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Abstract

Three-phase pulse width modulation converters using insulated gate bipolar transistors (IGBTs) have been widely
used in industrial application. However, faults in IGBTs can severely affect the operation and safety of the power
electronics equipment and loads. For ensuring system reliability, it is necessary to accurately detect IGBT faults
accurately as soon as their occurrences. This paper proposes a diagnosis method based on data-driven theory. A
novel randomized learning technology, namely extreme learning machine (ELM) is adopted into historical data
learning. Ensemble classifier structure is used to improve diagnostic accuracy. Finally, time window is defined to
illustrate the relevance between diagnostic accuracy and data sampling time. By this mean, an appropriate time
window is achieved to guarantee a high accuracy with relatively short decision time. Compared to other traditional
methods, ELM has a better classification performance. Simulation tests validate the proposed ELM ensemble
diagnostic performance.
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1 Background
Nowadays, induction motor drive systems fed by
three-phase pulse width modulation (PWM) converters
have been widely used in industrial applications [1].
With the advance of power semiconductor technology,
insulated gate bipolar transistors (IGBTs) are commonly
used in such systems to adjust the output signal of the
converters. However, according to the industrial statis-
tics, 38% of the converter faults are caused by the failure
of power device [2] [3]. Power devices faults in converter
may result in unstable output voltage and frequency,
and can lead to the shutdown of the drive system. Thus,
fast and accurate fault diagnosis method for IGBT has
attracted extensive attentions [4].
In general, IGBT faults can be categorized into

open-circuit fault and short-circuit fault. Short-circuit fault
is usually caused by over-voltage or overheating. In prac-
tice, short-circuit fault of IGBT is usually protected by
standard protection system, such as fuse and disconnecting

switch [5].As a result, the abnormal state caused by
short-circuit, such as over-current, may only last a very
short period. On the other hand, open-circuit fault usually
results in sustained period of abnormal states and can sig-
nificantly degrade the converter performance. For PWM
converters, the open-circuit situation is more complex be-
cause of the existence of a number of IGBTs in a converter.
When open-circuit fault occurs, it is necessary to quickly
detect and locate the faulty IGBTs. Hence, this paper con-
centrates on IGBT open-circuit faults in three-phase PWM
converters.
Diagnosis methods of IGBT faults can be categorized

generally into model-based, signal-based, knowledge-
based, hybrid and active methods [5]. For model-based
method [6–11], models of industrial processes or sys-
tems are the foundation and have to be derived from
physical principles or systems identification techniques.
The measured outputs of system models are then com-
pared with the predicted outputs and the consistency is
evaluated to diagnose faults [5]. This requires a
high-level understanding of the practical systems and
the consideration of other environmental factors in the
actual working situation. Therefore, model-based
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method always requires tiresome and length tuning for
an accurate. For signal-based methods [12–16], mea-
sured signals are used for the diagnostic process. Feature
selection, such as RELIEFF [17], is a methodology to
evaluate the quality of signal features according to their
distinction among instance near each other and to select
several top best features. Similarly, feature extraction is
also an approach to decrease the signal dimension, such
as the principle component analysis (PCA) [18]. This is
achieved by transforming original datasets into a re-
duced set of features. The initial features are selected as
a subset, which contains the relevant information from
the input data. By those features, diagnostic algorithm
can analyze symptoms to make a fault diagnosis deci-
sion. However, such signal-based methods require long
processing time and the diagnostic performance is easily
affected by fluctuation of loads.
Both model-based and signal-based methods require a

prior knowledge on system models or signal patterns.
Furthermore, signal-based method is easily influenced by
load fluctuation, and this is a significant drawback in on-
line application. Hence these methods are either sensi-
tive to system load or with low detection speed. On the
contrary, knowledge-based method [19–25] is based on
large volumes of historical data [26] which can be ob-
tained by simulations and experiments. The artificial in-
telligent technique can also be combined with
data-driven methodology to extract the mapping rela-
tionship knowledge between the online input data and
the diagnosis results according to the historical data.
Thus, this method is also called a data-driven method.
In order to improve fault diagnosis, this paper de-

