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Abstract

This paper deals with two new methods, based on k-NN algorithm, for fault detection and classification in distance
protection. In these methods, by finding the distance between each sample and its fifth nearest neighbor in a pre-
default window, the fault occurrence time and the faulty phases are determined. The maximum value of the distances
in case of detection and classification procedures is compared with pre-defined threshold values. The main advantages
of these methods are: simplicity, low calculation burden, acceptable accuracy, and speed. The performance of the
proposed scheme is tested on a typical system in MATLAB Simulink. Various possible fault types in different fault
resistances, fault inception angles, fault locations, short circuit levels, X/R ratios, source load angles are simulated.
In addition, the performance of similar six well-known classification techniques is compared with the proposed
classification method using plenty of simulation data.
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1 Introduction
Distance protection is one of the major protections of
power systems, utilized for detection, classification, and
location of short circuit faults. In the detection stage,
any change caused by different normal and abnormal
conditions is recognized. Then in the classification stage,
the type of faults (Ag, Bg, Cg, ABg, BCg, CAg, AB, BC
and CA) is determined.
In the fault location stage, the distance between the

fault and the relay is determined. Due to importance of
speed and accuracy of fault detection and classification
units, too many investigations have been dedicated to
these fields.
When a fault occurs in the power system, variables

such as current, power, power factor, voltage, impedance,
and frequency change. Many detection techniques detect
fault occurrence by comparing the post-fault values of
these variables with their values during system normal
operation. Some of fault detection methods are based on
Kalman filter [1], first derivative method, Fourier trans-
form (FT), and least squares [2]. Some other methods
are based on differential equations [2], travelling waves

[3, 4], phasor measurement [5], discrete wavelet trans-
form [6], fuzzy logic, genetic algorithm [7] and neural
network [8].
Also, many efforts have been made in the field of fault

classification, which can be broadly categorized in two main
groups. First, methods that are based on signatures of the
signals and definition of some criteria such as: discrete
wavelet transform (DWT) [9–13], Fourier transform (FT),
S-transform [14], adaptive Kalman filtering [15], sequential
components [16, 17], and synchronized voltage and current
samples [18]. The second group includes the methods based
on artificial intelligence techniques such as: Artificial Neural
Networks (ANN) [19–21], fuzzy logic [22, 23], Support
Vector Machine (SVM) [24–26], and decision-tree [27].
In this paper, two new methods are presented for detec-

tion and classification of faults. A moving window with
the length of half cycle of power frequency is considered
and the RMS value of the current samples is computed in
the window. The RMS value obtained in the last window
before fault, in which the fault instant is the last sample, is
saved. The current waveforms are divided by the saved
RMS value. Then, k-NN algorithm is applied to these nor-
malized waveforms and their squares in classification and
detection methods, respectively.* Correspondence: samet@shirazu.ac.ir
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In the detection method, a moving window with the
length of half cycle is considered. In the window, besides
finding the fifth nearest neighbor for each point of the
squared normalized currents, the distance between each
point and its corresponding neighbor is found. By com-
paring the maximum distance in each window with an
adaptive threshold, the fault is detected.
The classification method has a similar trend, but the

k-NN algorithm is applied to the instantaneous values of
normalized three-phase currents and length of the window
is three quarters of a cycle.
Various scenarios including different fault types, fault

inception angles, fault resistances, fault locations,
sources phase angles, X/R ratios, and short circuit
levels are used to evaluate the performance of the
methods in a simulated typical five-bus power system.
Also, in order to evaluate the performance of the pro-
posed classification method, it is compared with six
other similar methods. The methods are compared in
terms of delay time and accuracy using a data set in-
cluding 450 different cases. Beside the simplicity, the
proposed techniques have small calculation burden and
high accuracy. Moreover, the methods performance is
preserved in different conditions.
The remainder of this paper is organized as follows:

Section 2 presents the under-study power system. In
Section 3, basis of k-NN and its application for fault de-
tection as well as an improved fault detection algorithm
are presented. In Section 4, the proposed classification
algorithm is introduced. The simulation results are pre-
sented in Section 5. A comparison between the perform-
ance of the proposed method and some other similar
methods is presented in Section 6. Finally, the main con-
clusions are presented in Section 7.

