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Short-term wind power forecasting using a
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Abstract

Determination of the output power of wind generators is always associated with some uncertainties due to wind
speed and other weather parameters variation, and accurate short-term forecasts are essential for their efficient
operation. This can efficiently support transmission and distribution system operators and schedulers to improve
the power network control and management. In this paper, we propose a double stage hierarchical adaptive
neuro-fuzzy inference system (double-stage hybrid ANFIS) for short-term wind power prediction of a microgrid
wind farm in Beijing, China. The approach has two hierarchical stages. The first ANFIS stage employs numerical
weather prediction (NWP) meteorological parameters to forecast wind speed at the wind farm exact site and
turbine hub height. The second stage models the actual wind speed and power relationships. Then, the predicted
next day’s wind speed by the first stage is applied to the second stage to forecast next day’s wind power. The
influence of input data dependency on prediction accuracy has also been analyzed by dividing the input data
into five subsets. The presented approach has resulted in considerable forecasting accuracy enhancements. The
accuracy of the proposed approach is compared with other three forecasting approaches and achieved the best
accuracy enhancement than all.

Keywords: Energy management, Forecasting, Fuzzy logic, Microgrid, Neural network, Numerical weather prediction,
Wind power
1 Introduction
Renewable energy utilization mainly wind power gener-
ation has acquired magnificent considerations in eye-
catching number of countries following the adoption of
the Kyoto protocol environmental convention. Despite
its significant environmental benefits, the continuous
intermittency and chaotic fluctuations of wind speed
and other weather variables make the output power of
wind power generation systems completely stochastic
and different from those of conventional energy sources.
Due to this indeterminacy, it may get several challenges
to connect large quantities of wind power into a power
system network. However, this challenge is not
surmountable. In order to enhance the economic
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competence and acceptability of the wind power and to
allow a reduction in the penalty of an instantaneous spot
market coming from over estimation or underrating of
the generation, the exact forecasting of wind power as
well as wind speed is necessary. Definitely, a reliable
forecasting system can help distribution system opera-
tors and power traders to make a better decision on
critical situation.
Recently, several techniques have been developed to

forecast the wind power and speed. Existing techniques
can be classified as statistical, physical and time series
modeling techniques based on the forecasting models
they used [1]. Currently, it is observed that researchers
employ a combination of statistical model and physical
methods besides each other to get an optimal approach
that is applicable for longer horizons of prediction sys-
tems. In these techniques statistical model plays auxiliary
role to data collected by physical methods.
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Although two major classes of methods have been
recognized for the wind power forecasting, (in [2] and
[3], comprehensive reviews of these techniques are pre-
sented), as mentioned earlier, combination of statistical
and physical techniques are more common than the
others [4, 5]. Besides, numerous other spatial correl-
ation methods are proposed for short term wind power
prediction with the goal of attaining higher prediction
accuracy [6]. However, through the passage of time,
more advanced and intelligent methods have been pro-
posed. For instance, Artificial Neural Network (ANN)
in [7–9], ANN with Gaussian process approximation
and adaptive Bayesian learning in [10], combination of
wavelet transform with ANN [11], fuzzy logic methods
in [5, 12], Kalman filter in [13], support vector machine
in [14], and adaptive neuro-fuzzy inference system
(ANFIS) in [15] have been proposed for wind power
prediction.
Regarding the available research works in the area,

new forecasting approaches and techniques of input–
output data manipulations are still in demand in order
to enhance prediction accuracy and decrease the uncer-
tainty in wind power forecasting, while keeping practically
acceptable computation time. This objective leads to the
new double-stage hybrid approach proposed in this
research paper to utilize both statistical (wind farm
SCADA records) and physical (NWP meteorological vari-
ables) data sources for achieving an effective and more
accurate short-term wind power forecaster model.
In this paper, a new effective short-term wind power

forecasting approach based on a double stage hierarchical
ANFIS is proposed. The proposed approach utilizes Back
Propagation (BP) algorithm to optimize the parameters of
the membership functions of fuzzy inference system to
achieve a lower error.
The proposed methodology has two hierarchical

