) i ∈ ESF and grid feeding i ∈ ESV (voltage and
power) parts. In first part, the dc voltage of microsource

Fig. 8Microgrid in islanding mode
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is used to capture the dynamic of microsource frequency
control i ∈ ESF (see also [104]). Therefore, considering
θ̇i = ωi = qdqi and recalling the dc-side dynamic of
microsource (12):

q̇dci =
(
−u�

dqi

)
idqi − Gdci

(
C−1
dci qdci

)
+ iS0i . (90)

Hence, the dynamic of (grid-forming) frequency control
can be described as follows:

θ̇i = ωi,

ω̇i = −
(
GdciC

−1
dci

)
ωi −

(
u�
dqi

)
idqi + iS0i

= −dωi − uCi + ūCi .

(91)

Where uCi =
(
u�
dqi

)
idqi and iS0i = ūCi . The Hamilto-

nian energy function of the (grid-forming) microsource
H
(
φdqi , qdqi ,ωi

)
, which denotes the total energy, is given

by:

H (xi)= 1
2

(
φ�
dqi(

LI2)−1φdqi + q�
dqi(

CI2)−1qdqi + ω2
i

)
.

(92)

where φdqi is the flux linkage across the inductors, qdqi is
the charge in the capacitors and ωi is angle frequency.
Therefore, the aggregated model of the microsource

dynamic (12) i ∈ ESF and the frequency controller
dynamic (91) can be then written as:

⎡
⎢⎢⎣

θ̇S
ω̇S

φ̇S,dq
q̇S,dq

⎤
⎥⎥⎦ = (JSFCu + JSFCc − RSC

)
⎡
⎢⎢⎢⎢⎣

∂HSFC
∂θS,dq
∂HSFC
∂ωS,dq
∂HSFC
∂φS,dq
∂HSFC
∂qS,dq

⎤
⎥⎥⎥⎥⎦

+ FSFCiS,dq

(93)

Where we have:

JSFCu =bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 1 012 012
1 0 m̂� (θi) ỹzi 012
021 −[m̂ (θi)

]
ỹzi 02 02

0 021 02 02

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
,

JSFCc = bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 02 021
0 0 012 021
021 021 ω̄LiJ 021
021 021 02 ω̄CiJ

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
,

RSFC = bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 012 012
0 di 012 012
021 021 RiI2 02
021 021 02 02

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
,

FSFC = bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

02
02
−I2
012

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
.

(94)

In addition, the passive auxiliary output is defined as
follows:

yzi = Z� (s̄) ∇HSFC(s) = idqiωi − (ω̄iI2) idqi
= [ 021 idqi −ω̄iI2 02

]∇HSFC(s).
(95)

In second part i ∈ ESV , as mentioned in Section 6, in
order to control (grid-feeding) microsource output cur-
rent and voltage

(
iSdqi , vSdqi

)
and dc voltage the following

decentralized passive controller (proportional-integral) is
considered:

η̇dqi = uCi = −yMi ,
udqi = yCi = −KPdqi yMi + KIdqiηdqi ,

yMi = M�
i (x̄i)∇HSV

(
φdqi , qdqi , qdci

)
= [ v̄dciI2 v̄dci (ωCiJ + I2) −īSdqi

]∇HSV (xi)
(96)

In compact form, we have:

η̇C,dq = uC = −yM,
u = col

{
udqi

} = yC = −KPyM + KIηC,dq.
(97)

By defining KP = bdg
{
KPdqi

}
, KI = bdg

{
KIdqi

}

and HCi = 1
2

(
ηCdqi

)�
KIdqi

(
ηCdqi

)
, The new Hamil-

tonian energy function is obtained by combination of
microsource and controller energy functions, Hence, we
have:

HSVC := HSV + HC . (98)

Therefore, the aggregatedmodel of themicrosource (12)
i ∈ ESV and controller dynamic (96) can be then written
as:

⎡
⎢⎢⎣

η̇S,dq
φ̇S,dq
q̇S,dq
q̇dc,S

⎤
⎥⎥⎦ = (JSVCu + JSVCc − RSVC

)
⎡
⎢⎢⎢⎢⎣

∂HSVC
∂ηS,dq
∂HSVC
∂φS,dq
∂HSVC
∂qS,dq
∂HSVC
∂qdc,S

⎤
⎥⎥⎥⎥⎦

+ FSVCiS,dq + ESVCrS,dq + FSVC0 iS0 ,
vS,dq = F�

SC∇HSVC (xSC)

