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Abstract

Background: The increasing penetration of a massive number of plug-in electric vehicles (PEVs) and distributed
generators (DGs) into current power distribution networks imposes obvious challenges on power distribution
network operation.

Methods: This paper presents an optimal temporal-spatial scheduling strategy of PEV charging demand in the
presence of DGs. The solution is designed to ensure the reliable and secure operation of the active power
distribution networks, the randomness introduced by PEVs and DGs can be managed through the appropriate
scheduling of the PEV charging demand, as the PEVs can be considered as mobile energy storage units.

Results: As a result, the charging demands of PEVs are optimally scheduled temporally and spatially, which can
improve the DG utilization efficiency as well as reduce the charging cost under real-time pricing (RTP).

Conclusions: The proposed scheduling strategy is evaluated through a series of simulations and the numerical
results demonstrate the effectiveness and the benefits of the proposed solution.

Keywords: Plug-in electric vehicles (PEVs), Energy storage, Distribution generators (DGs), Charging demand,
Charging scheduling strategy, Active power distribution networks, Real-time pricing (RTP)

1 Background
The growing concerns of fossil fuel consumption and
greenhouse gas emission have motivated the quick de-
velopment of plug-in electric vehicles (PEVs) and distrib-
uted generators (DGs). It is widely agreed that PEVs and
DGs will become prevalent in recent decades, and high
penetration level of PEVs and DGs is envisioned in
future power distribution networks. For instance, it is
anticipated that PEV will be a fairly large segment of US
national fleet (at least 10% by 2020 and 50% by 2050 of
new car sales projection) [1]. Moreover, the proportion
of distributed renewable energy sources (e.g. photovol-
taic and wind turbine) is reported to be 17.9% in total
energy consumption of China in 2015, and the average
annual growth rate reaches 9.42% [2].
On the one hand, the utilization of DGs can reduce

the fossil fuel consumption and greenhouse gas

emission, and the large-scale deployment of PEVs can
also promote the utilization of the renewable energy
sources through the coordinated dispatching strategies
of PEVs and renewable DGs. The benefits of the coordi-
nated energy dispatch considering the availability of DGs
and PEVs have been confirmed in some existing litera-
ture [3]. However, on the other hand, the uncoordinated
integration of a massive number of PEVs and DGs into
current active power distribution networks would bring
direct challenges for network planning, control and
management. The temporal and spatial characteristics of
DG outputs and PEV charging demand impose a signifi-
cant impact on load profiles of distribution networks,
and hence results in unexpected voltage fluctuation and
increased peak-valley gap [4]. In the presence of the in-
creasing penetration of PEVs and DGs, a coordinated
scheduling strategy for PEV charging demand and DG
outputs management needs to be adopted in current ac-
tive power distribution networks to ensure the reliable
and economical network operation.
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In literature, a collection of research effort has been
made to address the challenges of the optimal schedul-
ing strategies of PEV charging (e.g. [5–13]), but only a
few works considered the interaction with DGs (e.g. [3,
14–17]). The authors in [3] exploited three coordinated
wind-PEV energy dispatching approaches (i.e., valley
searching, interruptible and variable-rate energy dis-
patching), aiming to optimize the utilization efficiency of
wind power generation as well as meet the dynamic
power demands. In [14], the self-scheduling problem of
an aggregator of PEVs purchasing energy in the day-
ahead market and offering balancing services for a wind
power producer was discussed using a probabilistic vir-
tual battery model and a scenario-based robust ap-
proach. Moreover, a two-level architecture based on
model predictive control was presented to deal with dis-
tributed energy resources, renewables and storage de-
vices in microgrids with less computational complexity
in [15]. The authors in [16] proposed a PEV charging
policy that considers every 5 min real-time market en-
ergy price signal to increase the penetration of distrib-
uted PV solar arrays. Last but not least, a charging
process undergone for PEVs in parking lot areas using
PV-based charging facilities was presented to evaluate
the voltage profiles, peak demand and charging cost of
this scenario in [17].
However, the aforementioned solutions have some ob-

vious limitations. Firstly, it has been reported that
current PEVs can be charged either in normal charging
mode at home, or in fast charging mode at fast charging
stations [18], and the two charging modes have totally
different characteristics, which has not been considered
in the related works. A comprehensive scheduling strat-
egy needs to be proposed including two charging modes.
Furthermore, most of the literature only aimed to solve
either the reliable operation of the distribution networks
or the economical charging of PEV owners. However, both
aspects should be focused on to achieve a win-win result.
In addition, to the authors’ best knowledge, most of the
related works are based on the day-ahead prediction of
DG outputs, there still lacks of PEV charging scheduling
strategies to ensure the real-time performance.
To this end, this paper addressed the challenges of