ANFIS stages. In the first stage, ANFIS is implemented
to predict wind speed at the exact height of the wind
turbine hub at the point of wind farm installation. In
this phase, forecasted meteorological variables (wind
speed, wind direction, air pressure, air temperature
and humidity) from NWP model as inputs and actual
wind speed measurement recorded by the wind farm
SCADA as output are utilized to train the ANFIS. In
the second stage, ANFIS is developed to map the wind
turbine wind speed vs. wind power characteristics
based on real operational conditions. Actual wind
speed and power measurements recorded by the wind
farm SCADA are used, respectively, as input and out-
put to train the ANFIS in this stage. Then, the fore-
casted wind speed by the ANFIS model in the first
stage is applied to the developed (trained) ANFIS
model in the second stage in order to estimate the
next day wind power output of the wind farm.
The prediction results are presented for the next 24 h
with 1 hour time steps. The developed DSA (double-
stage ANFIS) prediction approach is compared with
DSN (double-stage neural network), DSHGN (double-
stage hybrid GA-NN, i.e., NN combined with genetic
algorithm), and DSHPN (double-stage hybrid PSO-NN,
i.e., NN in combination with PSO) approaches, to
demonstrate its effectiveness regarding short-term wind
power prediction accuracy and computation time.
The paper is organized as follows. Section II discusses

the proposed forecasting model in which methods of
employing SCADA system and NWP model are
described. Methods of the ANFIS framework as a pre-
diction system and its brief working principles are pro-
vided in section III. Sections IV provides different
criterions used to evaluate the prediction accuracy. The
numerical findings and prediction results for the con-
sidered real case-study are provided in sections V. The
paper conclusions are drawn in section VI.

2 Discussion
2.1 Short-term wind power forecasting model
2.1.1 Proposed wind power forecasting strategy
In this paper, a short-term (24-h ahead) wind power
forecasting using a double-stage ANFIS model is pre-
sented. The main data sources are historical measure-
ment records of the wind farm SCADA system database
and meteorological variables of NWP model. The pre-
diction system uses the meteorological predictions of the
NWP model obtained at the vicinity of Goldwind micro-
grid system wind farm in Yizhuang, Beijing, China
within 5 km resolution, and actual measurement records
of the wind farm SCADA system database. The pro-
posed approach has two hierarchical ANFIS stages. In
the first stage, the wind turbine is modeled by a PSO-
ANFIS black box to develop a relationship between the
predicted NWP meteorological variables (i.e. wind speed,
wind direction, air pressure, air temperature and hu-
midity) and the actual wind speed measurement re-
corded by the wind farm SCADA system. In the second
stage, ANFIS model is developed to map the wind tur-
bine wind speed vs. wind power characteristics based
on the real operational conditions. Then, the forecasted
wind speed by the ANFIS model in the first stage is
applied to the developed (trained) ANFIS model in the
second stage in order to forecast the next day wind
power output of the wind farm.
The prediction performance of the wind power fore-

caster in this approach, actually, highly depends on the
quantities of the NWP models. In fact, the main focus of
this research study is on utilizing the NWP data that
remarkably plays an auxiliary role to improve accuracy
of the short term prediction. The prediction scheme is
depicted in Fig. 1.



Fig. 1 ANFIS-based double-stage wind power prediction model
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In the process of modeling, a 1 year information
record provided from SCADA historical measurements
and NWP/WRF model historical weather forecasts are
used to train an ANFIS that successfully can estimate a
transfer function between specific patterns of input and
output quantities. Then, BP is applied to optimize the
parameters of the membership functions of ANFIS. This
process continues until the prediction error reaches to a
suitable value.

2.1.1.1 Real-time SCADA system SCADA system as
the central nerve system and inseparable component of
the wind farm plays a key role for forecasting systems.
Usage of a real-time SCADA gives the operator access
to manage wind farm by supervising all of the wind tur-
bines online. This opportunity is presented for operator
to set relevant actions in critical situations by a 10 min
or 1 h record of the wind farm turbines. In addition,
this management system presents a comprehensive rec-
ord of the wind velocity and power outputs as well as
turbines operational availability, which acts as a foun-
dation for short-term wind power prediction.

