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Wind speed follows the Weibull probability distribution and wind power can have a significant influence on power system
voltage stability. In order to research the influence of wind plant correlation on power system voltage stability, in this paper,
the stochastic response surface method (SRSM) is applied to voltage stability analysis to establish the polynomial relationship
between the random input and the output response. The Kendall rank correlation coefficient is selected to measure the
correlation between wind farms, and the joint probability distribution of wind farms is calculated by Copula function. A
dynamic system that includes system node voltages is established. The composite matrix spectral radius of the dynamic
system is used as the output of the SRSM, whereas the wind speed is used as the input based on wind farm correlation. The
proposed method is compared with the traditional Monte Carlo (MC) method, and the effectiveness and accuracy of the
proposed approach is verified using the IEEE 24-bus system and the EPRI 36-bus system. The simulation results also indicate
that the consideration of wind farm correlation can more accurately reflect the system stability.

1 Introduction
Around the world, power systems have witnessed increased
amount of renewable and dispersed generation, especially
wind power and solar power. Renewable energy is a useful
supplement to traditional energy sources, but is different
from the traditional form of energy because of its uncer-
tainty and intermittency. The renewable energy is con-
nected to power grid by concentrated form or distributed
form, bringing many uncertainties to power system voltage
stability as well as new problems and challenges to re-
searchers. If system voltage stability is evaluated in the most
severe working model for studying, the results are often too
conservative, and therefore, a new effective way should be
investigated. This paper propose a method to investigate
the impact of stochastic uncertainty of grid-connected wind
power generation on power system voltage stability by
structure dynamic systems that include node voltages.

The impact of stochastic power injections on power flows
and voltage profile is a widely studied topic since the 1970s
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[1]. The probabilistic analysis was firstly introduced into
studying power system small signal stability by Burchett
and Heydt in [2]. A series of work later on [3-6] have fur-
ther improved the various aspects of the analytical method
of power system probabilistic small signal stability. In [7, 8],
a method of probabilistic analysis was proposed to directly
calculate the probabilistic density function of critical eigen-
values of a large scale power system from the probabilistic
density function of gird connected multiple sources of wind
power generation to investigate the impact of stochastic un-
certainty of grid-connected wind generation on power sys-
tem small-signal stability [9]. Reference [10] presented a
comparative analysis of the performance of three efficient
estimation methods when applied to the probabilistic as-
sessment of small-disturbance stability of uncertain power
systems. In [11], an analytical approach was proposed to in-
volve the effects of correlation of wind farms in probabilis-
tic analytical multi-state models of wind farms output
generation. Reliability models of wind farms considering
wind speed correlation are proposed in [12].

In this paper, power system voltage stability is analyzed
using the stochastic response surface method (SRSM).
The algebraic equations that contain the voltages are

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-017-0051-3&domain=pdf
http://orcid.org/0000-0003-4833-6630
mailto:mazhaoxingapple@126.com
http://creativecommons.org/licenses/by/4.0/

Ma et al. Protection and Control of Modern Power Systems (2017) 2:20

converted into a differential system with system node
voltages. Then, the output of the SRSM is the output of
the composite matrix spectral radius of the dynamic
system is constructed, and is used to judge the stability
of the system voltage. The IEEE 24-node system and the
EPRI 36-node system with wind power are considered as
two examples to verify the accuracy of the proposed
analysis method.

2 Discussion

2.1 System model analysis

In power system stability analysis, a power system is
characterized by the set of nonlinear dynamic equations
as:

x=f(x,71) (1)
Ozg(x,y,r) (2)

where fand g express the system dynamic equations and
the algebraic equations, respectively. x represents the
state variables, y represents the algebraic variables of the
node voltage magnitudes and angles, and 7 is the control
parameters.

Neglecting the resistances, the algebraic equations that
consist of the algebraic variables of the node voltage
magnitudes and angles can be shown as:

m+n
Ppi+ Y ByViVsin(ai-a;) =y, =0 (3)
=1
m+n
-Qu + ZBijViVj cos (a;—a;) = Yoi =0 (4)
=1

i=n+1,---n+m.

where P;; and Q;; are the ith node active and reactive
power, respectively. V; and V; are the voltage of the ith
node and the jth generator bus, respectively. B;; repre-
sents the reactance of the admittance matrix, and «; is
the ith bus phase angle. If 1 <j <, then a; = §;, where §;
is the generator rotor angle of the jth machine. n is the
number of generator buses and m is the number of load
buses. P;; and Q; are functions of V; and a;.