PEV charging scheduling strategy and presented a novel
temporal-spatial optimal scheduling strategy of PEV
charging demand considering the existence of DGs. The
main technical contributions made in this work are as
follows: (1) PEV charging demand is scheduled separ-
ately based on the characteristics of two charging modes
with DG outputs and real-time pricing (RTP), spatially
scheduling for fast charging demand and temporally
scheduling for normal charging demand; (2) the object-
ive function of the proposed temporal-spatial scheduling
strategy considers both the reliable and economical

network operation, trying to improve the utilization effi-
ciency of DGs as well as reduce the cost of PEV charging
considering RTP.
The remainder of this paper is organized as follows:

Section 2 introduces the characteristics of two PEV char-
ging modes, and presents the framework of the
temporal-spatial scheduling strategy; Section 3 presents
the mathematical formulation of the temporal-spatial
scheduling strategy; Section 4 evaluates the benefits of
the temporal-spatial scheduling strategy through a set of
simulations with field data; finally, a set of conclusive
remarks are given in Section 5.

2 The framework of the temporal-spatial schedul-
ing strategy
Currently, two PEV charging modes are widely adopted:
normal charging mode at home or parking lots with
lower charging power level, and fast charging mode at
fast charging stations with higher charging power level,
the typical charging duration is 20–30 min [18]. Besides
the charging power level, the characteristics of such two
charging modes are also intrinsically different. When a
PEV is driving to the destination but the SoC is too low
to complete the rest trip, it should find a fast charging
station to get charged with the fast charging mode as
soon as possible. However, the normal charging often
happens when a PEV arrives at home or workplaces and
it doesn’t hurry to get fully charged [19, 20].
Therefore, it is obvious that the PEV fast charging de-

mand is unpostponable and uninterruptible, but the
PEVs with fast charging demand can be scheduled to get
charged in an optimal fast charging station. The fast
charging demand of PEVs can be considered spatially
schedulable but temporally unschedulable. On the con-
trary, the normal charging demand is interruptible,
which can be shifted over time, but the charging place is
totally fixed. The normal charging time can be scheduled
to consume the DGs optimally with minimal cost, which
means the normal charging demand can be considered
temporally schedulable but spatially unschedulable.
The differences of these two PEV charging modes are

illustrated in detailed in Table 1.
Because of the totally different characteristics of two

PEV charging modes, the PEV charging scheduling strat-
egy should consider two types of the PEV charging de-
mand separately. The framework of the proposed

Table 1 The characteristics of two PEV charging modes

fast charging normal charging

charging power level higher lower

charging place fast charging stations home or workplaces

space characteristics schedulable unschedulable

time characteristics unschedulable schedulable
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temporal-spatial scheduling strategy of PEV charging is
shown in Fig. 1. As mentioned before, the normal char-
ging demand is scheduled temporally and the fast char-
ging demand is scheduled spatially, in order to achieve
the optimal interaction with DGs and grids.
The proposed temporal-spatial scheduling solution

aims to meet the PEV charging demand with minimal
cost as well as optimize the DG utilization efficiency
both temporally and spatially. PEVs can be assumed as
mobile energy storage units which are considered with
more flexible and less economical cost compared with
the traditional battery energy storage.

3 The formulation of the temporal-spatial sched-
uling strategy
Based on the characteristics of two PEV charging modes
illustrated in Section 2, the temporal-spatial scheduling
strategy separately schedules PEV normal charging de-
mand and fast charging demand temporally and spatially.

