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Abstract

Stochastic noises have a great adverse effect on the prediction accuracy of electric power load. Modeling online
and filtering real-time can effectively improve measurement accuracy. Firstly, pretreating and inspecting statistically
the electric power load data is essential to characterize the stochastic noise of electric power load. Then, set order
for the time series model by Akaike information criterion (AIC) rule and acquire model coefficients to establish
ARMA (2,1) model. Next, test the applicability of the established model. Finally, Kalman filter is adopted to process
the electric power load data. Simulation results of total variance demonstrate that stochastic noise is obviously
decreased after Kalman filtering based on ARMA (2,1) model. Besides, variance is reduced by two orders, and every
coefficient of stochastic noise is reduced by one order. The filter method based on time series model does reduce
stochastic noise of electric power load, and increase measurement accuracy.
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1 Introduction
Power load operation is complex. Accurate power load
forecasting has great significance for designing power
supply program and making a good power balance be-
tween supply and demand. The power load sequence
contains relatively obvious white noise. With longer
sampling time interval, the white noise becomes more
intense [1, 2]. The prediction accuracy of power load is
related to the length of historical observation data. With
noise and chaos in the observed data, different time
series have different upper limit of prediction accuracy
[3, 4]. It is important to estimate the noise intensity dir-
ectly from the observed data and to separate the noise
from the observed data, which is very important to im-
prove the accuracy of the power load forecasting result.
To improve the quality of power load data, stochastic

noise present in the load data must be identified and fil-
tered out [5, 6]. At present, there are mainly following
methods in the power load forecasting field, such as regres-
sion analysis, combined forecasting, exponentially smooth-
ing, neural network and wavelet methods, and so on.
Moreover, in view of the uncertainties and randomness

of short-term load, innovative data processing strategies
are proposed, such as frequency domain decomposition
method and property matrix hierarchical analysis method
[7–9]. However, the existing time series modeling methods
may not meet the requirements of time series stationary.
These methods neglect the pretreatment of load data and
statistical checking [10]. Independent, steady, normal, zero-
mean and trend-item processing of the required data is re-
quired, and non-stationary, non-random and non-normal
characteristics of power load data are needed to be tested.
Time series method and Kalman filter algorithm are pro-

posed to filter the power load stochastic noise by pretreat-
ing and statistically testing of power load data, then, the
total variance method is used to evaluate the stochastic er-
rors of the load data before and after filtering effectively.

2 Methods
2.1 Stochastic noise time series method in power load
data
2.1.1 Timing sequence processing
Traditional load forecasting method adopts the regres-
sion analysis and the least square method. However, this
method is difficult to reflect the new information of the
load change during the operation of the power system to
the model, and the prediction accuracy is low. According
to the characteristics of power load data, the statistical

* Correspondence: 15850575576@163.com
1NARI Technology Development CO., Ltd, Nanjing, Jiangsu Province 211106,
China
Full list of author information is available at the end of the article

Protection and Control of
Modern Power Systems

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Huang et al. Protection and Control of Modern Power Systems  (2017) 2:25 
DOI 10.1186/s41601-017-0059-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-017-0059-8&domain=pdf
mailto:15850575576@163.com
http://creativecommons.org/licenses/by/4.0/


parameter model reflecting the running state of the sys-
tem is established, and the time series of electric load is
constructed. Then, the shortcomings of the existing
methods can be effectively overcomed [11–13].
The time series model is used to fit the stationary, nor-

mal sequence. An auto regressive moving average
(ARMA) model ARMA(p, q) with appropriate order can
be used to describe the stationary stochastic process of
power load. ARMA(p, q) model of a stable normal time
series {xk}(k = 1, … , n) can be obtained by