Equations (3 and 4) represents a pure dynamic system
and taking derivative of (3, 4) leads to the dynamic
quantity V;and &; [12, 13] as:

dyp; / dp; / . op; / . Op; / :
_ $=0
o T " 36

(5)
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ByQi/ ale'/ . aJ’Qi/ ) aJ’Qi/ :
_ $=0
o aVV—i— aaa—i- 36

(6)
i=n+1, n+m.

It is more convenient to represent the generator
dynamic equations as follows:

é\i = W; (7)

(8)

where §; = Si—é\o ) W =iy, Y= wi—(S() , Mr
n n _ n

ZZMn §o=ﬁTZMi5i, wozﬁZMiai, Pcor
i=1 i=1 i=1
n n+N

= mei_ Z P;;. P;; is the active load at each node
i—1 i=n+1

and P,,; is the input mechanical power. §; and @; are
the rotor angle and angular speed of the ith machine,
respectively. dp and w, are the centers of angle and
angular speed, respectively. M; and E, are the ith
machine inertia and internal voltage, respectively. B
represents the reactance of the admittance matrix. »
is the number of generators, V,,, and ¥, , are the
generator bus voltage and phase angle, respectively. N
is the number of non-generator buses in the power
system.
From (5, 6), there is

dp; / . Oyp; / 9ypi / :
. )
av’ T au” e

)

ayQi/ avv+ayQi/ aa"":’ayQi/ 25 o)
From (9, 10), it yields

(et o) (o) =)

op yp »Q
where, A(7) = /aV, B(1) = /aa, C(r) = /av,

Q 9yp %Q
D(7) = /3“, E(r) = /95 and F(r) = /35. De-
finer=0,0,V,a’)
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Substituting (7, 8) into (11), and solving the dynamic
quantity V; and &; yield:

(0)=-(&0 20) (509

where V= (Vn+1: ceer Vn+m) ,: a= (an+b ceer an+m) /, W= (601,

(12)

vy @), 6=(0; ..., 6,)°. The equation can also be
expressed as:
& =f(x,0) (13)

where x = (V, a) .

Using (13), a dynamic system can be constructed that
contains power system node voltages. A node voltage
state equation and its Jacobian matrix can then be estab-
lished and used to meet the uncertainty of wind power
generation. The uncertain elements that are included in
the wind power are considered as the input, and a single
element that can measure the system voltage stability is
considered as the output. After the application of “black
box algorithm”, it can analyze the influence of the uncer-
tainties on system voltage stability.

Setting J the Jacobian matrix of system (13) at the
equilibrium. If the real parts of all the eigenvalues of the
Jacobian matrix J is negative, the system (13) is stable;
otherwise, the system can become unstable. Thus, a new
simple and effective lemma [14] is given as follows:

Lemma 1 If the spectral radius p(J) of matrix J satisfies
pN<1, then the matrix J is a convergence matrix.

Theorem 1 Assuming that (I-])‘exists and (I+])(I
—J))converges, the real parts of all the eigenvalues of J are
negative, where I represents the identity matrix.

Theorem 2 Assuming that (I-J)‘exists and (I+])(I
—))dose not converge, the real parts of all the eigenvalues
of ] are nonnegative.

A power system with wind plant is considered as an
example for further elaboration. The wind speed is set to
Vw» Which is considered as the uncertain input element.
A is the system Jacobi matrix at the equilibrium point,
so the complex matrix ((I+A)(I-A)™") can be founded.
The spectral matrix of the complex matrix that can be
used to judge the stability of the system voltage can be
taken as the output. After calculation using the black
box algorithm, as the spectral radius p((I+])(I—])’1) of
the matrix (I+))(I-J)™" satisfies p((I+])(I—])’1) <1, all of
the real parts of the eigenvalues of matrix J are negative
and the existing dynamic system voltage is stable. In
contrast, if the spectral radius p((I+])(I—])’1) satisfies
p((I+))(I-))7") = 1, the system voltage is unstable.

Thus, the relationship between the elements of
wind power uncertainty and the system voltage stabi-
lity is established, and the system voltage stability
state can be assessed.
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2.2 Stochastic response surface method analysis

SRSM improves the computational efficiency and accu-
racy of probability analysis through special reconnais-
sance and polynomial chaos expansion model output,
which is considered to be deterministic classical response
surface method [15]. SRSM significantly improves the
efficiency and reliability of the analysis, and avoids the
iterative computation of traditional methods [16-18].