velops a data-driven fault diagnosis method for PWM
converter fed induction motor drive system. The inputs
in the fault diagnosis scheme are three-phase currents
and the outputs are fault types and location. Because
load current is measured for the control algorithm of
PWM converters, no additional sensors are required in
the system. A novel learning network, namely extreme
learning machine (ELM) [27] is applied to develop a
diagnostic method for IGBT open-circuit faults. ELM is
a randomized learning neural network, whose input
weights and bias are randomly determined in ELM
learning and the output weights are computed without
traditional iteration. As a result, instead of lengthy train-
ing time, ELM has a fast learning speed which allows it
to solve problems with large volumes of data. Due to its
fast learning speed, ELM has already been used in detec-
tion of microgrid islanding events [28] and real-time dy-
namic security assessment of power systems [29].
However, this method has not been adopted in fault
diagnosis of power electronics devices. To guarantee ac-
curacy, the ensemble structure is adopted which contrib-
utes to increasing the robustness of diagnosis

performance. In addition to improve learning process,
the relevance between the time window width of signal
sampling and diagnosis accuracy is analyzed to select the
suitable time window. Thus, the diagnosis performance
of the scheme can be significantly improved.
Through online application, it shows that due to the

fast learning speed of ELM, the proposed scheme is feas-
ible to identify IGBT open-circuit faults with balanced
diagnostic accuracy and speed. The simulation also vali-
dates that the classification performance is independent
of voltage ripple, and harmonics, speed and load
fluctuations.

2 System description and fault analysis
2.1 Circuit topology of traction converter
The circuit topology of a two-level three-phase PWM
converter is shown in Fig. 1. T1, T2...T6 are IGBTs and
D1, D2…D6 are anti-parallel diodes. An induction motor
is located at the load side represented by equivalent in-
ductances of Za, Zb and Zc. ia, ib, ic are three-phase cur-
rents of the converter and motor stator [30].
From Fig. 1, when the converter operates in normal

working state, the sum of three-phase currents in trac-
tion motor’s stator is zero, and so as the sum of
three-phase voltage i.e.:

uan þ ubn þ ucn ¼ Zaia þ Zbib þ Zcic ¼ 0 ð1Þ

In (1), uan, ubn, ucn are three phase output converter
voltages. Based on Kirchhoff ’s voltage law, the following
equations can be obtained:

uan ¼ uao−uno
ubn ¼ ubo−uno
ucn ¼ uco−uno

8<
: ð2Þ

uno ¼ uan þ ubn þ ucn ¼ 1
3

uao þ ubo þ ucoð Þ: ð3Þ

Defining the switch function as:

Fig. 1 The topology structure of drive system
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S ¼ 1 the upper transistor is closed
−1 the lower transistor is closed

�
;

The three-phase load voltage can be expressed by:

uao ¼ Sa � Udc

2

ubo ¼ Sb � Udc

2

uco ¼ Sc � Udc

2

8>>>><
>>>>:

ð4Þ

Thus, the voltage between the DC middle point and
the load neural point can be defined as:

uno ¼ Udc

6
Sa þ Sb þ Scð Þ: ð5Þ

Therefore, the calculation of the phase voltages of the
load motor is defined as:

uan
ubn
ucn

2
4

3
5 ¼ Udc

6

2 −1 −1
−1 2 −1
−1 −1 2

2
4

3
5 Sa

Sb
Sc

2
4

3
5 ð6Þ

2.2 IGBT open-circuit fault analysis
Upper arm fault - when the upper switch is in
open-circuit fault (e.g. T1), the DC bus current idc can-
not flow through T1. Considering the stator winding of
the traction motor is in star connection and without
grounded neural, the sum of the three-phase currents
remains at zero. Hence, ia becomes negative, whereas ib
and ic will be added with positive DC components. By
introducing the open-circuit fault, the waveforms of
three-phase currents are distorted and become asym-
metric as shown in Fig. 2. The output electromagnetic
torque of the traction motor is reduced and oscillates se-
verely, which is harmful for system security and stability.
Lower arm fault - the fault phenomenon when the

lower switch is under open-circuit fault (e.g. T4) is simi-
lar to the previous case. When T4 is in open-circuit fault,
idc cannot feed the load through T4. Thus, current in
phase A becomes positive, and ib and ic contain negative
DC components. The waveform become distorted as
depicted in Fig. 3.