xk ¼ ϕ1xk−1 þ ϕ2xk−2 þ…þ ϕpxk−p

þ ak−θ1ak−1−⋯−θqxk−q ð1Þ
where {xk} is time series, xk is the value of the time series
{xk} at the k-th moment, and xk can be estimated by the
value of the timing in the past periods xk ‐ 1 , xk ‐ 2 , ⋯ ,
xk ‐ p, ϕp is autoregressive coefficient, θq is moving aver-
age coefficient, ak is residual, p and q are orders of
ARMA model.
The estimated error of xk is obtained by

e ¼ ak−θ1ak−1−⋯−θaak−a ð2Þ
The prerequisite for establishing the ARMA model is

that the load data satisfy the requirements of stationarity
and normality. Power load output data usually do not
meet these requirements, then, it is necessary to make
pre-processing operations and test of the corresponding
characteristics for sampled data.
The first step is stationary test. The reverse order test

is used to test the stationary state of the power load data
sequence. If the stationarity requirement is not satisfied,
the trend item extraction is carried out for the stochastic
load sequence. The reverse order test method is carried
out as following. {xn}is divided as subsequences {xj , n}
with quantity of l. The mean value μi of each subse-
quence is obtained, and new subsequence is obtained
with μ1μ2… μi. With i > j, the reverse order Aj equals to
the amount of μi > μj. The total reverse order number of
sequences is obtained by

A ¼
X

j¼1l−1
Aj ð3Þ

where j ∈ (0, 1, 2, … , l).
The theoretical mean and variance of the total number

of reversal order are obtained as following [14]:

E A½ � ¼
X

j¼1l−1
E Aj
� � ¼ l l−1ð Þ

4
ð4Þ

σ2A ¼ l 2l2 þ 3l−5
� �

72
ð5Þ

Statistics value u is obtained as following [14]:

u ¼ Aþ 1
2−E A½ �� �
σA

ð6Þ

If ∣u∣ ≤ 1.96, there is no significant difference between
μi, and {xn} can be determined to be a stationary
sequence.
The second step is trend item extraction. The data se-

quence is processed by difference to get the new se-
quence. Data sequence subtracts the mean of the new
sequence, then, obtains the mean value of the difference
to complete the trend item extraction.
The third step is normality test. The power load data se-

quence was tested for normality [14], mainly including stand-
ard skewness coefficient ξ and standard kurtosis coefficient ν.
Mean value is obtained by

x� ¼ 1
n

Xn

i¼1
xi ð7Þ

Variance value is obtained by

S2 ¼ 1
n

Xn

i¼1
xi−xð Þ2 ð8Þ

Standard skewness coefficient is obtained by

ξ ¼
ffiffiffiffiffi
1
6n

r Xn

i¼1

xi−x
S

� �3

ð9Þ

Standard kurtosis coefficient is obtained by

ν ¼
ffiffiffiffiffi
n
24

r Xn

i¼1

xi−x
S

� �4

−3

" #
ð10Þ

ξ ≈ 0 and ν ≈ 0 indicates stochastic sequence satisfies
the normality requirement.

2.1.2 Online timing modeling
After pretreatment and statistical tests of power load
data, model order and parameters also need to be calcu-
lated. In addition, the applicability of the new model still
need to be tested [14, 15]. Based on the new model, the
system state equation and output equation can be estab-
lished, and Kalman filter method can be used to deal
with the power load data.
The common method Akaike Information Criterion

(AIC) for judging the order of time series models is given by

AIC p; qð Þ ¼ nlnσ2
a þ 2 pþ qð Þ ð11Þ

where p and q are orders of ARMA model, n is the number
of data in the sequence, σ2a is the Variance of noise a(t).
The AIC criterion takes into account the interaction be-

tween model order and residuals, and the smallest AIC
value is to be selected.
The applicability of the model is also a critical task for

online modeling of power load data. The criterion is to
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check whether the model residuals are white noise. If the
model residuals are white noise, the model is available;
otherwise, it is not applicable.