(99)

Where we have:
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JSVCu = bdg

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

02 −v̄dciI2 −β īSdqi
vdciI2 02 02 −KPdqi yMi

β� 02 02 012
−i�Sdqi y�

Mi
K�
Pdqi

012 0

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

JSVCc = bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

02 02 02 021
02 ωLiJ −I2 021
02 02 ωCiJ 021
012 012 012 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

RSVC = bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

02 02 02 021
02 RiI2 02 021
02 02 02 021
012 012 012 Gdci

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

FSVC = bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

02
02
−I2
012

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
, ESVC = bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

I2
02
02
012

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

FSVC0 = bdg

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
021
021
021
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
.

(100)

Where udqi = yCi = −KPdqi yMi + KIdqiηdqi and β =
v̄dci (ωCiJ + I2).
Similar to Section 4.5, the overall model can be

obtained by collecting the microgrid unit dynam-
ics (3), (32), (45), (93) and (99) and also the interconnec-
tion overall law (68), so we have (Fig. 9):

ẋT =
[
JTu + JTc − RT + FTTTF�

T

]
∇HTC (xT )

+ ETrT + FT0wT0 ,

yTA = A�
T (xT )∇HTC (xT ) ,

yT = F�
T ∇HTC (xT ) ,

yT0 = F�
T0∇HTC (xT ) .

(101)

Proposition 3 Suppose now that there exists an equilib-
rium x̄T , refer to system (101). Then, the following shifted
Hamiltonian energy function transfers the state variable
xT to the desired equilibrium x̄T .

H̄TC(s) := HTC(s) − (∇HTC (s̄))� (s − s̄) − HTC (s̄) .
(102)

Proof By recalling the shifted Hamiltonian energy func-
tion (73) and equations (75) and (101), Hence, we have:

H̄T (s) := HTC(s) − (∇HTC (s̄))� (s − s̄) − HTC (s̄) ,
˙̄HT (s) = −(z − z̄)�RT (z − z̄)

+ (z − z̄)�
{
JTu (s − s̄)

}
z

(103)

Hence, for first part of above equation, we also have:

(z − z̄)�
{
JTu (s − s̄)

}
z

= (z − z̄)�
{
JTu (s − s̄)

}
(z − z̄)

+ (z − z̄)�
{
JTu (s − s̄)

}
z̄

(104)

Therefore, by defining λ = ∇HSC(s) and λ̄ = ∇HSC (s̄)
for second part of Eq. (103), we have:

(z − z̄)�
{
JTu (s − s̄)

}
(z − z̄)

= (λ − λ̄
)� {JSu (s − s̄)

} (
λ − λ̄

) = 0
(105)

Fig. 9 Overall microgrid dynamic in islanding mode: grid-forming microsources equipped with decentralized frequency control dynamics and
grid-feeding microsources equipped with decentralized voltage and power control dynamics
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Fig. 10 Test system topology

Hence, by recalling Eq. (104), we have:

(z − z̄)�
{
JTu (s − s̄)

}
z

= (λ − λ̄
)� {JSu (s − s̄)

}
λ̄

= −
sF∑
i=1

{
ỹ�
Zi (M (θi)) ỹZi

}
− ỹ�

SBKPdq ỹSB

= 0 − ỹ�
SBKPdq ỹSB = −ỹ�

SBKPdq ỹSB

(106)

Where ỹSB = B�
S (s̄) (∇HSVC(s) − ∇HSVC (s̄)) and M (θi)

is defined as follows:

M (θi) =

⎡
⎢⎢⎣

0 0 012 012
0 0 m̂� (θ̃i) 012
021 − [m̂ (θi)

]
02 02

021 021 02 02

⎤
⎥⎥⎦

Therefore, the overall port-Hamiltonian system (101) with
integrating the frequency control dynamic (91) and the
voltage (power) control dynamic (94) satisfies the incre-
mental passivity.