Both upper and lower arms fault – when both arms
in the same phase (e.g. T1, T4) are open-circuit, the DC
bus current idc only flows to the traction motor through
phase C and B. Hence, current in phase A becomes zero,
and stator currents in phase B and C have opposite
values as depicted in Fig. 4.

2.3 Fault labeling for converter
To identify the fault type and location, 6 fault types of
single IGBT open-circuit, 15 fault types of double IGBT
open-circuit and a normal working condition are defined
in this paper according to different status of the con-
verter, which are summarized in Table 1:

3 Extreme learning machine
3.1 ELM structure
ELM is a novel randomized neural network [27] and
Fig. 5 shows its structure. As a general single-hidden
layer feed-forward neural network (SLFN), ELM consists
of three layers: the input layer, hidden layer and output
layer.

For a training setfðxi;diÞjxi∈RJ ;di∈RKgLi¼1 , where L is
the number of sample, xi = [xi1,…,xiJ] is the input vector
with J features and di = [di1,…,diK] is the desired output
vector with K features.
The relationship between the actual output vector ti

= [ti1,…,tiK] and xi is shown:

hi¼g wIHxið Þ ð7Þ
t i¼ωHOhi ð8Þ

Fig. 2 The waveform when T1 is under open-circuit fault

Fig. 3 The waveform when T4 is under open-circuit fault

Fig. 4 The waveform when T1 and T4 are under
open-circuit fault

Xia et al. Protection and Control of Modern Power Systems            (2018) 3:33 Page 3 of 9



In (7) and (8), ωHO is a N × K vector indicting the
weights between the hidden layers and output layers,
and ωIH is a J × N vector indicting the weights between
the input layers and hidden layers, where N is the num-
ber of hidden nodes. hi is the hidden layer’s output vec-
tor and g is the activation function in hidden nodes [27].
Unlike general network, ELM generates values of ωIH

randomly. By doing so, the learning speed of ELM net-
work can be thousands times faster than the traditional
methods using iterative algorithm.

3.2 Training process of ELM
To describe the training process of ELM, it can be di-
vided into six phases as follows:

1) Divide data into training dataset and testing dataset.
2) Define the number of hidden neurons N and

activation function g in hidden neurons.

3) Generate weights ωIH randomly within the range
from 0 to 1.

4) Calculate the outputs of hidden nodes using (9),
where xj is the sample in training dataset and hn
compose hidden nodes output vectors hi as:

hn ¼ g
XJ
j¼1

ωjnx j

 !
ð9Þ

5) Use Moore-Penrose pseudo inverse ωHO=H
−1di to

obtain ωHO, where H is the matrix consisting of hi.
6) Obtain actual output vector ti and compare ti with

desired output di, to calculate the accuracy of the
training process.

For this study, to implement open-circuit fault diagnosis,
ELM is applied to a multiclass classification. For the binary
classification, the output function can be written as:

f N xð Þ ¼ sign H xð Þβð Þ ð10Þ
where fN indicates the final output of ELM. H is a fea-
ture mapping, converting input space with J-dimension
to N-dimension hidden-layer space. In the binary case,
only one node is included in the output layer and the
final decision is based on which class label is closer to
the output value. To fit in multi-classification, binary
case can be modified into two solutions:

1) Multi-classification with Single Output: In this
case, the solution is similar to binary classification
problem. The predicted class label of a given testing
sample is closest to the output of ELM. The
decision function needs to be modified by:

f N xð Þ ¼ sign h xð ÞHT I
C
þHHT

� �−1

T

 !
ð11Þ

where h denotes the output vector of the hidden layer
corresponding to the input vector x, I denotes an iden-
tity matrix and C is a regularization factor which can be
defined by user depended on classification application.