2 Simulated power system
A five-bus power system is modeled in MATLAB Simulink.
A schematic single line diagram of the under study system
is presented in Fig. 1. The modeled system comprises of
two generators, four transformers and active and reactive
loads connected to buses 4 and 5. Detailed specification of
the system components are as follows:

� Generators: Rated line to line voltage is 20 kV, three-
phase short-circuit power is 1000 MVA, frequency is
50 Hz, X/R ratio is 10. Also it is assumed that the
angles of sources 1 and 2 are 0 and −10 degree,
respectively.

� Transformers: Rated power is 600 MVA, voltage ratio
is 20/230 kV with delta-star-grounded connection, its
primary and secondary impedances are 0.06 + j0.3 Ω
and 0.397 + j2.12 Ω.

� Lines: All of line impedances are 0.02 + j0.15 Ω/km.
Lines 1–2, 2–3, 3–4, 4–1, and 5–2 are 200, 70, 120,
40, and 50 km, respectively.

� Loads: The active and reactive powers of load 1 are
400 MW and 100 MVAr, respectively. The active

Fig. 1 Schematic diagram of the power system under study

Fig. 2 The proposed change detection method
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Fig. 3 The proposed criterion. a Fault AB, negligible resistance, t0 = 0.2002 s. b Fault BCg, Rf = 10 Ω, t0 = 0.2042 s c Fault AC, Rf = 40 Ω, t0 = 0.2062 s
d Switching of load 200 MW, t0 = 0.2032 s
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and reactive powers of load 2 are 100 MW and 50
MVAr, respectively.

Sampling frequency: It is equal to 10 kHz.

3 The proposed change detection scheme
3.1 k-Nearest Neighbor algorithm (k-NN)
The k-NN algorithm is a nonparametric classification
method that can achieve high classification accuracy in
problems with non-normal and unknown distributions.
For a particular sample, k closest points between the
data and the sample are found. Usually, the Euclidean
distance is used, where one point’s components are uti-
lized to compare with the components of another point.
The basis of k-NN algorithm is a data matrix that con-

sists of N rows and M columns. Parameters N and M are
the number of data points and dimension of each data
point, respectively. Using the data matrix, a query point is

provided and the closest k points are searched within this
data matrix that are the closest to this query point.
In general, the Euclidean distance between the query and

the rest of the points in the data matrix is calculated. After
this operation, N Euclidean distances which symbolize the
distances between the query with each corresponding point
in the data set are achieved. Then, the k nearest points to
the query can be simply searched by sorting the distances
in ascending order and retrieving those k points that have
the smallest distance between the data set and query.

3.2 The proposed fault detection algorithm
Considering fixed sampling frequency, Euclidean dis-
tance between each sample and other samples of a
considered sliding window varies when a change oc-
curs. In fact, Euclidean distance represents differences
between the samples values. k-NN algorithm can de-
rive variation of the Euclidean distance for change

Fig. 4 The distance between each sample and its corresponding neighbor in the analysis window. a Fault AB, negligible resistance, t0 = 0.2002 s.
b Fault BCg, negligible resistance, t0 = 0.2002 s. c Fault Cg, negligible resistance, t0 = 0.2002 s
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detection. In this work, a sliding window with length
of half cycle of power frequency is moved on squared
normalized current waveform of each phase. Then, k-
NN algorithm is applied to the samples of each

window and the fifth nearest neighbor for each sam-
ple and the distance between them is obtained.
Finally, the maximum distance is selected for each
phase named Ma,D, Mb,D, and Mc,D. Based on

Fig. 5 The proposed classification method
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different simulations, it is confirmed that the fifth
nearest neighbor gives the best accuracy. In addition
to the derived fifth neighbor, the distance between
each sample and its corresponding fifth neighbor is
derived. Considering sampling frequency 10 kHz,
there are 100 samples in each half cycle, result in 100
different distances. Among them, the maximum dis-
tance is compared with a certain threshold value to
detect fault condition.
In case of change occurrence, the sample corre-

sponding to the change enters the end of the window.
It is observed that after three or four samples, the
maximum distance of some or all of the phases ex-
ceed the threshold value. By considering an appropri-
ate value for the threshold, it is possible to detect the
fault after 0.2 ms to 0.4 ms. In this study,
Ith,D = 0.0667 is selected for fault detection threshold.
Flowchart of the proposed algorithm for change de-
tection is shown in Fig. 2.
In Fig. 3, the proposed criterion for some different fault

cases is presented. The instants of change occurrence and
the relevant detection times, are shown.