3.1 Spatial scheduling strategy of fast charging
The spatial scheduling strategy aims to spatially schedule
the PEVs with fast charging demand to get charged at
optimal fast charging stations to consume the outputs of
DGs with minimal cost. The strategy spatially schedules
the PEV fast charging based on the fast charging re-
quests Rfch and the profiles of the DGs and the distribu-
tion network, as illustrated in Fig. 2. In this work, a set
of assumptions are made as follows:

(1)There assumes to be a geographical area with
several PEV fast charging stations in the distribution
network, and each charging station is assumed to be
connected by a DG;

(2)The whole day is divided into 48 time slots (i.e.
30 min per slot) [19, 20], and the output of DGs, the
demand of baseload, and RTP are assumed to be
detectable at the start of each time slot and remain
unchanged during each time slot;

(3)The PEVs are assumed to keep driving if the SoC is
more than 0.3. When the SoC is lower than 0.3 when
the current time slot ends, the PEV needs to get
charged in fast charging mode in the next time slot;

(4)There assumes to be an aggregation center with the
access to the SoC and the location information of
each PEV with the message format of Rfch (SoC,
location), to schedule the PEV fast charging
behaviors at the start of each time slots.

The objective function Ffch aims to improve the
utilization efficiency of DGs, at the meanwhile reduce
the cost of charging, as shown in (1):

minFfch ¼ min ω1

Xm
i¼1

Pi
base þ Pi

fch−P
i
DG

��� ���þ ω2

P
j−1

n
costj

n
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Fig. 1 The framework of the temporal-spatial scheduling strategy
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cost ¼ 1−SoC0ð Þ⋅Cbat⋅RTP þ dis⋅Ec⋅RTP ð2Þ

ω1 and ω2 e assigned a value according to the different
situation.
The first term in the objective function Ffch represents

the sum of the active power in each station, to make
sure that the electric energy generated by DGs can be
consumed spatially by PEVs as much as possible; the
second term represents the average charging cost of
each PEV. The total charging cost also consists of two
parts, as shown in (2). The first part is the charging cost
to fully charge the battery, and the second part repre-
sents the scheduling cost (i.e. the distance to the object-
ive station). The variables in this objective function are

the different charging places for each PEV with fast
charging demand.
The objective function is subject to:

ΔUk
�� �� < 0:1⋅U0;∀k ¼ 1; 2;⋯; l ð3Þ

dis <
SoC0⋅Cbat

Ec
ð4Þ

where (3) means the voltage fluctuation on bus node k
cannot exceed the upper and lower bounds of the node
voltage; and (4) means that the PEVs cannot be scheduled
to a charging station farther than the remaining mileage.

The proposed spatial scheduling strategy of PEV fast
charging demand is carried out at the start of each time
slot. Once the fast charging behaviors of all PEVs are de-
termined by the scheduling strategy, the PEVs with fast
charging demand will get charged in the assigned char-
ging stations. Likely, in the next time slot, the DG out-
put generation, the baseline demand, and RTP can be
accurately detected again. Thus, the spatial scheduling
strategy will repeat in every time slot with real-time in-
formation, which can ensure the real-time performance
of the scheduling strategy.

Through the proposed spatial scheduling strategy of
PEV fast charging demand, the electric power generated
by DGs can be scheduled spatially to be consumed by
PEV fast charging demand as much as possible with
minimal cost. Moreover, the active power on every bus
node in the distribution network will be more balanced.

3.2 Temporal scheduling strategy of normal charging
Unlike the PEV spatial scheduling, the temporal schedul-
ing strategy aims to temporally schedule the PEVs with
normal charging demand to get charged in optimal
times to consume the distributed generation with min-
imal cost. The strategy schedules the PEV normal char-
ging demand based on the normal charging requests
Rnch, the outputs of DGs, and the baseload profiles of
the charging bus node, as illustrated in Fig. 3.

Here, the following assumptions are made:

(1)The whole day is divided into 48 time slots (i.e.
30 min per slot), and the output of DGs, the
demand of baseload, and RTP are assumed to be
predictable day-ahead and remain unchanged during
each time slot;

(2)There is assumed to be an aggregation center able to
communicate with each PEV, schedule the normal
charging behaviors and estimate PEV normal
charging demand in the future;

(3)When a PEV arrives at home, if the SoC is less than
0.8, it is assumed to have a normal charging request
to get fully charged at night;

Fig. 2 The flowchart of spatial scheduling strategy of fast charging
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(4)PEV sends a message to the aggregation center when
it arrives at home, including the information of arrival
time, current SoC, battery capacity, and leaving time,
with the format of Rnch (ta, SoC0, Cbat, tend).