2.2 Kalman filtering based on time series model
Kalman filtering method, a kind of effective recursive
filtering method, estimates the system state according to
a series of measurements including stochastic noise.
Kalman filtering selects proper state space, builds state
equation and measurement equation, based on the period
and characteristic of load prediction. Parameter estimation

and load forecasting are implemented in the filtering, to
be an organic whole.
According to the ARMA model, Kalman filtering

method is adopted to suppress the stochastic noise of
power load. System state equation is built by white noise
of the stochastic noise of power load [16, 17].
State equation is as following:

Xk ¼ AXk þ Bvk ð12Þ

Fig. 1 Raw power load data and the data after mean filtering

Fig. 2 Stochastic noise of electric power load after one-order differential process
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Assuming that Wk is estimation error of ARMA
model, so there is an equation as following:

Yk ¼ Xk þWk ð13Þ

System output is as following:

Zk ¼ Yk ð14Þ

Output equation is as following:

Zk ¼ CXk þWk ð15Þ

The mean of both vk and Wk is zero, white noise with
constant autocorrelation function is independent of each
other. The statistical properties satisfy the mean equals to
zero, E(Wk) = E(vk) = 0. Autocorrelation function φvv = Rδki ,
φvv =Qδkj, and cross-correlation function φvw(k, j) = 0.
Kalman filtering equations of power load are built based

on state equation and output equation, shown as following:

X̂ k;k ¼ AX̂k−1;k−1

X̂ k;k ¼ X̂ k;k‐1 þ Kk Y k−CX̂k;k‐1
� �

Kk ¼ Pk;k−1CT CPk;k−1CT þ Rk
� �−1

Pk;k−1 ¼ APk;k−1AT þ BQk−1;kB
T

Pk;k ¼ I−KkC½ �Pk;k−1

Ŷ k ¼ CX̂k;k

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16Þ

where, X̂ k;k−1 is further estimation of filtering state, X̂ k;k is
the filtering state at the time k, Yk−CXk;k‐1 is optimal esti-
mate at the time k being the error between observation esti-
mation and observation value, Kk is gain matrix of filter at
the time k, R is error of system measurement noise, and Q is
noise variance of system process, and Ŷ k is the output of fil-
ter at the time k. Initial values need to be given in advance.

Kalman prediction process is the filtering process of
state reconstruction. Known from Eq.(16), estimated in-
formation X̂ of state phasor X is updated constantly.
Considering feedback unit, this part can avoid the effect
of dynamic noise vk. However, for estimation value Ŷ of
output phasor Y, it can only be approximated owing to
the influence of dynamic noise vk.

3 Result
3.1 Application and analysis of time series model and
Kalman filtering
To verify the validity of time series model and Kalman
filtering method of power load stochastic noise, 100
power load data of some place in 2015 is analyzed as fol-
lowing. After mean-filtering, power load data is able to

Table 1 AIC values of ARMA model of power load

p q AIC value p q AIC value

- - - 2 0 0.2145

0 1 −0.0268 2 1 −0.0295

0 2 −0.0265 2 2 −0.0212

0 3 −0.0144 2 3 −0.0273

1 0 0.3546 3 0 −0.0157

1 1 −0.0221 3 1 −0.0219

1 2 −0.0233 3 2 −0.0249

1 3 −0.0275 3 3 −0.0263
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Fig. 3 ACF and PACF of model residual
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effectively characterize raw power load data, both shown
in Fig.1.
The first stationarity test results of power load data is

as following: ∣u∣ = 2.54 > 1.96, which means it doesn’t
meet the stationarity requirement. After extracting
trend, the result is this, namely ∣u∣ = 0.5 < 1.96, meeting
the requirement. The results of normality test are as fol-
lowing: standard skewness coefficient ξ = 0.0032 ≈ 0,
standard kurtosis coefficient ν = 4.54 × 10−4 ≈ 0. The new
data sequence meets the normality requirements. After
trend extraction, stochastic noise of power load is shown
in Fig. 2. And new power load data is stationary, zero-
mean and normal, satisfying the precondition of online
modeling.
As for the power load suitable for modeling, AIC

values are calculated. In addition, orders of ARMA
model are relatively small, p and q is set to be less than
3. AIC values of chosen model are listed in Table 1.