2.1.1.2 Numerical weather prediction (NWP) model
Wind data has a significant impact on wind power fore-
casting. There are numerous techniques to obtain the
wind data: measurements/observations, data mining and
numerical weather simulations. The most direct and
reliable method to obtain wind data is via on-site obser-
vations or measurements. But, they are not always
available. Data mining method is flexible, however its
potential to downscale the meteorological weather data
is limited. The NWP models utilize equations of physical
conservation of energy and this permits a more realistic
downscaling of the data. Certainly, high-resolution (low-
radius prediction sphere) NWP of wind plays the vital role
for power prediction.
Recently, concerning availability of advanced compu-

tational systems, several wind power prediction re-
searches are directed using NWP models weather data.
These studies utilize several NWP models like WRF,
COSMO, MM5, and RAMS [16–19]. Besides, several
techniques of extrapolation such as wind shear power
law and logarithmic law have proposed by researchers
to provide appropriate weather information at the
height of specific wind turbine hub using meteoro-
logical data that are collected at 10 m above the surface
of the ground [20].

3 Method
3.1 Proposed structure for ANFIS
3.1.1 Adaptive neuro-fuzzy inference system (ANFIS)
A fuzzy logic system is capable of mapping nonlinear
relationships between an input vector and a scalar out-
put; moreover it can handle both numerical values and
human-like linguistic knowledge or variables.
Fuzzy logic system consists of four main components:

fuzzifier, rules, inference engine and defuzzifier. Fuzzifier
converts a non-fuzzy (crisp) input variable into a fuzzy
variable representation, where membership functions
assign the degree of belongingness of the variable to a
specified attribute. Fuzzy rules are simple “if-then” type,
and can be obtained from numerical data relationships or
from expert linguistic experience. Sugeno and Mamdani
inference engines are the two main kinds of inference
mechanisms used in fuzzy logic systems [15].
The Mamdani engine type merges together fuzzy

rules into a mapping from fuzzy sets to fuzzy output
sets and then apply defuzzification to the output fuzzy
set to obtain crisp outputs, while the Takagi-Sugeno
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directly relates fuzzy inputs and crisp outputs using
singleton spikes output membership function. The
defuzzification step is the final stage of the fuzzy infer-
ence process which is accomplished by the defuzzifier
by converting the output fuzzy set into a crisp number
using different methods such as: centroid of area, bi-
sector of area, mean of maxima, or maximum criteria.
ANNs have the advantage over the fuzzy inference

systems that knowledge is automatically gained during
the training process by updating the connection
weights between neurons [21]. But, this knowledge
cannot be taken out from the trained network acting
as a black box. On the other hand, fuzzy inference
systems can be distinguished by their rules, but these
rules are tricky to define when the system has many
variables and their relationships are even more com-
plex [22].
A hybrid of NNs and fuzzy inference systems has

the advantages of each of them and better perfor-
mances than any one of them. In a neuro-fuzzy sys-
tem, NNs automatically extract fuzzy rules from the
numerical data and, through the training process, the
parameters of the membership functions are adap-
tively attuned.
ANFIS is a type of adaptive multi-layered feedforward

networks [23], applied to nonlinear prediction where
past data samples are utilized to predict the data samples
ahead. ANFIS adopts the self-learning ability of neural
networks with the linguistic expression function of fuzzy
inference system [24].
The ANFIS architecture is shown in Fig. 2. The

ANFIS network considered is a Takagi-Sugeno fuzzy in-
ference system mapped onto a neural network structure
with five layers. Every layer contains a number of nodes
characterized by the node function. This node function
is discussed as follows. Suppose Oi represents the out-
put of the ith node in layer j.
In layer 1, each node i is an adaptive node with the

following node function:
Fig. 2 ANFIS architecture
O1;i ¼ μAi xð Þ; i ¼ 1; 2; ð1Þ

or

O1;i ¼ μBi−2 yð Þ; i ¼ 3; 4 ð2Þ

Here, either x or y is the input to the ith node and Ai

(or Bi-2) is a linguistic label associated with this specific
node.
Hence, O1,i is the membership value of a fuzzy set A

