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Abstract

Stable and safe operation of power grids is an important guarantee for economy development. Support Vector
Machine (SVM) based stability analysis method is a significant method started in the last century. However, the SVM
method has several drawbacks, e.g. low accuracy around the hyperplane and heavy computational burden when
dealing with large amount of data. To tackle the above problems of the SVM model, the algorithm proposed in this
paper is optimized from three aspects. Firstly, the gray area of the SVM model is judged by the probability output
and the corresponding samples are processed. Therefore the clustering of the samples in the gray area is improved.
The problem of low accuracy in the training of the SVM model in the gray area is improved, while the size of the
sample is reduced and the efficiency is improved. Finally, by adjusting the model of the penalty factor in the SVM
model after the clustering of the samples, the number of samples with unstable states being misjudged as stable is
reduced. Test results on the IEEE 118-bus test system verify the proposed method.
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1 Introduction
In China’s current social development, the scale of the
power grid and the demand for electrical energy have
been increasing continuously. Safe and stable operation
of the power grid has laid the foundation for the stable
development of the whole society, and is the most im-
portant research in power system. Traditional power sys-
tem stability analysis methods are direct method and
time domain simulation method [1]. However, facing with
the large scale power grid and the increasing amount of
data, traditional calculation methods have encountered
significant challenges and are difficult to satisfy the re-
quirement of speed and accuracy. With the development
of computers and data mining technology in the early
1970s, researchers began to use data mining methods to
analyze the security and stability of the power system, e.g.
the support vector machine (SVM) [2, 3], artificial neural
network [4–7], decision tree [8–11] and so on.

SVM is a supervised two-element classification model. By
searching for an optimal hyperplane in the sample space,
this method divides the samples into two categories and
has the advantages of simple model and good classification
effect. It has been widely studied and applied by researchers
[12–14]. However, existing literatures focus on the
optimization of a single SVM model and analyzing the
same sample area with multiple SVM models. The final sta-
bility classification results are then obtained through voting
and thus, the errors can be reduced. However, this algo-
rithm increases the computational complexity of the model.
This paper proposes a two-segment SVM algorithm,

mainly aimed at improving the classification accuracy of
the analysis of the security regions in the power grid,
dealing with the grey space of the SVM model, and re-
ducing the damage of the unstable samples to the power
system caused by misjudgment of them being stable
ones. The algorithm improves the classification accuracy
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of single SVM classifier, and also reduces the amount of
computation in the second stage using the K-means
clustering algorithm [15, 16] and segmented processing.
It not only improves the accuracy but also the training,
optimization and classification speed of the model.

2 Methods
2.1 The foundation of SVM and K-means model
2.1.1 SVM model
SVM is a kind of two-stage classification model and a
supervised machine learning method. SVM method is
used to classify the samples by finding an optimal hyper-
plane in the sample space. In the hyperplanes that can
be classified, there exist two hyperplanes which are in
contact with two respective classes of data. The optimal
hyperplane is between them, and it can make the dis-
tance between the two nearest samples on the two sides
of the hyperplane maximized.
For a set of data (xi, yi), i = 1, 2, ⋯, l, xi ∈ R

n, they
can be divided into linear separable and linear non-
separable ones. In the linear separable case, the optimal
hyperplane is shown as follows, and the samples can be
divided into two categories:

wTxþ b ¼ 0 ð1Þ

The solution of the optimal hyperplane can be
expressed as:

min
1
2

wk k2 s:t: yi w
Txi þ b

� �
≥1; i ¼ 1;⋯; n ð2Þ

In the linear non-separable case, SVM maps the sam-
ple data to a high dimensional space through a kernel
function and subsequently solves the linear non-
separable problem in the original sample space in high
dimensional space.
Through the kernel function, the sample space can be

mapped to a high dimensional space, but this does not
completely guarantee the easy handling of the data.
Since the data may have noise, there exists a deviation
point where the date deviates from the normal position
after the mapping is completed. In order to reduce the
effect of noise on the hyperplane, the SVM model allows
the existence of the deviation point when constructing
the hyperplane, i.e. there is a classification error. A slack
variable ξi is constructed and the constraint condition is
changed to:

yi w
Txi þ b

� �
≥1−ξ i i ¼ 1;⋯; n ð3Þ

However, there is a need to control the relaxation vari-
able. Since the slack variable is a manifestation of the
classification error, the optimization function in the
SVM can be changed to:

min
1
2

wk k2 þ C
Xn
i¼1

ξ i

s:t: yi w
Txi þ b

� �
≥1−ξ i; i ¼ 1;⋯; n

ξ i≥0; i ¼ 1;⋯; n

ð4Þ

where C is a penalty factor.
The SVM model transforms the classification problem

into an optimization problem, as shown in (4). In the
standard C-SVM model, the optimization problem is
transformed into a duality problem. In this transform-
ation, the Lagrange function is introduced as:

L w; b; ξ; α; βð Þ ¼ 1
2

wk k2 þ C
Xn
i¼1

ξ i−

Xn
i¼1

ai yi w �Φ xið Þð Þ þ bð Þ−1þ ξ ið Þ−
Xn
i¼1

βiξ i

ð5Þ

Using the Lagrange function, the duality problem that
the model needs can be derived as:

min
α

1
2

Xn
i¼1

Xn
j¼1

αiα jyiy jk xi; x j
� �

−
Xn
i¼1

αi

s:t:
Xn
i¼1

yiαi ¼ 0

0≤αi≤C; i ¼ 1; 2;…; n

ð6Þ

The solution can be obtained by α∗, which can be
expressed as:

α� ¼ α�1; α
�
2;⋯; α�n

� �T ð7Þ

The αi is valued in the interval (0,C) and the compo-
nent b∗ can be calculated according to αi as

b� ¼ yi
Xn
i¼1

yiαik xi; xð Þ ð8Þ

Finally, the decision function f(x) is constructed as the
classification rule by α∗ and b∗ as:

f xð Þ ¼ sgn
Xn
i¼1

yiα
�
i k xi; xð Þ þ b�

 !
ð9Þ

2.1.2 K-means model
Clustering analysis is a common algorithm in data min-
ing algorithm and is an unsupervised learning method.
The clustering algorithm usually classifies the samples
into different clusters, and in each cluster the samples
have a certain similarity.
The K-means clustering algorithm is an iterative

optimization algorithm. The iteration period of the K-
means algorithm consists of the following two parts:
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(1) Distribution of samples. For given K central points
(the mean points of the cluster samples), each
sample is allocated in a cluster represented by the
nearest mean point of its Euclidean distance, and
the samples are divided into K clusters. Each
sample can only be in a deterministic cluster to
minimize the sum of squares within a group, i.e.,
each sample xp can only be allocated to a cluster SðtÞi .
The sum of square here is the square of Euclidean
distance. In the t iteration, a clustering SðtÞi whose
cluster center is mðtÞ

i can be represented as:

S tð Þ
i ¼ xp : xp−m

tð Þ
i

��� ���2≤ xp−m
tð Þ
j

��� ���2∀ j; 1≤ j≤k
� �

ð10Þ

(2) Updating the mean points. The center of each
sample in each cluster is used as a new cluster
center. The new mean point is shown as:

m tþ1ð Þ
i ¼ 1

S tð Þ
i

��� ���
X
x j∈S

tð Þ
i

x j ð11Þ

In the K-means algorithm, there are two key elements,
one is the choice of the initial mean point and the other
is the least square sum of the distance. In the original al-
gorithm, the initial mean point is chosen randomly or to
be near the center point, and the Euclidean distance is
usually used as the distance function. However, in the
development of the subsequent K-means algorithm, the
distance function uses the absolute error.For unknown
samples, the K value in the K-means algorithm cannot
be accurately estimated in advance. Selecting inappropri-
ate K value will have an adverse effect on the subsequent
SVM training. In this study, the maximum cluster radius
(Euclidean distance) is used as an index to evaluate the
clustering effect and determine the suitable K value.