Table 1 demonsttates that ARMA(2,1) model shall be
selected for power load stochastic noise model according
to the minimum AIC value, built as following:

xk ¼ ϕ1xk−1 þ ϕ2xk−2 þ ak−θ1ak−1 ð17Þ

where, xk is the model output, and ak is the white noise,
of which mean is 0 and variance is σ2a . ϕ1, ϕ2 and θ1 is
calculated by least square fitting (LSF)

Fig. 4 Electric power load data comparison before and after Kalman filtering

Table 2 Stochastic noise coefficients before and after Kalman
filtering

Noise coefficient Before filtering After filtering

Q 1.50e-3 1.91e-4

L 1.01e-5 1.26e-6

B 4.74e-4 5.66e-5

K 7.50e-3 8.89e-4

R 4.31e-2 5.10e-3 Fig. 5 Total variance analysis before and after Kalman filter
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xk ¼ −0:7072xk−1 −0:1325xk−2
þ ak−0:1242ak−1 ð18Þ

ACF and PACF of model residual is shown as Fig.3,
and both can be regarded as white noise input.
According to established model ARMA(2,1), corre-

sponding system state equation is obtained as following:

xk ¼ −0:7072xk−1 −0:1325xk−2
þ ak−0:1242ak−1 ð19Þ

System output equation is as following:

Xk ¼ AXk−1 þ BVk ð20Þ
where, A ¼ −0:7072 −0:1325

1 0

	 

, B ¼ 1 0:1242

0 0

	 

,C = [1 0].

Initial value of co-variance matrix P is
1 0
0 1

	 

, initial

value of matrix X is 0 0½ �T ,value of matrix R is vari-
ance of estimation error, and value of progress noise Q

equals to
σ2a 0

0 σ2a

" #
.

Kalman filtering method is used to denoise the sto-
chastic noise of power load data, the curves before and
after filtering shown in Fig. 4. Result demonstrates that
noise amplitude in the stochastic noise data is signifi-
cantly reduced by ARMA model and Kalman filter. Vari-
ance before filtering is 1.56 × 10‐4, after filtering it
becomes 3.58 × 10‐6, reduced by two orders of magni-
tude. The filtered stochastic noise is obviously
suppressed.
Stochastic noise of power load is presented with differ-

ent correlation time and power spectral density, and
total variance method is effective to evaluate five kinds
of stochastic noise of power load data before and after
filtering, including load random walk (L), bias instability
(B), rate ramp walk (K), rate ramp (R) and quantization
noise (Q). Table 2 is each stochastic noise coefficient be-
fore and after Kalman filtering, and Fig.5. is the total
variance curve of power load before and after Kalman
filtering.
Known from Table 2 and Fig.5, selected power load

data mainly contains quantization noise, rate random
walk and bias instability. However, each stochastic coef-
ficient in the power load data is effectively reduced
through time series modeling and Kalman filtering, each
coefficient value is reduced by an order of magnitude.
The proposed method can eliminate the stochastic noise
of power load data and promote power load accuracy.

4 Conclusion
Suppressing power load stochastic noise is one of the
important links in power load modeling and forecasting.

Based on the characteristics of power load data, time
series analysis is used to model the data of power load
on-line, realizing the pretreatment and inspection ana-
lysis of power load data. ARMA (2,1) model is estab-
lished and Kalman filtering method is used to denoise
load data. And total variance method is adopted to verify
the effect of modeling and filtering, namely the stochas-
tic error coefficients before and after filtering.
The results show that stochastic noise amplitude of

power load data after time series modeling and Kalman
filtering is significantly reduced, the variance value is de-
creased by two orders of magnitude, and each stochastic
error coefficient of power load is reduced by an order of
magnitude. The proposed time series modeling and fil-
tering method can effectively suppress the stochastic
noise of power load data and improve the prediction ac-
curacy of power load.
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