4 The proposed fault classification scheme
The general approach for fault classification is the same as
detection method. However, in the classification method
the k-NN algorithm is implemented in a window applied
to normalized current waveforms with length of three
quarters of a cycle, called analysis window. The considered
k value and length of analysis window are selected based
on different simulations to achieve the best accuracy and
speed for the classification.
In Fig. 4, three-phase distances values for some differ-

ent fault types with negligible resistance and inception
instant equal to 0.2002 s are presented. In these figures,
the fifth nearest neighbor for each sample of the analysis
window is shown.
It is obvious, the distance between each sample of

current and its fifth neighbor is a suitable criterion for
fault classification. By choosing the maximum distance for
each phase (Ma,C, Mb,C, and Mc,C) and comparing it with
a threshold value, the type of fault can be determined. It is
obvious that the values of Ma,C, Mb,C, and Mc,C are ob-
tained exactly the same as detection method, but in a win-
dow with the length of three quarters of a cycle. The best
threshold value is selected using different simulations.
Some other considerations are taken into account for

the classification method, which are as follows:

1. For discrimination between two phase faults (LL)
and grounded two phase faults (LL-g), the means of
three phases’ corresponding current samples in the
analysis window is obtained and the maximum mean
is utilized as follows:

Mi ¼ max
iaþ ibþ ic

3

� �
in the analysis window

In case of grounded faults (LL-g), Mi > 100 A and Mi < 1
A for two phase faults (LL). This criterion can discrimin-
ate between LL and LL-g with a very high accuracy.

2. In order to omit the initial transient behavior of the
signal, twenty first samples of the window are not
considered.

The flowchart of the classification method is presented
in Fig. 5. Threshold Ith,C is set to 0.1108.

5 Test cases and simulation results
5.1 Case 1: Various fault types
Different fault types are applied at the middle of line 1–2
of the power system shown in Fig. 1. The results are
shown in Table 1. The faults are solid and applied at an
identical inception instant 0.2002 s. Results including the
discrimination criteria (Mi) and the maximum distance of
each phase are presented in Table 1. From the results, one
can conclude that the proposed method is able to classify
different faults using the mentioned rules.
The results for each group of phase-to-ground, phase-

to-phase-to-ground, and phase-to-phase faults are similar.
Therefore, hereafter only four types of faults including:
Ag, ABg, AB, and ABC are considered.

5.2 Case 2: Various inception instants
In Table 2, the results for different inception instants are
presented for the mentioned faults. The inception instant
is varied by step 3 ms. Faults are also considered solid
type. The results confirm that the proposed method is
able to classify faults at different inception instants.

5.3 Case 3: Various fault resistances
In Table 3, the results of this case study for fault
resistances 10, 30, 50,70, and 90 Ω, are shown. The

Table 1 Results of various fault types

Type Mi Ma,C Mb,C Mc,C

Ag 1.2652e + 03 0.5853 0.0711 0.0824

Bg 1.0727e + 03 0.1017 0.5539 0.0342

Cg 310.2327 0.0698 0.0986 0.4405

ABg 1.0528e + 03 0.7518 0.3433 0.0580

BCg 994.4663 0.0903 0.6393 0.3064

CAg 878.8438 0.3729 0.0881 0.5971

AB 0.0286 0.4575 0.4040 0.0444

BC 0.1351 0.0888 0.4539 0.3813

CA 0.0488 0.2934 0.0889 0.4018

ABC 0.0065 0.6779 0.5013 0.4630
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faults are applied at an identical inception instant
0.2002 s. From the results, it is confirmed that the
proposed method has acceptable performance for
fault resistance up to 90 Ω. Although the technique
can also classify the faults with resistances more
than 90 Ω, the performance may be less than the
acceptable value.