3 Results
3.1 Power system security regions analysis method based
on two-segment SVM model
The proposed algorithm is improved for single or mul-
tiple SVM by improving the accuracy of single SVM
classifier. At the same time, through K-means cluster-
ing algorithm and segmented processing, the computa-
tion requirement of multiple SVM in the second stage
is reduced, which improves not only the accuracy but
also the training, optimization and classification speed
of the model. To solve the issues related to mistaking
the unstable conditions of the system as stable ones,

this paper proposes to adjust the penalty factor of the
SVM model in the second stage. In addition, adjusting
the penalty factor does not change the computation re-
quirement of model training and classification. Com-
bined with the K-means clustering algorithm, it can
reduce the number of unstable state of the system be-
ing mistaken for stable ones. The training process of
this algorithm is shown in Fig. 1.

3.2 First stage SVM
In the first stage of SVM training, it is necessary to ensure
the accuracy rate is as high as possible, and to reduce the
proportion of samples into the second stage to improve
the efficiency of security regions analysis. In this model,
Grid Search is adopted first to optimize the parameters of
the SVM model, and the SVM model with the best classi-
fication accuracy is obtained. The probability output of
the SVM is then used to judge the fiducial probability of
the sample in the SVM model in the first stage.
The SVM model used here is the RBF kernel, which is

shown by the kernel function as:

k xi; xð Þ ¼ exp −γ xi−xk k2� �
; γ > 0 ð12Þ

In (4) and (12), there are two parameters in the
process of parameter optimization: penalty factor C and
kernel function parameter γ. The Grid Search method is
to give a range of parameter C and γ, divide the grid
under the given step size, traverse each point in the grid
by cross validation and select the highest accuracy as the
optimal parameter. The method of cross validation is to
train samples of SVM model in groups, one is used as a
real training set and the other is verified by validation
set. The most commonly used is the cross validation of
N-CV. The method divides samples into N groups, with
one group as a test set and the rest as training sets, to
evaluate the accuracy of this parameter after all the re-
sults are synthesized. After traversing the grid, the classi-
fication accuracy of all the parameters is collected.

Fig. 1 Diagram of the training process
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After selecting the parameters C and γ, the model de-
termines the grey space in the sample by the fiducial
probability of the classification results of each sample. It
then structures the SVM sample set, where xi ∈ R

m

represents the input characteristics of the sample using
active and reactive power of the generators and lines,
bus voltage magnitude and phase angle, and active and
reactive power of the load as the output characteristics,
and y ∈ {1, 0} represents the classification of the stability
output. The function is mapped to the high dimensional
space by using the RBF kernel function, and the
hyperplane is constructed. The constructor uses the
function g(x) to represent the distance between the
sample and the optimal hyperplane as

g xð Þ ¼
Xl
i¼1

aiyik xi; xð Þ þ b ð13Þ

where ai ∈ R
m is the Lagrange operator and k(xi, x) is

shown in (12).
The distance from the sample to the hyperplane indi-

cates the probability of the type of output classification is
the sample in. The probability of y = 0 in this sample is:

P C0 xjð Þ ¼ 1= 1þ eg xð Þ
� 	

ð14Þ

and the probability of y = 1 in this sample is:

P C1 xjð Þ ¼ 1= 1þ e−g xð Þ
� 	

ð15Þ

The SVM selects the maximum probability between
them as the output, and in this model, the maximum
probability of the two is selected as the maximum prob-
ability of the classification results of the sample. After
several experiments, it is known that for samples whose
output probability is larger than 0.99, the result is con-
sistent with the real stable state. Otherwise, there may
be missed or false judgement. Therefore, the sample
with SVM output being less than 0.99 will be defined as
a grey space sample in the first stage. The samples will
be further processed to improve the accuracy of
classification.