The objective function Fnch also aims to improve the
utilization efficiency of DGs, at the meanwhile reduce
the cost of charging, as shown in (5):

minFnch ¼ min ω1

X48
t¼1

Pt
base þ Pt

nch−P
t
DG

�� ��þ ω2

Xn
j¼1

costtj

 ! !

ð5Þ
where

Xn
j¼1

costj ¼ Pnch⋅RTP⋅T ð6Þ

ω1and ω2 are coefficient factors, which can be assigned
a value according to the different situation.
The first term in the objective function Fnch represents

the active power on a certain bus in 48 time slots to
make sure that the electric energy generated by DGs can
be consumed temporally by PEVs as much as possible;
the second term represents the total charging cost in
each time slot, as shown in (6). As the time slot is
30 min long, T equals 0.5. The variables in this objective
function are the different charging time slots for the
PEVs with normal charging demand.
The objective function is subject to:

ΔUk
t j < 0:1⋅U0; ∀t ¼ 1; 2;⋯; 48; ∀k ¼ 1; 2;⋯; l

��
ð7Þ

SoCtend ¼ 1 ð8Þ
where ΔUk

t

�� �� in (7) represents the voltage fluctuation on
bus node k at time slot t, which means the voltage fluc-
tuation of each bus node in each time slot cannot exceed
the upper and lower bounds of the node voltage; and (8)
means that the battery should be fully charged at the
leaving time tend. It should be noticed about the con-
straint (7) that although the proposed temporal schedul-
ing strategy of normal charging focuses on the fixed
charging node, the influence on the distribution network
still needs to be considered.
As the temporal profiles of distribution networks in

the future are needed in the proposed temporal schedul-
ing strategy, the outputs of DGs, the demand of base-
load, and RTP should be predicted day-ahead, and the
predicting algorithm is available in [21]. Moreover, the
temporal PEV normal charging demand in the future is
also needed to be estimated, which can be obtained from
the modeling approach in [19, 20] Once the normal
charging behaviors in the current time slot of all PEVs

Fig. 3 The flowchart of temporal scheduling strategy of normal
charging

Table 2 PEV battery capacity parameters

battery type M1 N1

Cbat(kWh) μM1C
bat
¼ 28:5 σM1c

bat
¼ 14:7

cM1max ¼ 72:0 cM1min ¼ 10:0

μN1C
bat
¼ 23:0 σN1c

bat
¼ 9:5

cN1max ¼ 40:0 cN1min ¼ 9:6
Ec(kWh/km)

EM1c ¼ 0:159 EN1c ¼ 0:185
Market share ms msM1 = 89% msN1 = 11%
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are determined by the strategy, the SoC distribution (i.e.
the expected charging duration) of PEVs with normal
charging demand in the next time slot can be updated,
and the real-time output of DGs, the baseload profiles
and the RTP can also be detected to replace the predicted
data. Thus, the temporal scheduling strategy will repeat in
each time slot, which can ensure the real-time perform-
ance and the accuracy of the scheduling strategy.
Through the proposed temporal scheduling strategy of

PEV normal charging, the electric power generated by
DGs can get consumed by PEV normal charging de-
mand as much as possible with minimal cost in every
time slot. Moreover, the active power on the charging
bus node in every time slot will also be more balanced.
In a word, based on the proposed temporal-spatial

scheduling strategy, the PEV charging demand can be
separately scheduled to consume the electric power gen-
erated by DGs with minimal cost temporally and
spatially, and the operation of the distribution networks
can become more reliable and economical.

4 Case studies and simulation results
This section carries out a set of case studies to imple-
ment and justify the effectiveness of the proposed
solution.