2) Multi-classification with Multi-outputs: For this
multiclass case, the number of output nodes equals
to the number of class labels. The predicted class
label of a testing sample is the index number of the
output node which has the highest output value.
The decision mechanism is written as:

Table 1 Labels of Different Fault Types

Fault Type Label Fault Type Label

The Normal State 1 T1&T6 Open-circuit 12

T1 Open-circuit 2 T2&T3 Open-circuit 13

T2 Open-circuit 3 T2&T4 Open-circuit 14

T3 Open-circuit 4 T2&T5 Open-circuit 15

T4 Open-circuit 5 T2&T6 Open-circuit 16

T5 Open-circuit 6 T3&T4 Open-circuit 17

T6 Open-circuit 7 T3&T5 Open-circuit 18

T1&T2 Open-circuit 8 T3&T6 Open-circuit 19

T1&T3 Open-circuit 9 T4&T5 Open-circuit 20

T1&T4 Open-circuit 10 T4&T6 Open-circuit 21

T1&T5 Open-circuit 11 T5&T6 Open-circuit 22

Fig. 5 Structure of ELM
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label xð Þ ¼ arg max
i∈ 1;2;…;mf g

f i xð Þ ð12Þ

where m denotes the total number of class labels, and
fi(x) refers to the output function of the ith output node,
which forms the ELM classifier output set as f(x)
= [f1(x),…, fm(x)].
In this IGBT open-circuit fault diagnosis, ELM is con-

verted to the multi-classification with multi-outputs
mode, with m equals to 22. Instead of iterative calcula-
tion in conventional SLFN, ELM randomly assigns input
weights and thus releases the burden of lengthy calcula-
tion. By doing this, the training speed of ELM can be
much faster than that of a conventional SLFN. There-
fore, ELM greatly simplifies the learning process and be-
comes a practical algorithm in industrial applications
[31] [32].

4 ELM-based ensemble classifier
Previous studies of ELM have focused on both regres-
sion and classification problems. ELM shows perform-
ance of high learning-speed and strong generalization
capacity. However, during ELM training process, the in-
put layer weight ωIH, is generated randomly. Due to the
stochastic value, ELM always suffers from inadequate
consistency and stabilization [32]. To increase the accur-
acy, this paper designs an ensemble learning process.

4.1 Ensemble classifier principle
In the study of data analytic, ensemble learning is a
methodology to compensate the results of each single
classifier by utilizing diversity. It can reduce aggregated
variance and tend to increase accuracy over the individ-
uals [33].
Thus, an ensemble classifier of ELM is developed in this

paper. First, the classifier structure consisting of a large
quantity (200 in this case) of single ELM classifiers is de-
fined. Based on the analysis above, for the same input
data, the 200 ELM classifiers are unlikely to obtain the
same outputs due to randomness. Each single ELM is
trained to find out the mapping relationship between
current and fault label and output weights will be achieved
for each single ELM. Thus, the principle of ensemble clas-
sifier is to combine results and apply an evaluation process
to determine the final classification, with a strategically de-
signed decision-making mechanism.

4.2 Ensemble classifier structure
The structure of ELM ensemble classifier is depicted in
Fig. 6. As shown, after the training process, the training
features can be decided in individual ELM classifier, such
as the output weights. Then the well trained ELM classi-
fiers are clustered as an ensemble model.

Based on the operating data in real-time, the proposed
ensemble classifier is applied online for fault diagnosis.
Using the decision-making mechanism, the final diagno-
sis output can be selected among individual ELM classi-
fiers [30]. In addition, unlike traditional SLFN with long
training time, ELM has high learning speed, and there-
fore, the proposed ensemble model is efficient.
In the testing process, each single ELM has its output

t as t = [t1,…,tJ], where J is the number of output fea-
tures. Assuming the total number of single ELM is p, a
series of output T can be achieved as

T ¼
t1
⋮
tp

2
4

3
5 ¼

t11 ⋯ t1 J
⋮ ⋱ ⋮
tp1 ⋯ tpJ

2
4

3
5 ð13Þ

For each column in (13), it represents the output re-
sults of each feature. The voting process is to choose the
value with the most frequent occurrence in every col-
umn. Then a 1 × J output vector, where each element is
the most common value of each feature, can be obtained
by:

y j ¼ mode
i∈ 1;2;…;pf g

tij
� � ð14Þ

where yj is the final result of the jth instance, “mode” is
the mathematical function for finding the mode of this
sub-output set {tij}. Unlike errors existing in single ELM
classification, this ensemble scheme minimizes the error
as much as possible and the classification output is cred-
ible and reliable.