3.3 K-means clustering
When using K-means clustering to process data in grey
space, Euclidean distance is selected as the cluster index.
In the sample space, the center points are randomly se-
lected for K-means clustering, and the clustering results
are observed. After clustering, the appropriate K value
and center point are selected. When the K value initially
increases, the cluster index declines fast and the clustering
effect is improved. However, after the K value increases to
a certain degree, the cluster index declines slowly and fur-
ther increase of the K value may sometimes even lead to

the increase of the cluster index. This may reach a state of
local convergence. In the K-means clustering algorithm,
the local optimal condition is eliminated by repeated cal-
culation to select the optimal value.
On the choice of the cluster index, the larger the

K value is, the smaller the cluster index is and the
better effect the clustering has. However, the increase
of K value will increase the number of the SVM
models in the second stage, the complexity of the
model and the amount of required computation. In
this model, the K value is selected when the cluster
index starts to decline slowly, and the center point
of the optimal clustering effect is recorded after
repeated calculation.
After a new cluster sample is judged in the grey

space by the SVM at the first stage, the Euclidean dis-
tance between the sample and each center point is cal-
culated. The categories belonging to the sample are
determined according to the nearest center point, and
the second stage SVM model is used to classify them.

3.4 Second stage SVM
The second stage SVM is used to deal with the grey
space data after clustering. According to the conser-
vation of the power system, the possibility of the
leakage is to be minimized. Thus, a penalty factor is
introduced to modify the constraints of the second
stage SVM.
In the second stage SVM model, the sample is set as

(xi, yi), i = 1, 2, ⋯, l, xi ∈ R
n. The optimization problem

such as shown in (4) indicates that the first one
represents the maximization of the interval between
samples, the second one is the slack variable ξi
introduced by the existence of deviating points, and C is

the penalty factor. In (4), C
P
i¼1

n
ξ i represents the size of

the error term. The greater the C is, the more important
it is to represent the error.
The standard C-SVM model uses a C parameter as a

penalty factor and does not distinguish between missed
and misjudged errors. In order to deal with the situ-
ation that the unstable state of power system being
mistaken as stable ones, this model selects different
penalty factors C1 and C0 to deal with the distinction
between errors due to different causes. The error term
is defined as:

C1

X
i yi¼1j

ξ i þ C0

X
i yi¼0j

ξ i ð16Þ

With the interval error, the optimization problem can
be changed to:
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min
1
2

wk k2 þ C1

X
i yi¼1j

ξ i þ C0

X
i yi¼0j

ξ i

s:t: yi w
Txi þ b

� �
≥1−ξ i; i ¼ 1;⋯; n

ξi≥0; i ¼ 1;⋯; n

ð17Þ

In solving the optimization problem, the Lagrange
function is introduced as:

L w; b; ξ; α; βð Þ ¼ 1
2

wk k2 þ C1

X
i yi¼1j

ξ i þ C0

X
i yi¼0j

ξ i

−
Xn
i¼1

ai yi w �Φ xið Þð Þ þ bð Þ−1þ ξ ið Þ−
Xn
i¼1

βiξ i

ð18Þ
Being a duality problem, the optimization problem can

be changed to:

min
α

1
2

Xn
i¼1

Xn
j¼1

αiα jyiy jk xi; x j
� �

−
Xn
i¼1

αi

s:t:
Xn
i¼1

yiαi ¼ 0

0≤αi ≤C1; yi ¼ 1
0≤αi ≤C0; yi ¼ 0

ð19Þ

After the solution, α∗ can be expressed as:

α� ¼ α�1; α
�
2;⋯; α�n

� �T
αi∈ 0;C1ð Þ yi ¼ 1
αi∈ 0;C0ð Þ yi ¼ 0

� ð20Þ

The b∗ component is then calculated as:

b� ¼ yi
Xn
i¼1

yiαik xi; xð Þ ð21Þ

Finally, a new decision function f(x) is constructed as
the classification rule by α∗ and b∗, which are valued by
different penalty factors, i.e.

f xð Þ ¼ sgn
Xn
i¼1

yiα
�
i k xi; xð Þ þ b�

 !
ð22Þ

By increasing the error penalty of the yi = 0 part of the
sample (xi, yi), i.e. the penalty of misjudging the unstable
state, the error of misjudging the unstable states as
stable states is reduced.