4.1 Statistics and assumptions
In this work, normal charging mode and fast charging
mode are both adopted with the typical charging power
Pn − ch and Pf − ch of 3.3 kW (220 V/15A) and 50 kW
(400 V/125A), respectively [22]. In addition, the battery
capacity of typical PEVs can be obtained from [23],
which follows the normal distribution N(μ, σ2), as shown
in Table 2.
The IEEE 53-bus test feeder is adopted in this work to

further demonstrate the effectiveness of the proposed
temporal-spatial scheduling strategy of PEV charging
[24]. The typical daily baseload curve in Beijing are
obtained from [25] and scaled down proportionally. As

Fig. 4 The adopted IEEE 53-bus test feeder

Fig. 5 The typical curve of DG output
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is shown in Fig. 4, there assumes to be 10 PEV charging
nodes in the distribution network, and each node is con-
nected by a DG, which is assumed to be a combination
of photovoltaic (PV) and wind turbine, with the typical
daily curve of output shown in Fig. 5, which can be pre-
dicted day-ahead [26, 27]. In addition, the typical daily
curve of RTP is shown in Fig. 6, which is also assumed
to be day-ahead predictable [28].
Furthermore, the PEV home arrival time can be ob-

tained from National Household Travel Survey (NHTS)
[29], and the normal charging demand is estimated based
on the modeling approach in [19, 20]. It is assumed that
there are in total nfch = 104 PEVs in this geographical area
in fast charging scenario and there are nnch =500 PEVs on
each bus node to get normal charged in normal charging
scenario. The initial SoC of two scheduling scenarios are
both assumed to follow the normal distribution N(μ, σ2)
with the mean value μ and the standard deviation σ of 0.5
and 0.1. In addition, the distance from the PEV current lo-
cation to each charging station is assumed to follow the
normal distributionN(15, 42).

4.2 Spatial scheduling strategy of fast charging
The proposed spatial scheduling strategy is applied in a
geographical area, such as the adopted IEEE 53-bus test
feeder. It should be noticed that the spatial scheduling strat-
egy in each time slot is independent from each other. The
scenario at 17:00 is carried out for an example as follows.
Case 1: uncoordinated charging strategy.
In the uncoordinated charging strategy, the charging

behaviors are totally uncontrolled. Thus all PEVs with
fast charging requests will get charged in the nearest
charging station, as shown in (9),

disj ¼ mindis ð9Þ
where dis is the vector of the distances dis from the
PEV current location to each charging station.
In this case, the function (1) can be easily calculated.
Case 2: the proposed spatial scheduling strategy.
PEVs with fast charging demand are scheduled to the

optimal charging stations according to the proposed
spatial scheduling strategy, as illustrated in Section 3.1.
The objective function (1) can be solved using YALMIP
optimization toolbox in MATLAB. Moreover, the
optimization result is also verified by MATPOWER6.0
in MATLAB, in order to ensure the result satisfies the
voltage fluctuation constraint (3). If the result exceeds
the voltage constraint, the optimization process will re-
peat again to find the next optimal result that satisfies
the voltage fluctuation constraint.
The numerical results for two different cases are pre-

sented in Table 3. It can be observed that the proposed
spatial scheduling strategy can significantly improve the
utilization efficiency of DGs with a little cost increase.
The charging cost increases because the PEV will be
scheduled to a farther charging station to consume the
output of DGs. However, the increase of cost is too
small, which can be ignored according to the results in
Table 3.
In order to further demonstrate the benefits of the

proposed spatial scheduling strategy, the utilization effi-
ciency of DGs in two cases are shown in Fig. 7, and the
active power flow from/to the grid in each charging sta-
tion is shown in Fig. 8. It can be seen that the utilization
efficiency of all DGs is improved and the active power
on the bus nodes of each charging station becomes more
spatially balanced.
In addition, Table 3 provides the standard deviation of

the bus voltage in the test network. It is obvious that the
voltage profiles also become better by the proposed
spatial scheduling strategy compared with uncoordinated
case, which will be more effective when the penetration
of PEVs and DGs gets larger.

4.3 Temporal scheduling strategy of normal charging
The proposed temporal scheduling strategy is applied in
fixed bus nodes of the distribution network, as shown in
Fig. 4. In this work, there are also two cases in temporal
scheduling strategy for PEV normal charging mode.
Case 1: uncoordinated charging strategy.