Fig. 6 Structure of Ensemble ELM Classifier
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4.3 Diagnostic time window selection
In the training process described above, every input data
can be expressed as x = [x1,…,xD] with D features, where
D is also called dimension. With higher dimension, diag-
nosis can achieve a higher accuracy with more learning
time.
In the process of sampling, an exact length of wave-

form in time domain, namely time window, is selected.
When the window width is not enough, information of
fault signal cannot be fully achieved, leading to inad-
equate learning process, and resulting in errors in diag-
nostic system. On the other hand, when the window
width is too large, although diagnostic accuracy is able
to be guaranteed, the burden of learning process is in-
creased and efficiency is low due to the lengthy learning
time. Considering of applying to real-time online
process, to keep balance between the cost of time and
diagnostic accuracy is important. Therefore, to select ap-
propriate time window width for fault diagnosis is an
important task in testing process. In this study, diagnos-
tic time window selection is equivalent to finding the ap-
propriate sampling length of training data.
Fig. 7 illustrates a part of sampled waveform. In this

figure, the horizontal axis represents the number of sam-
pling point, which is also the time window width in this
study. As seen, when the sampling number is 100, the
sampled waveform is less than 1/4 periods, and does not
provide reliable data for diagnosis. However, when the
time window width reaches 400 or 500, the sampled
waveform forms a period, and contains adequate infor-
mation of the three-phase currents. On the other hand,
if the sampling window width increases further, the in-
formation will be redundant and under this circum-
stance, the learning process will consist of lengthy
calculation with reduced efficiency. By adjusting the
sampling length, the diagnostic performance will achieve
a trade-off between accuracy and learning burden.

5 Simulation validation
To verify the proposed data-driven based fault diagnosis
method, a comprehensive and informative database is

the fundamental requirement. In order to generate the
database, a three-phase PWM voltage source inverter
based induction motor drive system is simulated.

5.1 Database generation
The simulation model of the drive system is imple-
mented using MATLAB/Simulink software. The param-
eters of the simulation model are given in Table. 2. The
simulation takes voltage ripple, harmonics, and speed
and load fluctuations into consideration to verify the ac-
curacy of the proposed diagnosis method under different
fault states. Operation data are collected under different
working states, including the injection of 100 Hz ripple
voltage in the DC-link with amplitude varied from 1 to
100 V at 1 V interval, reference speed varied from 1 to
100 rad/s at 1 rad/s interval, and reference load torque
varied from 21 to 120 N∙m at 1 N∙m interval. The sam-
pling frequency is 10 kHz and the database is summa-
rized in Table 3.
For 22 types of labels, 6600 sets of data can be ob-

tained in the simulation model. To validate the single
ELM classifier, those datasets are divided into two parts
with 80% for training and 20% for testing, 5280 datasets
for training and 1320 datasets for testing.

5.2 Parameter selection
Given different activation function searching patterns
and neuron nodes, the performance comparison of ELM
settings is analyzed in order to select optimal training
parameters. To decide the relationship between single
learner parameters and accuracy, the test accuracy A can
be defined as:

A ¼ N−Mð Þ
N

� 100% ð15Þ

where N is the total number of instances in test dataset,
M is the number of misclassified datasets. To seek the
optimal parameters, five types of activation function, i.e.
triangular basis (Tribas), radial basis (Radbas), sign