The principle of SRSM is based on the probability
distribution of known parameters, and the response
approximation expressed as a polynomial function of the
model parameters. Set the response Y as a function of
the uncertain parameter x, which represents the form of
the model as:

Y = u(x) (14)

The estimated value Y can correctly describe the char-
acteristics of the response Y and is expressed as:
Y =i(x) (15)
where #i(x) is polynomial function.
The estimated value Y of the response is constructed
by SRSM with Hermite polynomial, and p-rank expres-
sion as:

_ s (2
Hy(w) = (175 2= (%) (16)
It satisfies the orthogonality:
oo
| ey, =0 (17)

SRSM is able to make the output model as a polyno-
mial chaos expansion model with the standard normal
distribution random variables:

n

n il
y=ao+ Z“il m () + Zzﬂim’?z(‘l’ih Pi)

=1 i=1i2=1

n i1 2
-l—E E Eﬂi1i2i3’73(¢’t17¢i27¢13)+"'
=li2=1li3=1

(18)

where ay, a;; and a;;;, are the determining factors that
need be determined; # is number of input random
variables; ¢, is the jth standard normal distribution of
random variables. 77, (¢;1, ¢iz..., ¢;) is @ p-rank Hermite
orthogonal polynomial; and can be shown as:

e

e VY
9gn 3¢y,

M (@) = (F17E ¥ (19)
where ¥ represents the vector of {¢>ik }izl, p = 1. Solving
My (@irs Pizeros Pip), and substituting into the (14) can
obtain the expression of the output model y.
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Reduction and transformation
to m independent, standard
normal variables

I

Collocations of sampling points

Found polynomial chaos
expansion equation

I

Deduction of
coefficients of y

Calculation the wind
farm correlation

Calculation of the
expected value of output
response

End

Fig. 1 Flow chart of the analysis method

In the following, a 2-rank expansion with # random
variables is taken as an example for illustration. The
2-rank expansion is given as:

Yo (91, #5) = a0 + ar¢, + axp, + az(93-1) (20)
+aa(93-1) +asg, ¢,

For (16), six certainty coefficients need be solved in

2-rank output model y,. Thus, the number of the

- L o 7
©

Fig. 2 The IEEE 24-bus system
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Table 1 Parameters of wind farms
Wind farms 1 2
Fans 40 20
Rated capacity (MW) 06 1.5
Cut in wind speed (m/s) 4 3
Cut out wind speed (m/s) 22 24
Rated wind speed (m/s) 14 15

certainty coefficients a; be solved in the 2-rank model
is I+ 2n+ %(n(n-1)) with n random variables.

In applying SRSM, the most important task is to solve
the unknown coefficient a;. Both the probability distri-
bution method and the efficient regression method can
be used to solve the unknown coefficient, although, the
efficiency of the efficient regression method is better and
the results are more robust. As the input variable quan-
tities are ¢;; and ¢, (16) can be represented as:

i (911> Pos) = @0 + ar¢y; + arpy; + as(¢;-1)

+ay (‘P%i‘l) + as@Pq;
(21)

To calculate the unknown coefficients 4;, some sample
points with forms as (¢, ¢, are required to be
selected. In this paper, ¢ describes the wind speed
following probability distribution, and y expresses the
degree of voltage instability by (16) and (17). Thus, the
relation that is related to power system is established for
analysis.

Equation (17) is the 2-rank expansion model, and the
roots (0, v/3, —v/3 of the 3-rank Hermite polynomials
can be selected with a total of nine sample points. If the
number of random variables is more than 3, the number
of sample points is two times larger than that of the un-
known factor, and thus large amount of calculation is
required. However, the selected sample points are in the
standard normal distribution space, and therefore, it is
necessary to convert them to the original space. The
transformation of the original space sample points corre-
sponds to the real response value, and the unknown
coefficients a; can be obtained using the least square
method for solving linear equations.

2.3 Copula theory correlation analysis

2.3.1 Copula function definition

Assuming H(,-) is the joint distribution function of F(*)
and G(-) with marginal distribution, there exists a Copula
function C(,-) satisfying:

H(x,y) = C(F(x),G(y))

The density function of the distribution function H(,-)
can be derived by the density function C(,-) of the

(22)
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Fig. 3 Cumulative density distribution of voltage instability with critical power
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Copula function and the edge distribution function F(*)
and G(*) as:

h(x,y) = c(F(x), G(y))f (x)¢(v) (23)

oC(u,v)
where ¢(u,v) = /auav , u=Fx), v=G@); f{) and

g(-) are the density functions of F(:) and G(-), respectively.
In this paper, wind power output sequences of the two
wind power plants are x and y, and their distribution
functions are F(x) and G(y), respectively. u=F(x), v=
G(y). H is the copula function of F (x) and G ().