Fig. 6 The adopted RTP scheme in simulations

Table 3 The numerical results of two evaluated cases

Different cases Objective function First term Second term Voltage standard deviation

without PEV – – – 0.0065

Case 1 7.001 4.710 2.291 0.0085

Case 2 3.270 0.976 2.294 0.0072
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In the uncoordinated charging strategy, the charging
behaviors are totally uncontrolled. All PEVs will start
normal charging as soon as they arrive at home, as
shown in (10). Moreover, the normal charging is also un-
interrupted until the battery is fully charged.

tsc ¼ ta ð10Þ

Case 2: the proposed temporal scheduling strategy.
As is mentioned in Section 3.2, the objective function

(5) can be also solved using YALMIP optimization tool-
box in MATLAB. As same as Section 4.2, the
optimization result is also verified by MATPOWER6.0
in MATLAB, in order to ensure the result satisfies the
voltage fluctuation constraint (7). If the result exceeds
the voltage constraint, the optimization process will be
repeated again to identify the eligible solution.
The results of two cases are shown in Table 4. It can

be observed that the proposed temporal scheduling
strategy can significantly improve the utilization effi-
ciency of DGs and reduce the charging cost.
In order to further demonstrate the benefits of the

proposed temporal scheduling strategy, the utilization
efficiency of DGs in two cases are shown in Fig. 9.
Through the proposed temporal scheduling strategy, the
PEV normal charging can avoid the peak time of RTP
(i.e. 18:00 pm-20:00 pm), and the utilization efficiency of
DGs in most of time slots (i.e. 24:00 pm-6:00 am) is sig-
nificantly improved. In addition, the active power flow
from/to the grid during a day is shown in Fig. 10. The

fluctuation of the active power flow becomes more bal-
anced during a day through the proposed temporal
scheduling strategy. It should be noted that at
17:00 pm–20:00 pm, the PEV normal charging demand
is scheduled to other time to avoid the peak hours of
RTP.

5 Conclusions and future work
This paper presented a novel temporal-spatial optimal
scheduling strategy of PEV charging demand with the
existence of DGs. PEV is assumed to be excellent mobile
energy storage to optimally consume the distributed
generation temporally and spatially. The PEV charging
behaviors are separately scheduled temporally and
spatially based on the characteristics of two PEV char-
ging modes, normal charging and fast charging. The ob-
jective function aims to improve the utilization
efficiency of DGs, at the meanwhile reduce the cost of
charging under RTP. The proposed scheduling strategy
is further carried out for a series of case studies with
field data and reasonable assumptions. The results dem-
onstrate the benefits of the proposed strategy consider-
ing the large-scale integration of PEVs and DGs.
In the future, a number of directions are considered

worth further research efforts. The temporal-spatial
strategy can be extended to schedule the two PEV char-
ging behaviors simultaneously; the traffic networks can
also be adopted into the spatial scheduling strategy to
obtain accurate distance information; and the scheduling
of PEV normal charging demand can be further devel-
oped as an intelligent house system with some certain
household applications. The research outcome will be
provided in future publications.

Fig. 7 DG utilization efficiency (fast charging)

Fig. 8 The active power from/to the grid in each station

Table 4 The results of two cases

Different cases Objective function First term Second term

Case 1 46.09 29.09 17.00

Case 2 35.88 23.86 12.03

Fig. 9 DG utilization efficiency (normal charging)
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6 Nomenclature
6.1 PEV related variables
Cbat PEV battery capacity.
cost PEV charging cost.
dis Distance to a charging station of a PEV.
Ec Energy consumption per kilometer of battery.
ms Market share of each type of PEVs.
n Number of PEVs.
Pfch PEV fast charging demand.
Pf − ch Fast charging power.
Pnch PEV normal charging demand.
Pn − ch Normal charging power.
Rfch Message format of fast charging.
Rnch Message format of normal charging.
SoC0 Initial SoC of charging.
ta Home arrival time.
tend Leaving time.
tsc Charging start time.

6.2 DG and grid related variables
i Number of fast charging stations.
k Number of bus nodes.
l Maximum number of bus nodes.
m Maximum number of fast charging stations.
Pbase Baseload demand.
PDG Output of DGs.
RTP Real-time pricing.
U0 Standard node voltage.
ΔU Voltage fluctuation.
ω1 Coefficient factor.
ω2 Coefficient factor.
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