8 Simulation
In this section, the performance of the proposed con-
trol methodology is verified by a set of simulation
studies. Therefore, a microgrid consisting of the nine-
microsources is chosen as a test system to demonstrate
the effectiveness of the proposed control dynamics (see
Fig. 10). The analysis is carried out based on the three-
phase Subnetwork 1 of the CIGRE benchmark medium
voltage distribution network (see [105]). It should be

noted, to satisfy the load demand in islanded mode, the
power ratings of the generation units are modified. As
illustrated in Fig. 10, this test microgrid has a meshed
topology and consists of 11 main buses. Moreover, it con-
tains a total of nine controllable microsources. In addition,
the base apparent power rating (Sbase) is 4.3MVA.
We consider the following three scenarios.

8.1 Grid-connected scenario
As mention in Section 6, all microscources work as grid-
feeding units. In addition, themicrogrid contains a total of
nine controllable microsources at buses 3, 4, 5, 6, 7, 8, 9, 10
and 11 (see Fig. 10). We associate to each microsource its
apparent power rating S̄i. The S̄i is given for each source
in Table 1. The active and reactive power setpoints (P̄i and
Q̄i) relative to apparent power rating S̄i are alsomentioned
in this table. Moreover, the load parameters are illustrated
in Table 2.

Table 1 Grid-connected scenario: Microgrid parameters

Bus No. S̄i [pu] P̄i/S̄i [pu/pu] Q̄i/S̄i [pu/pu] V̄dc [v]

Bus 3 0.128 0.988 0.012 376.991

Bus 4 0.070 1.000 0.000 500.000

Bus 5 0.105 0.890 0.011 500.000

Bus 6 0.116 0.792 0.198 376.991

Bus 7 0.128 0.720 0.270 377.991

Bus 8 0.116 0.800 0.020 500.000

Bus 9 0.105 1.000 0.000 500.000

Bus 10 0.128 0.720 0.270 376.991

Bus 11 0.105 0.890 0.111 500.000
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Table 2 Load parameters

Bus No. Active power [pu] Reactive power [pu]

Bus 1 0.0698 0.0010

Bus 2 0.0000 0.0000

Bus 3 0.0257 0.0019

Bus 4 0.0954 0.0016

Bus 5 0.1885 0.0035

Bus 6 0.1303 0.0012

Bus 7 0.1164 0.0019

Bus 8 0.0722 0.0019

Bus 9 0.0607 0.0021

Bus 10 0.0745 0.0017

Bus 11 0.0954 0.0021

In addition, the decentralized power sharing (and volt-
age) controllers are equipped with the PI controllers (77).
In this scenario, the controller parameters of the PI con-
trollers are chosen as follows: for microsource output
current (iSdqi ) and output voltage control, KP = 0.9I2 and

KI = 20I2 as well as for frequency control, KP = 10 and
KI = 500.
The simulation results are shown in Fig. 11. More pre-

cisely, the microgrid dynamic responses including fre-
quency synchronization (the relative frequencies �fi =
(ωi − ω̄i)/(2π)), the power sharing (active/reactive power
outputs relative to apparent power rating Pi/Si and Qi/Si)
as well as dc and ac voltage tracking (amplitudes at
microsource terminals) are illustrated.
The simulation results show that all trajectories con-

verge to desired states demonstrating the stability analysis
in Section 6. After a transient, the frequencies synchronize
and the amplitudes of bus voltages become constant. The
frequencies at the all microsource buses are converged
to nominal value. The voltage amplitudes remain within
1 ± 0.1pu in steady-state. Therefore, the results demon-
strate that the proposed controllers can regulate the
microsource voltages with good tracking performance.
The initial conditions have been chosen arbitrarily. Hence,
the simulation result shows the stability of the decentral-
ized frequency and voltage control dynamics, as given
in (77). Furthermore, the simulation confirms that the

Fig. 11 Grid-connected scenario. The microsource dynamic responses including dc voltage tracking, frequency synchronization, the power sharing
as well as ac voltage tracking (amplitudes at output terminals). The lines correspond to the grid-feeding microsources at: bus 3, ’–’, bus 6, ’- -’, bus 7,
’..’, bus 10, ’-.’. Moreover, the lines correspond to the other grid-feeding microsources at: bus 4, ’>-’, bus 5, ’+-’, bus 8, ’x-’, bus 9, ’o-’, bus 11,’*-’
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Table 3 Islanded scenario: Microgrid parameters