In this paper, Frank Copula function [19-22] is con-
sidered as the connection function of joint probability
distribution of wind farms. The respective distribution
function and density function of Frank Copula can be
expressed as:

GGR)

Cr(u,v;B) :—%ln[l—f— =

(24)

70
60 ‘55‘4—SRSM

> / MC\

= 50 /

5]

T 40

Z

% 30

S

& 20- .
B _ N

0996 0.97 0.98 0.99 1 14‘01 1.02 1.03
Spectral radius

Fig. 4 Probability density of spectral radius with 380 MW wind
power generation

~B(eF-1)e Pt
[(e#-1) + (eFu-1)(eF-1)]*

CF(”? V;ﬁ) = (25)
where f is the relative parameter and = 0. If 8> 0, ran-
dom variables # and v have positive correlation. If § — 0,
random variables # and v tend to be independent. 5<0
show that random variable # and v have negative
correlation.

2.3.2 Correlation analysis

Since the traditional Pearson’s linear correlation coeffi-
cient cannot depict the complicated correlation relation-
ship of different wind speed time series, in this paper,
Kendall rank correlation coefficient is selected to mea-
sure the correlation of wind farm power. Kendall rank
correlation coefficient indicates the difference between
the probabilities of agreement and inconsistency from
randomly selected observations in the samples. Thus,
the general form of Kendall rank correlation coefficient
can be obtained. Assuming (x; y;) and (x;, y;) are arbi-
trary 2 possible values of random vector (X, Y), (x; 7))
and (x, y;) are independent and identically distributed.
Define:

o o o
S o e} —
T T T

Voltage unstability probability

o
N
T

L

. 1 1
400 450 500 550
Critical power (MW)

T L
200 250 300

Fig. 5 Cumulative density distribution of voltage instability for

correlation k=0.162
N\ J
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Fig. 6 Cumulative density distribution of voltage instability for correlation k =0.257
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K = P{ (i) (J’i‘y/) = O}
—P{ (xi—x)) (yi—y/) < 0}

(26)

as the Kendall rank correlation coefficient, and xe[-1,1],
i #j. P indicates probability of occurrence. If x >0, ran-
dom variables X and Y have positive correlation; if x <0,
the random variables have negative correlation. If k=0,
the correlation between random variables X and Y can-
not be determined.

Random variable P; and P, is defined as the output
rates of the two wind farms, respectively. (p11, pio---r
P1n) and (pa1, Paos..., Pa,) are the respective sample space
of random variable P; and P,, n is the sample size, which
establishes a one-to-one relationship with p;; and ps;.

The relation between the Kendall rank related coeffi-
cient x and the related parameters 8 of Frank Copula
function can be expressed as:

€= 1+5D(B)-1) (27)

tk

dt, k=1.
ef-1

B
where Dy (B) = %/
0

2.4 Wind power uncertainty analysis

The relationships between active power P, that is sup-
plied by the wind generation source and wind speed v
are expressed as [14, 20]:

Table 2 Average error indices of IEEE 24-node system in different
correlation

Correlation coefficient
0.162
0.257

Average error
0.039
0.041

ct+dv, asvyu<v<v,
P, = Py, asv<V<Vyyur
0, others

(28)

where v;, and v,,, are respective cut-in wind speed and
cut-out wind speeds, v, is the rated wind speed, P, is the
active power generated by the wind farm, and P, is the
rated active power. ¢ and d are constants.

In this paper, the wind speed is assumed to follows a
Weibull distribution and is shown by variation # of
standard normal distribution as:

0= (nf+ e ()]])

where g, is the Gaussian error function.
The analysis process with SRSM is expressed in the
next section.

L L
11
24 '—_|_ l_|2612 71
| 5 6
51

25
23 -9_.#20 14

(29)

Fig. 7 The single-line diagram of the 36-node system
A\
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Fig. 8 Cumulative density distribution of voltage instability for correlation k = 0.280

3 Method

3.1 Voltage uncertainty analysis with SRSM

As for actual systems that contains wind power, whose
wind speed follows Weibull distribution rather than the
normal distribution, it should convert the wind speed as
the standard normal distribution to analyze the impact of
wind power uncertainty on voltage stability based on
SRSM. Some researchers also apply SRSM to analyze un-
certainty of power system dynamic simulation [23]. The
flow chat for the calculation and analysis of the uncertainty
of wind power on stability using SRSM is shown in Fig. 1.

