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Abstract

The characterization of sinusoidal signals with time varying amplitude and phase is useful and applicable for many
fields. Therefore several algorithms have been suggested to estimate main aspects of these signals. Within no
standard approach to test the properties of these algorithms, it seems to be helpful to discuss a large class of
algorithms according to their properties. In this paper, six methods of estimating dynamic phasor have been reviewed
and discussed which three of them are based on least square and others are based on Kalman filter. Taylor expansion
is used as a first step and continued with least square or Kalman filter in accordance with the proposal observer of
each method. The theoretical processes of these methods are briefly clarified. The characterizations have been made
by some tests in time and frequency domains. The tests include amplitude step, phase step, frequency step,
frequency response, total vector error, transient monitor, noise, sample number, computation time, harmonic and DC
offset which build a framework to compare the different methods.

Keywords: PMU, Dynamic phasor, Kalman filter, Taylor series, Least square

Introduction
Due to the lack of recommended specific algorithms
to estimate phasor in IEEEStd.C37.118, phasor esti-
mation has attracted lots of attentions recently [1].
Phasor estimation is a significant key of wide area
monitoring and protecting in power systems. Fast and
precise estimation is also necessary for accurate deci-
sion in power system control. Dynamic phasor appli-
cation is not limited to PMU . For example, there are
some utilizations in power system simulator programs
[2]. Recent developments, particularly the emerging of
power electronics based equipment like FACTS devices,
clarified an absence of suitable definition in the typi-
cal power system analysis methods which have consid-
ered the sinusoidal signal with constant amplitude and
phase. For such components (power electronic based
components) a full time domain simulation is needed
due to incomplete concept of phasor. The concept of
time varying phasor (dynamic phasor) has been pro-
posed in [3] for the first time to overcome this prob-
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lem. This concept has several advantages compared
to time-based simulation. For example, it noticeably
decreases the simulation time as advantage, but as a
disadvantage, increases the number of variables and
equations.
Several literatures discussed new algorithms of dynamic

phasor estimation. In [4], a new method based on adap-
tive complex band pass filter was proposed to esti-
mate phasor. Xianing et al. [5] proposed a method
based on an angle-shifted energy operated to extract the
instantaneous amplitude. An integrated phasor and fre-
quency estimation using a Fast Recursive Gauss Newton
algorithm was proposed in [6]. A method based on
modified Fourier transform to eliminate DC offset was
suggested in [7]. A phasor estimation algorithm based
on the least square curve fitting technique was pre-
sented in [8] for the distorted secondary current due
to CT saturation. In [9], an innovative approach was
proposed to estimate the phasor parameters includ-
ing frequency, magnitude and angle in real time based
on a newly constructed recursive wavelet transform.
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Reference [10] discussed phasor and frequency estima-
tions under transient system conditions: electromagnetic
and electro-mechanic. Maximally flat differentiators [11]
and phasorlet [12] are other new methods for dynamic
phasor estimation. Mai et al., [13]; Serna and Martin
[14]; Serna [15] proposed modified forms of earlier
methods.
Historically, Guass invented least square method and

used it as estimator technique [16]. He suggested that
the most appropriate value for the unknown parame-
ter is the most probable one, which is the sum of the
square of the observed and the computed values dif-
ference. Although Kalman filter is proposed fifty years
ago, it is still one of the most important and com-
mon data fusion algorithms today. The great success
of the Kalman filter is result of its low computational
requirement, recursive property and its optimal esti-
mation capability with Gaussian error [17]. The least
square and Kalman filter based methods are discussed
in this paper, as two general types of phasor estima-
tion. Six specific methods based on these two types have
been selected in this study which three of them are
based on least square and others are based on Kalman
filter.

Method1) Traditional method: This algorithm is based
on zeroth-order Taylor expansion and least square to
estimate phasor [18].
Method2) Fourier Taylor method: This method is based
on second-order Taylor expansion and least square to
approximate dynamic phasor [18].
Method3) Shank method: The idea of this method is based
on consecutive delays of unit response (digital filter design
theory) and least square method to estimate dynamic
phasor [19].
Method4) Kalman Taylor method: The main concern of
mentioned three methods is delay. In the next three
methods, in contrast with the priors, Kalman filter is
used as an alternative observer to address the delay
challenge [20].
Method5) Fourier Kalman Taylor method: The main
idea of this method is based on introducing augment
state space which can overcome harmonic infiltration
problem [21].
Method6) Modified Kalman Taylor method: The main
contribution of this method is tomodify modeling process
of state space to decrease error bound [22].