Bus No. S̄i [pu] P̄i/S̄i [pu/pu] Q̄i/S̄i [pu/pu] V̄dc [v]

Bus 3, i ∈ ESF 0.128 0.988 0.012 376.991

Bus 4, i ∈ ESV 0.070 1.000 0.000 500.000

Bus 5, i ∈ ESV 0.105 0.890 0.011 500.000

Bus 6, i ∈ ESF 0.116 0.792 0.198 376.991

Bus 7, i ∈ ESF 0.128 0.720 0.270 377.991

Bus 8, i ∈ ESV 0.116 0.800 0.020 500.000

Bus 9, i ∈ ESV 0.105 1.000 0.000 500.000

Bus 10, i ∈ ESF 0.128 0.720 0.270 376.991

Bus 11, i ∈ ESV 0.105 0.890 0.111 500.000

decentralized control dynamics are suited to achieve the
desired objective of frequency synchronization, voltage
control and power sharing.

8.2 Islaned scenario
As illustrated in Fig. 10, the microgrid contains a total
of nine controllable microsources four of which are grid-
forming microsources (i ∈ ESF ) equipped with decen-
tralized frequency and voltage controllers at buses 3, 6, 7

and 10 and five of which are grid-feeding microsources
(i ∈ ESV ) equipped with decentralized power and volt-
age controllers at buses 4, 5, 8, 9 and 11. In addition, the
microsource and control setpoints, i ∈ ESF and i ∈ ESV ,
are given in Table 3. Moreover, the load parameters are
illustrated in Table 2.
As mention in Section 7, for the grid-forming

microsources (i ∈ ESF ), the decentralized frequency
(and voltage as well as power sharing) controllers are
equipped with the PI controllers (91). In this sce-
nario, the controller parameters of the PI controllers
are chosen as follows: for microsource output current
(iSdqi ) and output voltage control, KP = 0.9I2 and KI =
20I2 as well as for frequency control, KP = 10 and
KI = 500.
In addition, for the grid-formingmicrosources (i ∈ ESV ),

the decentralized power sharing (and voltage) controllers
are equipped with the PI controllers (95). In this scenario,
the controller parameters of the PI controllers are chosen
as follows: for microsource output current (iSdqi ) and out-
put voltage control, KP = 0.9I2 and KI = 20I2 as well as
for frequency control, KP = 10 and KI = 500.

Fig. 12 Islanded scenario. The microsource dynamic responses including dc voltage tracking, frequency synchronization, the power sharing as well
as ac voltage tracking (amplitudes at output terminals). The lines correspond to the grid-forming microsources i ∈ ESF : bus 3, ’–’, bus 6, ’- -’, bus 7, ’..’,
bus 10, ’-.’. Moreover, the lines correspond to the grid-feeding microsources i ∈ ESV : bus 4, ’>-’, bus 5, ’+-’, bus 8, ’x-’, bus 9, ’o-’, bus 11,’*-’
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The simulation results are shown in Fig. 12. More pre-
cisely, the microgrid dynamic responses including fre-
quency synchronization (the relative frequencies �fi =
(ωi − ω̄i)/(2π), the power sharing (active/reactive power
outputs relative to apparent power rating Pi/Si and Qi/Si)
as well as dc and ac voltage tracking (amplitudes at
microsource terminals) are illustrated, for i ∈ ESF and
i ∈ ESV
The simulation results show that all trajectories con-

verge to desired states demonstrating the stability analysis
in Section 7. After a transient, the frequencies synchro-
nize and the amplitudes of bus voltages become constant.
The frequencies at the all microsource buses (i ∈ ESF
and i ∈ ESV ) are converged to nominal value. The volt-
age amplitudes remain within 1 ± 0.1pu in steady-state.
Therefore, the results demonstrate that the proposed con-
trollers can regulate the microsource voltages with good
tracking performance. The initial conditions have been
chosen arbitrarily. Hence, the simulation result shows the
stability of the decentralized frequency and voltage con-
trol dynamics, as given in (91) and (95). Furthermore,

the simulation confirms that the decentralized control
dynamics are suited to achieve the desired objective of
frequency synchronization, voltage control and power
sharing.