(A1, A2, B1, or B2) and it indicates the degree to which
the specified input x (or y) satisfies the quantifier A. The
membership functions for A and B are frequently
described by a generalized bell functions as follows:

μAi xð Þ ¼ 1

1þ x−ri
pi

��� ���2qi ð3Þ

where pi, qi, and ri are the parameters of the member-
ship function. When the values of these parameters vary,
the bell-shaped membership function changes accordingly,
thus illustrating various forms of membership functions
on linguistic label Ai.
Actually, any continuous and piecewise differenti-

able functions, like triangular-shaped functions, are
also eligible candidates for the node function in this
layer [25]. Parameters of this layer are called premise
parameters.
In layer 2, each nodeΠis fixed whose output repre-

senting the rule firing strength is the product of the
incoming input signals:

O2;i ¼ wi ¼
Y

j
μj ¼ μAi xð Þ:μBi xð Þ; i ¼ 1; 2 ð4Þ

In layer 3, every node N calculates the ratio of the ith

rule’s firing strength to the total sum of all rules’ firing
strengths (normalization):

O3;i ¼ wi ¼ wiX
j
wj

¼ wi

w1 þ w2
; i ¼ 1; 2 ð5Þ

The results of this layer are referred to as normalized
firing strengths.
In layer 4, every node is adaptive and determines the

role of the ith rule to the overall total output:

O4;i ¼ wif i ¼ wi aixþ bixþ cið Þ ð6Þ

where wi is the outcome of layer 3, and (ai, bi and ci) is
the parameter set. Parameters in this layer are said to be
consequent parameters.
In layer 5, the single node calculates the final output

by summing up all the incoming input signals to this
layer:
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O5;i ¼
X
i

wif i ¼

X
i

wif iX
i

wi

ð7Þ

Hence, an adaptive network is equivalent to a Sugeno-
type fuzzy inference system from functionality point
of view.

3.1.1.1 Optimization of ANFIS membership function
parameters
In this paper, the two-stage hierarchical ANFIS net-
works utilize BP algorithm to tune the parameters of
the membership functions. The fuzzy membership
functions considered in this research paper are
triangular-shaped type.
As aforementioned, fundamentally, ANFIS network

is a fuzzy inference system mapped onto a neural net-
work structure whose membership function parame-
ters are tuned with a BP algorithm based on some
collection of input–output data. This allows the
ANFIS network to learn. BP carries out a gradient
descent within the solution’s vector space towards a
global minimum value along the steepest vector of
the error surface.
BP learning algorithms are fast and thus suits for wind

power predictions which can be utilized in real-time
applications such as energy management, dynamic dis-
patching and scheduling in large interconnected power
systems or microgrids. ANFIS membership functions’ pa-
rameters are formed as variables of the BP and the mean
squared error is utilized as a cost function in BP. The ob-
jective of proposed approach is to reach a minimum value
for this cost function. Figure 3 shows the general scheme
of the forecasting system.
Fig. 3 Double-stage ANFIS wind power prediction algorithm
4 Wind power prediction accuracy evaluation
In order to evaluate the accuracy of the DSA wind
power prediction approach, the mean absolute percent-
age error (MAPE), the sum squared error (SSE), the root
mean squared error (RMSE), and the standard deviation
of error (SDE) criterions are used. These performance
criterions are computed as a function of the actual wind
power that occurred, and defined as follows.
The MAPE criterion is defined as:

MAPE ¼ 100
N

XN
h¼1

Pa
h−P

f
h

P
a
h

�����
����� ð8Þ

P
a
h ¼

1
N

XN
h¼1

Pa
h ð9Þ

where Pa
h and Pf

h are respectively the actual and fore-
casted wind power at hour h, P

a
h is the average actual

wind power of the prediction horizon and N is the pre-
diction horizon.
The SSE criterion is defined as:

SSE ¼
XN
h¼1

Pa
h−P

f
h

� �2
ð10Þ

The RMSE criterion is defined by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
h¼1