4 Discussion
4.1 Case study
In this paper, the PSAT simulation toolbox is used to
carry out power flow calculation and time domain simu-
lation. The IEEE 54-machine 118-bus standard test sys-
tem is modeled in PSAT, and the single line diagram is
shown in Fig. 2. The system consists of 3 regions. In an

actual power grid, the lines between regions are usually
under heavy load. The fault is located on the interre-
gional tie line and the power flow is calculated and sim-
ulated in time domain. The stability of the system under
the corresponding fault is judged by simulation results.
The flow data and stability of the IEEE 118-bus standard
test system are used as data set for subsequent data ana-
lysis, i.e. the analysis of the system security regions
under the corresponding fault. The specific operation is
to consider the initial power flow and set the output of
each node randomly within ±40% of the rated output,
with the load level of the node fluctuating within the
range of ±10% of the rated load level. Three-phase short
circuit faults are applied in the interregional liaison lines
and the faults are cleared after a period of time. The ini-
tial power flow of the active and reactive power of the
generators and lines, the bus voltage magnitude and
phase angle, load active and reactive power at the node,
and the final stability of the 54-machine 118-bus system
are recorded as the data set. Eight thousand groups of
such data are randomly generated as training samples.
In the example test, the fault is applied on the interre-

gional connection Line30–38, and the fault setting is
shown in Table 1.
In the 8000 groups of samples, 6000 groups of data

are randomly selected as training samples and the other
2000 groups of data are used as test samples.
First, the parameters of the grid cross validation are

optimized and the optimization results of the sample are
shown in Fig. 3.
Using the best parameter training, the first stage SVM

model is obtained and tested in the test set. The number
of samples in the non-gray space area is 807, and the
number of samples in the grey space area is 1193
through the sample fiducial probability. The clustering
results of grey space samples are tested by repeatedly
clustering 10 times to obtain the best clustering effect to
avoid local convergence. The variation of cluster index
with K value is shown in Fig. 4. As can be seen, the K
value of K-means clustering is 9, and 9 s stage SVM are
trained by the clustering results.
After clustering analysis and adjusting the penalty factor,

the classification effect of the modified SVMmodel is com-
pared with the standard SVM model, as shown in Table 2.
Through the example analysis in the IEEE 118-bus, it

verifies the effectiveness of the proposed security and
stability analysis algorithm in the analysis of the safety
regions during faults in the interregional liaison lines.

5 Conclusion
Based on the standard SVM model, the algorithm of
cluster analysis is merged and the penalty factor is cor-
rected. A two-stage SVM model based on clustering
analysis and penalty factor adjustment is established.
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The analysis of the IEEE 118-bus system validates that
the proposed model can effectively improve the classifi-
cation accuracy of the SVM model. At the same time,
the K-means clustering method is used to reduce the
sample size of the second stage to improve the training
speed of the model.
Through this study, the probability output of SVM

can effectively distinguishes the SVM model in gray
space. The fiducial probability output of classification
results can make the classification results of the vague
samples to be effectively recognized for subsequent
processing. The classification accuracy of the samples
in the gray space can be effectively improved by using

Table 1 The fault configuration

Fault
Bus

Tripping
Line

Failure
duration

Stable
sample

Unstable
sample

Bus38 Line30–38 0.214 s 5846 2154
Fig. 3 Results of CV grid searching on training data

Fig. 2 One-line chart of the IEEE 118-bus system
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the clustering analysis with the SVM model. Using the
penalty factor adjustment method can reduce the propor-
tion of unstable results mistaken as stable ones. In
addition, this method can effectively deal with each cluster
after being clustered into two samples due to unbalanced
training difficulties, so as to improve the accuracy of
classification.
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