4 Results

4.1 Case studies

In the test cases, dispersed wind generation is consi-
dered in the IEEE 24-bus system shown in Fig. 2 and
two wind farms are added into the system at node 1 and
7, respectively. In all cases presented below, comparisons
are made to the Monte Carlo (MC) numerical approach.

4.2 Case 1

In this test case, the outputs of the two wind farms are in-
dependent from each other. In this paper, MC simulated
6000 times to verify the accuracy and efficiency of SRSM.

—_

\
\

Voltage unstability probability

o SRSM j,/ MG
0.2
00 50 100 150 200 250 300 350

Critical power(MW)

Fig. 9 Cumulative density distribution of voltage instability for
correlation k= 0.794

To enable a balanced comparison of the accuracy between
SRSM and MC, the same number of uncertainties are
used for each moment model. The parameters of the two
wind farms are shown in Table 1. In study, the mode of
load change is that increase the whole network load si-
multaneously, with the load of each node increased by the
same proportion. In the load direction, the load compo-
nent of the partial load follows normal distribution.

Figure 3 shows the cumulative probability curve ob-
tained by SRSM and MC method for the IEEE 24-node
system, and the voltage instability probability of the sys-
tem are determined under different load levels.

In Fig. 4, the probability density of spectral radius with
380 MW wind power generation is given. The calcula-
tion results also show that SRSM has high accuracy than
the MC method, and it can meet the needs for the prac-
tical applications.

4.3 Case 2

In this test case, two wind farms are correlated each other.
Figures 5 and 6 compare the cumulative probability curve
obtained by SRSM and MC for the IEEE 24-node system,
and the system voltage instability probability are deter-
mined under different load levels.

In Figs. 5 and 6, MC was used to verify the accuracy of
the proposed SRSM method in the paper, and is can be
seen that SRSM method has good accuracy. Under the
condition of different correlation coefficients, the ave-
rage error of voltage instability analysis with SRSM is
given in Table 2. Calculation results shown that Kendall
rank correlation coefficient method in analyzing voltage
instability has good accuracy, and can satisfy the engi-
neering requirement.

The results of numerical calculation show that wind
farm correlation had a significant influence on system
voltage stability. According to Figs. 5 and 6, the greater
the correlation between the wind farms has, the more
noticeable influence on system voltage stability. The
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simulation results of case 1 and case 2 shown that the
system voltage may reached an instability state is under-
estimated without considering the correlation, that is
underestimate the potential risks. From the simulation
results, it also got that the proposed method can reflect
accurately the system voltage stability as analyze the
voltage stability uncertainty problems.

4.4 Case 3

In the test case, dispersed wind generation is considered
in the EPRI 36-node system shown in Fig. 7. Two corre-
lated wind farms whit the same parameters as shown in
Table 1 are added to the system and are connected at
node 4 and 5, respectively.

In this case, MC is simulated 4000 times to verify the
accuracy and efficiency of SRSM. The system reference
power is 100 MW and the 2-rank SRSM polynomial is
used for calculation. In the simulation, the load of each
node is again increased by the same proportion.

For correlation coefficient k = 0.280 and « = 0.794, the
cumulative density distributions of voltage instability are
expressed in Figs. 8 and 9, respectively.

As can be seen from the Figs. 8 and 9, the larger the cor-
relation between the wind farms has, the lower the voltage
instability critical power is, and the probability of instability
is greater under the same power condition. Under the con-
dition of strong correlation, it is also indicated that more at-
tention should be paid to the voltage instability problem.

5 Conclusions

This paper presents a method that establishes a dynamic
system including node voltage to study power system volt-
ages stability incorporating wind farm uncertainty. Rather
than the eigenvalues of the Jacobi matrix, the criterion of
power system voltage stability is given by the spectral ra-
dius of the composite matrix. In the study process, the
correlation of wind farms is considered, such that the un-
certainty of the wind farms and the analysis method are
closer to actual systems. The proposed method which uses
SRSM to study the uncertainty can provide power system
operators with useful real-time estimation of the power
system voltage stability with wind power integration.
Compared to the traditional methods, e.g. the Monte
Carlo method, the proposed one is more efficient.

The analysis and the simulation results also shown
that the proposed method has a higher accuracy and has
a good application prospect to actual system operation
and stability analysis. The effect of the correlation be-
tween multiple distributed energy source on system vol-
tage stability will be considered in future research.
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