Pa
h−P

f
h

� �2vuut ð11Þ

The SDE criterion is defined by:

SDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
h¼1

eh−eð Þ2
vuut ð12Þ

eh ¼ Pa
h−P

f
h ð13Þ

e ¼ 1
N

XN
h¼1

eh ð14Þ

where eh is the prediction error at hour h and ē is the
average error of the prediction horizon.
The variability after fitting a prediction model is a

measure of the uncertainty of a model, which can be
measured through the evaluation of the variance of the
prediction error. The prediction is more precise if this
variance is smaller [15, 26]. From definition (12), daily
error variance can be evaluated as:

σ2e;day ¼
1
N

XN
h¼1

Pa
h−P

f
h

P
a
h

�����
�����− eday
� � !2

ð15Þ
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eday ¼ 1
N

XN
h¼1

Pa
h−P

f
h

P
a
h

�����
����� ð16Þ

5 Result
5.1 Case study and numerical Results
The DSA approach has been applied for short-term
wind power forecasting in a microgrid wind farm in
Beijing, China. This wind farm has a single wind tur-
bine unit with a generation capacity of 2500 kW.
NWP meteorological forecasts and historical wind
speed and power data are the main data inputs for
training. The influence of input parameter depend-
ency on the accuracy of the prediction has been ana-
lyzed by dividing the input data set into different
subsets.
The prediction horizon is 1 day with a time-interval of

1 hour. Time series of NWP weather forecast, actual
SCADA measurement of wind speed and actual SCADA
measurement of wind power for the wind farm are
recorded from the 1st May 2014 to the 31st April 2015.
The forecasting information is given for 4 days
Fig. 4 Actual wind power vs. forecasted wind power for a winter day

Fig. 5 Actual wind power vs. forecasted wind power for a spring day
corresponding to the four seasons of a year (July 21,
2015, October 15, 2015, January 4, 2016 and April 13,
2016). Thus, days with specifically good wind power char-
acteristics are purposely not selected. This results in an
irregular accuracy allocation throughout the year that
shows the reality.
Numerical results with the DSA approach are shown

in Figs. 4, 5, 6 and 7, respectively for the winter, spring,
summer and fall days. Each figure shows the SCADA
actual wind power record with the forecasted wind
power by the proposed approach.
Table 1 gives the values of the criterions used to

evaluate the accuracy of the DSA approach in predicting
wind power. The first column shows the day, the second
column gives the MAPE, the third column gives the
square root of the SSE, the fourth column gives the
RMSE, and the fifth column gives the SDE.
Table 2 presents a comparison between the DSA predic-

tion approach and three other approaches (DSN, DSHGN,
and DSHPN), with respect to the MAPE criterion.
The proposed forecasting approach gives better fore-

casting accuracy: the MAPE has 8.1133% average value.



Fig. 6 Actual wind power vs. forecasted wind power for a summer day

Fig. 7 Actual wind power vs. forecasted wind power for a fall day
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The proposed approach’s average MAPE improvement
with respect to the previous three approaches is 37.93,
34.26 and 20.73%, respectively.
In addition to implementing effective wind power fore-

casting approach, analysis of impacts of input-data
dependency (input-parameter selection) on the accuracy
Table 1 Daily forecasting error statistical analysis

Day Type MAPE
ffiffiffiffiffiffiffi
SSE

p
RMSE SDE

Winter 7.6979 190.2974 38.8443 38.7981

Spring 13.304 25.7918 5.2647 5.2130

Summer 8.232 32.5989 6.6542 6.6092

Fall 3.2197 49.0784 10.0181 8.8529

Table 2 Mape results comparison of different methods

Day Type Winter Spring Summer Fall Average

DSN 9.4074 18.52 12.33 4.5055 11.191

DSHGN 8.8829 18.449 11.85 4.3908 10.893

DSHPN 8.4167 16.369 10.486 3.9108 9.7954

DSA 7.6979 13.304 8.232 3.2197 8.1133
of a prediction model is highly important in developing
a stable wind power forecasting model.
The influence of input-data dependency on the fore-

casting accuracy of the proposed approach are also ana-
lyzed by dividing the prediction input data set into five
subsets: where subset #1 consists of wind speed, subset
#2 contains wind speed and wind direction, subset #3
contains wind speed, wind direction and air temperature,
subset #4 contains wind speed, wind direction, air
temperature and air pressure, and subset #5 contains
wind speed, wind direction, air temperature, air pressure
and humidity. Table 3 presents a comparison between
input-data subset #5 and four other subsets (input-data
Table 3 Comparison of mape results for different input-data subsets