5.4 Case 4: Various fault locations
One of the other challenges that should be considered
for a fault identification technique is location of the fault
in the transmission lines. In this test case, the system is
analyzed with a fault applied at 0%, 20%, 40%, 60%, 80%,
and 100% of the transmission line 1–2. Results of the
four fault types are shown in Table 4. The faults are solid
type and applied at an identical inception instant
0.2002 s.
In addition, several faults for locations more than

100% are simulated. The faults are applied at 105%,
110%, and 120% of the transmission line 2–5 at an iden-
tical inception instant 0.2002 s. The results are tabulated
in Table 5.
From the results, it can be concluded that the per-

formance of the proposed method is preserved even for
locations more than 100%. It should be mentioned that
the performance of the proposed method degrades for
locations more than 120%.

5.5 Case 5: Various sources load angles
The results for various angles, according different incep-
tion instant, fault resistances, and fault types verify that

Table 4 Results of various fault locations

Type location (%) Mi Ma,C Mb,C Mc,C

Ag 0 1.8356e + 03 0.7890 0.0715 0.0821

Ag 20 1.5959e + 03 0.7035 0.0711 0.0825

Ag 40 1.3724e + 03 0.6222 0.0710 0.0821

Ag 60 1.1608e + 03 0.5493 0.0712 0.0811

Ag 80 957.3303 0.4802 0.0719 0.0560

Ag 100 758.6445 0.4136 0.0732 0.0590

ABg 0 1.5206e + 03 1.0038 0.4373 0.0521

ABg 20 1.3260e + 03 0.8987 0.3990 0.0543

ABg 40 1.1418e + 03 0.7994 0.3615 0.0566

ABg 60 965.7605 0.7050 0.3253 0.0593

ABg 80 795.2633 0.6144 0.2899 0.0598

ABg 100 628.0395 0.5265 0.2549 0.0621

AB 0 0.0251 0.5906 0.5384 0.0444

AB 20 0.0268 0.5338 0.4784 0.0444

AB 40 0.0281 0.4819 0.4270 0.0444

AB 60 0.0289 0.4337 0.3787 0.0444

AB 80 0.0293 0.3884 0.3327 0.0444

AB 100 0.0292 0.3450 0.2898 0.0444

ABC 0 0.0077 0.8967 0.6611 0.6104

ABC 20 0.0077 0.8034 0.5927 0.5474

ABC 40 0.0071 0.7180 0.5305 0.4900

ABC 60 0.0057 0.6387 0.4729 0.4368

ABC 80 0.0036 0.5640 0.4187 0.3868

ABC 100 0.0025 0.4926 0.3668 0.3391

Table 3 Results of various fault resistances

Type Resistance (Ω) Mi Ma,C Mb,C Mc,C

Ag 10 898.5760 0.4789 0.0753 0.0771

Ag 30 561.8625 0.3472 0.0804 0.0493

Ag 50 405.9855 0.2790 0.0830 0.0482

Ag 70 316.9368 0.2381 0.0844 0.0474

Ag 90 259.7276 0.2114 0.0853 0.0469

ABg 10 779.8930 0.5540 0.3489 0.0568

ABg 30 508.6675 0.3957 0.2961 0.0538

ABg 50 375.8039 0.3096 0.2524 0.0456

ABg 70 297.5452 0.2593 0.2221 0.0454

ABg 90 246.1880 0.2269 0.2006 0.0453

AB 10 0.0536 0.4328 0.3798 0.0444

AB 30 0.0889 0.3280 0.2957 0.0444

AB 50 0.1022 0.2637 0.2435 0.0444

AB 70 0.1076 0.2242 0.2110 0.0444

AB 90 0.1101 0.1981 0.1893 0.0444

ABC 10 0.0231 0.4989 0.4472 0.3738

ABC 30 0.0651 0.3610 0.3447 0.2130

ABC 50 0.0862 0.2903 0.2817 0.1453

ABC 70 0.0970 0.2471 0.2420 0.1236

ABC 90 0.1031 0.2185 0.2151 0.1193

Table 2 Results of various fault inception instants

Inception
instant (sec)