The six concepts of algorithms are discussed as different
common starting points in a unified manner. The main
purpose of this paper is to review and provide a frame-
work in order to compare past and future algorithms in
this area.

Dynamic Phasor estimation
Consider a sinusoidal quantity with time-varying ampli-
tude and phase given by:

S(t) = a(t)cos(2π .f1t + φ(t)) (1)

where a(t) and φ(t) are amplitude and phase angle of
S(t) respectively. f1 is the frequency of the signal. p(t) is
dynamic phasor (complex envelope) that is defined as:

p(t) = a(t)ejφ(t) (2)

By substituting (2) in (1), S(t) can also be written as:

S(t) = 1
2

(
p(t)ej2.π .f1.t + p∗(t)e−j2.π .f1.t

)
(3)

* represents conjugating operator. In order to estimate
dynamic phasor p(t), Taylor series of p(t) at t = 0 is used
as:

{
p(t) = p0 + p1t + p2t2 + . . . + pktk(
p0 = p(0), p1 = p′(0), p2 = p′′(0)/2, . . . , pk = pk(0)/k!

)

(4)

where the coefficients of the series (P0, P1,P2,. . .,Pk ,)
are the derivatives of the dynamic phasor at the observa-
tion interval center. All six mentionedmethods are similar
until this step and differences come to show then.

Method1) traditional method
S(t) can be written based on zeroth-order Taylor polyno-
mial of p(t) as:

p(t) = 1
2

(
p0ej2.π .f1.t + p∗

0e
−j2.π .f1.t

)
(5)

where p0 and p∗
0 are constant term and its conju-

gated term of Taylor series of p(t). This truncated
model can be used in any interval observation like T .
The signal S(t) is sampled N1 times in one period
of fundamental frequency (T1), so interval obser-
vation size will be N = (T/T1)N1. By substituting
N1 = 2Nh + 1, (−Nh ← n → +Nh) in (5), (6) will be
resulted.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(0)
...

S(Nh)
...

S(n)
...

S(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−jω1Nh ejω1Nh

...
...

1 1
...

...
ejω1n ejω1n

...
...

ejω1Nh e−jω1Nh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(
1
2

)[
p0
p∗
0

]
(6)

From left side, first matrix is named S, second matrix
is named B(0) and the third one is P̂(0) and ω1 = 2π/N1
corresponds to the fundamental angular frequency.
The best estimation P̂(0), is obtained by least square
method as:

P̂(0) =
(
B(0)HB(0)

)−1
B(0)H .S (7)

where H is the Hermitian transpose operator. The
estimated time-varying amplitude (â(t)) and time-varying
phase (φ̂(t)) are:

{
â(t) = 2|p̂0|
φ̂(t) = ∠p̂0

(8)

Method2) Fourier Taylor method
The phasor has been assumed a constant amplitude and
phase in previous method which is inappropriate for
power system during oscillation like power swing, so
time-varying amplitude and time-varying phase are better
models in this condition. Based on explained restriction,
second method (Fourier Taylor method) has been pro-
posed. Difference between first and second methods is in
the usage of higher terms in Taylor expansion. Using first
three terms of polynomial in estimation process, S(t) can
be written as:

S(t) = 1
2

{(
p0 + p1t + p2t2

)
ej2.π .f1.t (9)

+ (p∗
0 + p∗

1t + p∗
2t

2) e−j2.π .f1.t
}

where P2, P1, P0, P∗
0, P∗

1 andP∗
2 are coefficients of second-

order Taylor series and their conjugated, respectively. N
linear equations are created as (10):

From left side, first matrix is named S, second matrix
is named B(2) and the third one is named P̂(2). The best
estimation P̂(2) is obtained by least square as:

P̂(2) = (B(2)HB(2))−1B(2)H .S (11)

The relationships between the estimated coefficients,
time-varying amplitude, time-varying phase and their
derivatives, are given by:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

â(t) = 2|p̂0|
φ̂(t) = ∠p̂0
â′(t) = Re

{
p̂1e−jφ̂(t)

}

φ̂′(t) = 1
â(t) Img

{
p̂1e−jφ̂(t)

}

â′′(t) = 2Re
{
p̂2e−jφ̂(t)

}
+ â(t)
[
φ̂′(t)
]2

φ̂′′(t) = 1
â(t)2Img

{
p̂2e−jφ̂(t)

}
+ â′(t)

[
φ̂′(t)
]

(12)

It is clear from (12) that first and second derivatives of
phasor can be calculated by this method.