Day Type Winter Spring Summer Fall Average

Subsets #1 7.9576 13.5637 8.4917 3.4794 8.3731

Subsets #2 7.8463 13.4524 8.3804 3.3681 8.2618

Subsets #3 7.8092 13.4153 8.3433 3.331 8.2247

Subsets #4 7.7721 13.3782 8.3062 3.2939 8.1876

Subsets #5 7.6979 13.304 8.232 3.2197 8.1133
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subsets #1 to 4), regarding the MAPE criterion. The pro-
posed forecasting approach with input-data subset #5
gives better forecasting accuracy: the MAPE has
8.1133% average value. The proposed approach’s average
MAPE improvement using input-data subset #5 with
Fig. 10 Normalized absolute values of forecast errors for a summer day

Fig. 8 Normalized absolute values of forecast errors for a winter day

Fig. 9 Normalized absolute values of forecast errors for a spring day
respect to the previous four subsets is 3.20, 1.83, 1.37
and 0.92%, respectively.
The absolute values of prediction errors with respect

to the maximum capacity of the wind farm (i.e.,
normalized by the maximum wind farm capacity), consid-



Table 4 Daily prediction error variance

Winter Spring Summer Fall Average

DSN 0.0044 0.0449 0.0097 0.0011 0.0150

DSHGN 0 .0023 0.0419 0.0086 0.0010 0.0134

DSHPN 0.0023 0.0330 0.0065 0.0008 0.0106

DSA 0.0023 0.0202 0.0037 0.0005 0.0067

Fig. 11 Normalized absolute values of forecast errors for a fall day
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ering all the approaches, are shown in Figs. 8, 9, 10 and 11,
respectively for the winter, spring, summer and fall days.
The DSA approach provides smaller errors compared

with the other approaches.
Besides the MAPE criterion, consistency of results is

another vital factor to compare prediction approaches.
Table 4 presents a comparison between the DSA approach
and three other approaches (DSN, DSHGN, DSHPN),
with respect to the daily prediction error variance.
As shown in Table 4, the average forecasting error vari-

ance is smaller for the DSA approach, reflecting less uncer-
tainty in the forecasts. The proposed approach’s average
error variance improvement with respect to the previous
three approaches is 123.88, 100 and 58.21%, respectively.
The DSA approach results in improved prediction

accuracy, outperforming the other approaches. The pro-
posed prediction approach with input data subset #5 has
presented the best performance and enhanced accuracy
over the other data subsets.
Furthermore, the average computation time is around

8 s, using MATLAB on a PC with Intel core i5-5200
CPU, 2.20 GHz processor and 4 GB RAM. Therefore,
the proposed multi-stage hierarchical forecasting strategy
is both novel and effective for short-term wind power
forecasting.

6 Conclusion
In this research paper, a new hierarchical hybrid approach
is proposed for short-term wind power forecasting using
ANFIS. The approach has two hierarchical stages. The
first ANFIS network models the relationship between
NWP meteorological parameters around the vicinity of
the wind farm within 5 km resolution and the exact wind
speed measurement at the wind farm. Whereas, the
SCADA records of the actual wind speed and output
power relationships are modeled by the ANFIS network in
the second stage. Then, the wind speed prediction result
from the first stage is applied to the second stage to fore-
cast the wind power for the next day. The implementation
of the proposed approach for wind power forecasting is
both novel and effective. The MAPE has 8.1133% average
value, outperforming other three prediction methods
while the average computational time is lower than 8 s.
Therefore, the presented numerical results validate the
effectiveness of the proposed approach for short-term
wind power prediction.
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