Type Mi Ma,C Mb,C Mc,C

0.2032 Ag 993.4711 0.5603 0.0610 0.1014

0.2062 Ag 436.8110 0.4895 0.0658 0.0992

0.2092 Ag 535.8503 0.7499 0.0713 0.0952

0.2032 ABg 1.0660e + 03 0.6429 0.3094 0.0894

0.2062 ABg 944.6056 0.6065 0.2122 0.0889

0.2092 ABg 512.7830 0.9243 0.3425 0.0805

0.2032 AB 0.0454 0.4573 0.3848 0.0878

0.2062 AB 0.0449 0.4300 0.3439 0.0889

0.2092 AB 0.0450 0.5665 0.4345 0.0860

0.2032 ABC 0.0059 0.5048 0.4663 0.2638

0.2062 ABC 0.0047 0.4698 0.2639 0.5052

0.2092 ABC 0.0040 0.2640 0.5038 0.4723
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proposed method classify the faults in different values of
sources load angles. For abbreviation, the results rele-
vant to this case are not presented.

5.6 Case 6: Various X/R ratios
Different X/R ratios impact on the performance of the
proposed method is also investigated, considering differ-
ent inception instant, fault resistances, and fault types.
From the results, it can be concluded that accuracy of
the proposed method is preserved for different values of
X/R ratios.

5.7 Case 7: Various short circuit levels
The performance of the proposed method is also evalu-
ated for various sources short circuit levels. The algorithm
also has desirable performance for these cases.

5.8 Case 8: Various load levels
In Table 6, the results of some simulated cases for no-
load and loads with fraction of the nominal value are
shown. It should be noted that for each load, different
load values are considered in the condition of no-load of
the other one. All the faults are applied in the location

of 80% of the transmission line 1–2. From the results,
one can observe that the performance of the proposed
method is preserved in different load levels.

5.9 Case 9: Current transformer saturation
The performance of the method is also evaluated during
current transformer saturation. Two typical cases are
considered. The faults are solid type and applied at an
identical inception instant 0.2345 s. The classification
criteria for both cases are shown in Fig. 6 and Table 7. It
is observed that the proposed method is able to classify
the faults during current transformer saturation.

6 A comparison with other techniques
The performance of the proposed method is compared
with six other similar approaches in this Section. All of
the methods are evaluated using an identical data set in
similar conditions. The six methods are briefly reviewed
as follows:
a. Sequence Component [16]: This technique classifies

the faults using the phase differences between positive
and negative sequences. Also, relative magnitudes of
negative and zero sequences from pre-fault to the fault
stage are used to distinguish between phase-to-phase
(LL) and phase-to-phase-to-ground (LLg) faults.
b. Alienation Coefficients [28]: In this algorithm, alien-

ation technique is applied to two half successive cycles
with the same polarity. The alienation coefficients of the
successive cycles as two dependent variables are calcu-
lated. This technique is capable of classification using
only three-phase current waveforms and its delay time is
half cycle of power frequency. Also, another version of
this approach is presented in [29].

Table 6 Results of various load levels

Fault No-load Load1 Load2

Type resistance Inception
instant

100 MW 200 MW 300 MW 400 MW 50 MW 100 MW

25 MVAr 50 MVAr 75 MVAr 100 MVAr 25 MVAr 50 MVAr

AB Negligible 0.2002 Mi 0.0128 0.0124 0.0120 0.0116 0.0112 0.0125 0.0123

Ma 1.8524 0.8232 0.5531 0.4304 0.3605 2.1232 2.3803

Mb 1.7653 0.7522 0.4856 0.3686 0.3023 2.0399 2.3048

Mc 0.0773 0.0921 0.0444 0.0444 0.0444 0.0822 0.0869

ABg 30 0.2032 Mi 467.5109 450.9092 434.2540 418.0157 402.4154 457.0304 446.9282

Ma 1.6118 0.7110 0.4746 0.3673 0.3067 1.8174 2.0083

Mb 0.6028 0.2936 0.2268 0.1966 0.1796 0.6865 0.7655

Mc 0.1003 0.1102 0.1066 0.0993 0.0946 0.1024 0.1018

ABC 90 0.2062 Mi 5.1811e-09 1.3579e-08 1.7955e-08 2.7285e-08 2.4108e-08 2.5092e-08 2.5051e-08