Fig. 7 The waveform when T1 and T4 are under
open-circuit fault

Table 2 Parameters of the drive system

Comment Value

DC-link voltage Udc 700 V

Stator resistance Rs 0.435 Ω

Stator leakage inductance Lls 4 mH

Rotor resistance Rr 0.816 Ω

Rotor leakage inductance Llr 2 mH

Mutual inductance Lm 69.31 mH

Rated speed nrate 2000(r/min)

Rated output power Prate 11 kW

Number of the pole pairs 2
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function (Sig), sine (Sin), and hard-limit (Hardlim) are
compared in terms of optimal classification perform-
ance, in order to decide the optimal hidden node range
for single classifier. The classification performance is
shown in Fig. 8:
Fig. 8 shows that the sign activation function outper-

forms than the other four initial activation functions.
Meanwhile, the trends of the curves indicate that in-
crease of neuron nodes gradually increases the accuracy
and in certain range, the accuracy is stable. As seen from
Fig. 8, in the range from 1500 to 2000 using sign func-
tion, the accuracy of individual ELM classifier can be
assured.

5.3 Time window selection
In this study, the simulation data is a 6600 × 1800
matrix, where 6600 refers to the number of datasets and
1800 indicates the number of data features in the time
domain fault data. Every 600 features indicate the
current data of each phase. For 10 kHz sampling fre-
quency used in the simulation, every 100 data features
correspond to a time window of 10 ms. Hence, the max-
imum time window in this study is 60 ms. When the
length of sampling signal (i.e. time window width) varies
from 10 ms to 60 ms at the interval of 10 ms, the classi-
fication performance is summarized in Fig. 9.
According to Fig. 9, increase the window width in-

creases the testing accuracy. When the window width is
short, e.g. 10 ms, classification accuracy is relative low
due to inadequate learning. Meanwhile, when the time
window width reaches a certain value, the accuracy stays

high and becomes stable. Thus, in this case, 40 ms is de-
termined as the optimal time window width, which guar-
antees the high accuracy with acceptable learning time.

5.4 Diagnosis results analysis and discussion
To show performance of ELM classifier, several neural
networks are applied to train the same data to be com-
pared with ELM. The networks in the control group in-
clude Support Vector Machine (SVM), Decision Tree
(DT) and Naïve Bayes (NB). The classification perfor-
mances of such learning methods are summarized in
Table 4.
Table 4 illustrates that the average learning time of

ELM classifier is 2.711 s with 93.80% average accuracy.
The results show that in addition to faster learning
speed, single ELM also has a higher testing accuracy
than any other methods. Therefore, the ensemble struc-
ture of ELM is more efficient with less learning time,
when compared with traditional neural network
methods.

6 Conclusion
This paper designs an ensemble-based randomized clas-
sifier to identify IGBT open-circuit faults in three-phase
PWM converters. Considering both single and double
IGBT faults, the output three-phase converter currents
are measured using the simulation model, and faults are
diagnosed by ELM. To compensate the inadequacy of
single ELM classification, an ensemble structure is de-
signed to increase accuracy by combining a number of
single classifiers. Moreover, an optimal value of time
window is adopted to balance the tradeoff between diag-
nostic accuracy and ELM learning burden. The

Table 3 Data acquisition

Simulation data

DC-link ripple voltage 100 (1:100/1 V)

Reference speed 100 (1:100/1 rad/s)

Reference load torque 100 (21:120/1 N∙m)

Open-circuit fault 2100

Fig. 8 Performance of single ELM classifier with different
types of activation function

Fig. 9 Performance of ensemble ELM classifier with different
time window width

Table 4 Classification Performance

Network Type Average Learning Time Average Testing Accuracy

ELM 2.711 s 93.80%

SVM 16.927 s 92.29%

DT 5.366 s 90.01%

NB 5.221 s 68.18%
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simulation shows that, compared with other traditional
learning algorithms, ELM has better performance in
both classification accuracy and learning time. This en-
semble ELM structure can identify IGBT open-circuit
faults with a much higher diagnosis accuracy of 96.89%
in 40 ms. It also shows that the proposed data-driven
scheme is independent of voltage ripple, harmonics, and
speed and load fluctuations. Thus, the proposed scheme
is efficient and reliable in practical applications.
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