8.3 Transition scenario
The transient dynamics between grid-connected and
islanded modes and vice versa are shown in Figs. 13
and 14. The switching is occurred at time 2.5 sec
via common coupling (CCP) switch. The controller and
microsource parameters are selected similar to the grid-
connected and islanded scenarios at previous subsections.
After switching, all trajectories seamlessly converge to
the desired states (see Figs. 13 and 14). In addition, the
frequencies synchronize and the amplitudes of the all
bus voltages become constant. The frequencies at the all
microsource buses (i ∈ ESF and i ∈ ESV ) are converged
to nominal value. The voltage amplitudes remain within
1 ± 0.1pu in steady-state. Therefore, the results demon-
strate that the proposed controllers can regulate the
microsource voltages with good tracking performance.

Fig. 13 Transition between grid-connected and islanded modes. The switching between grid-connected and islanded modes is occurred at time
2.5 sec. The microsource dynamic responses including dc voltage tracking, frequency synchronization, the power sharing as well as ac voltage
tracking (amplitudes at output terminals). The lines correspond to the microsources at: bus 3, ’–’, bus 6, ’- -’, bus 7, ’..’, bus 10, ’-.’. Moreover, the lines
correspond to other microsources at: bus 4, ’>-’, bus 5, ’+-’, bus 8, ’x-’, bus 9, ’o-’, bus 11,’*-’
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Fig. 14 Transition between islanded and grid-connected modes. The switching between slanded and grid-connected modes is occurred at time
2.5 sec. The microsource dynamic responses including dc voltage tracking, frequency synchronization, the power sharing as well as ac voltage
tracking (amplitudes at output terminals). The lines correspond to the microsources at: bus 3, ’–’, bus 6, ’- -’, bus 7, ’..’, bus 10, ’-.’. Moreover, the lines
correspond to other microsources at: bus 4, ’>-’, bus 5, ’+-’, bus 8, ’x-’, bus 9, ’o-’, bus 11,’*-’

The initial conditions have been chosen arbitrarily. Hence,
the simulation result shows the stability of the decentral-
ized frequency and voltage control dynamics, as given
in (77), (91) and (95). Furthermore, the simulation con-
firms that the decentralized control dynamics are suited
to achieve the desired objective of frequency synchroniza-
tion, voltage control and power sharing.
The simulation results demonstrate the effectiveness of

the proposed control strategy. The designed controllers
guarantee the power sharing and the frequency as well as
voltage stability of the entire microgrid system.

9 Conclusion
The problem of decentralized control of inverter-based
ac micro-grid in different operation modes is addressed
in this work. In addition, we focus on the problem of
decentralized frequency and voltage control of the micro-
grid system without information exchange between the
microsources. The design of passive dynamic controllers
which ensure stability of the entire microgrid system is
also addressed in this paper. Furthermore, to deal with

nonlinear, interconnected and large-scale structure of
micro-grid systems, the port-Hamiltonian formulation is
used as a powerful tool to capture the dynamic of micro-
grid components and interconnection controllers. It is
shown that both themicrogrid dynamic as well as the con-
troller designs admit a port-Hamiltonian representation
which are then interconnected to obtain a closed-loop
port-Hamiltonian system. Moreover, to deal with large
signal stability problem of microgrid system, the shifted-
Hamiltonian energy function is served as a storage func-
tion to ensure incremental passivity of system. In addi-
tion, the contribution also expands the knowledge on the
use of shifted-energy functions in the context of decen-
tralized control of micro-grids. Moreover, it is shown
that the aggregating of the microgrid dynamic and the
decentralized controller dynamics satisfies the incremen-
tal passivity in the grid-connected and islanded modes.
Finally, the effectiveness of the proposed controllers is
evaluated through simulation studies. The different sce-
narios including grid-connected and islanded modes as
well as transition between both modes are simulated.
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The simulation conforms that the decentralized control
dynamics are suited to achieve the desired objective of
frequency synchronization, voltage control and power
sharing in the grid-connected and islanded modes. The
simulation results demonstrate the effectiveness of the
proposed control strategy.
Future works include attempting to add the hybrid

microgrid systems and investigating large signal stabil-
ity analysis as well as examining incremental passivity of
entire system.
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