Ma 1.1341 0.2924 0.1651 0.1534 0.1483 1.2205 1.1439

Mb 0.8183 0.3847 0.2699 0.2172 0.1868 0.9138 1.0000

Mc 0.8122 0.3815 0.2678 0.2161 0.1868 0.9061 0.9907

Table 5 Results of fault locations more than 100%

Fault
Type

Resistance Location
(%)

Mi Ma,C Mb,C Mc,C

ABC negligible 105 6.1112e-08 0.4899 0.3648 0.3372

ABg 90 105 144.2950 0.1833 0.1639 0.0473

AC negligible 110 0.0081 0.1963 0.0888 0.3032

Ag 90 110 150.6250 0.1693 0.0879 0.0480

AB negligible 120 0.0080 0.3385 0.2827 0.0444

Bg 90 120 144.2091 0.0961 0.1671 0.0666
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c. Discrete Wavelet Transform [23]: Daubechies family
of wavelet transform is used in this technique. Third
level output among different decomposed levels is used
and the summation of detailed current signals for each
phase (Sa, Sb, and Sc) is obtained. If the summation of
Sa, Sb, and Sc is equal to zero, then the fault type is ei-
ther three-phase or LL, otherwise, it is phase-to-ground
(Lg) or LLg fault.
d. Fuzzy Logic [22]: The prerequisite of this technique is

fault occurrence time. In this algorithm, using measured
current samples, some specific characteristics for the sam-
ples are defined for the fault classification. The technique
takes three quarters of a cycle to classify the fault.
e. Using RMS Values of current: A simple approach to

classify the faults is based on comparing the RMS values

of three-phase current waveforms with a certain thresh-
old. The RMS values of the phases are obtained using
Fourier transform in a half cycle window after fault
occurrence. Discrimination between LL and LLg is de-
termined using zero sequence component of current,
which is large for LLg and zero for LL.
f. Using RMS Values of Voltage: This technique is exactly

the same as previous method for three-phase voltage sig-
nals. Type of fault is determined when the RMS values of
the voltages become less than a certain threshold.
The performance of the proposed method is compared

with the above-mentioned methods based on following
factors; the results are tabulated in Table 8:

� Fault resistances
� Fault inception instants
� Fault locations
� Generators X/R ratios
� Phase difference between two generators
� Generators short circuit levels
� Delay operation time
� Error percentage

Fig. 6 The distance between each sample and its corresponding neighbor in the analysis window. a Fault AB, negligible resistance, t0 = 0.2345 s.
b Fault ABC, negligible resistance, t0 = 0.2345 s

Table 7 Results of two fault cases during current transformer
saturation

Fault Type Mi Ma,C Mb,C Mc,C

a AB 9.2980e-04 1.0595 1.1337 0.0915

b ABC 0.0074 1.2737 1.2458 1.4452

Asadi Majd et al. Protection and Control of Modern Power Systems  (2017) 2:32 Page 9 of 11



The number of the whole cases considered in this
Section is 410; 200 cases for different fault resistances
and inception instants, 50 cases for different fault loca-
tions, 70 cases for different sources X/R ratios, 50 cases
for different sources angles, and 40 cases for different
short circuit levels.
In Table 8, error percentages for the above mentioned

factors are calculated as the ratio of number of mal-
function operations to number of the relevant cases.
Then, total error percentage for each method is calcu-
lated as ratio of number of whole mal-function opera-
tions to number of whole the cases.
Techniques a and d have a delay time 15 ms and tech-

niques b, c, e, and f have a delay time 10 ms. Among the
methods with delay time 15 ms, fuzzy logic has a very
good performance with only 0.49% error.
The proposed technique has a good performance with

error percentage of 1.95% and average delay time of
15 ms. Based on the calculated total error percentage
and delay time, it is confirmed that the proposed
method has acceptable performance in comparison with
other methods.

7 Conclusion
Two simple methods for fault detection and classifica-
tion are presented in this paper. The methods are based
on k-NN algorithm. Plenty of simulations were used in
order to evaluate the performance of the methods. The
performance of the proposed classification method is
compared with six other similar methods. From the re-
sults, the good accuracy and speed of the methods are
confirmed. The classification technique has accuracy
about 98% for the considered data set with 15 ms aver-
age delay time.
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