Method3) Shankmethod
Digital filters can be directly designed based on least
square in Z domain. Shank method is one of these
direct filter designs. In this method, the parameters are
computed based on the least square criterion. Measure-
ment data are considered as a unit response of digi-
tal filter in this method [23]. Just like previous method
(Fourier Taylor), S(t) can be written based on second-
order Taylor polynomial as (9). Then in discrete time:
(sampling time=τ )

S(t) = 1
2
{(

ρ0 + ρ1.n + ρ2.n2
)
ejnθ0

+ (ρ∗
0 + ρ∗

1 .n + ρ∗
2 .n2
)
e−jnθ0
}

(13)

ρ0 = p0, ρ1 = p1τ , ρ2 = p2τ 2

where ρ2, ρ1, ρ0, ρ∗
0 , ρ∗

1 and ρ∗
2 are coefficients of second-

order Taylor series and their conjugates in discrete time.
While P2, P1, P0, P∗

0, P∗
1 and P∗

2 are coefficients of second-
order Taylor series and their conjugates in continuous

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(0)
...

S(Nh)
...

S(n)
...

S(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N2
he

−jω1Nh −Nhe−jω1Nh e−jω1Nh ejω1Nh −Nhejω1Nh N2
he

jω1Nh

...
...

...
...

...
...

0 0 1 1 0 0
...

...
...

...
...

...
n2ejω1n nejω1n ejω1n e−jω1n ne−jω1n n2e−jω1n

...
...

...
...

...
...

N2
he

jω1Nh Nhejω1Nh ejω1Nh e−jω1Nh Nhe−jω1Nh N2
he

−jω1Nh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

p2/2
p1/2
p0/2
p∗
0/2

p∗
1/2

p∗
2/2

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)
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time. By applying z transform to truncated Taylor polyno-
mial (13) we have:

S(z) = 1
2

{(
ρ0

1 − ejθ0z−1

)
+
(

ρ∗
0

1 − e−jθ0z−1

)
(14)

(
(ρ1 + ρ2/2) ejθ0z−1
(
1 − ejθ0z−1)2

)
+
((

ρ∗
1 + ρ∗

2/2
)
e−jθ0z−1

(
1 − e−jθ0z−1)2

)

(
ρ2ej2θ0z−2
(
1 − ejθ0z−1)3

)
+
(

ρ∗
2 e−j2θ0z−2
(
1 − e−jθ0z−1)3

)}

where z is transformation operator. θ0 = (2.π/N1) is the
sampling angle of fundamental frequency. This can be
reduced to rational form by some mathematical opera-
tions as:

S(z) =
∑k=5

k=0 bkz−k

2
(
1 − ejθ0z−1)3 (1 − e−jθ0z−1)3 (15)

According to (15), there are two triple poles at ejθ0
and e−jθ0and bk coefficients (k = 0, 1, .., 5) include phasor
information (ρ2, ρ1, ρ0, ρ∗

0 , ρ∗
1 andρ∗

2 ). This informa-
tion could be extracted by Shank method. Since poles are
determined so locating zeros is the aim of this part. Sep-
arating poles from zeros in (15) produces two transfer
functions as shown in (16).
⎧
⎪⎨
⎪⎩

H1(z) = 0.5
2(1−ejθ0 z−1)

3
(1−e−jθ0 z−1)

3

H2(z) =
k=5∑
k=0

bkz−k
(16)

Based on Fig. 1 and by considering v(n) as impulse
response of H1 in time domain, (17) is created as:

⎡
⎢⎢⎢⎣

S(0)
S(1)
...

S(N1 − 1)

⎤
⎥⎥⎥⎦ = V .

⎡
⎢⎢⎢⎢⎢⎢⎣

b0
b1
b2
b3
b4
b5

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

where the left sidematrix is S, the right sidematrix is B and
the middle one is:

V =

⎡
⎢⎢⎢⎣

ν(0) 0 · · · 0
ν(1) ν(0) · · · 0
...

...
...

...
ν(N1 − 1) ν(N1 − 2) · · · ν(N1 − 6)

⎤
⎥⎥⎥⎦

The best estimation of B using least square method is
calculated as:

B̂ = (VHV
)−1 VH .S (18)

The mentioned three methods were based on least
square. An important point about least square observer
is its delay. It means that dynamic phasor is tracked with
delay which will be shown in Section “Simulation results”
later. To overcome this problem, next methods (Kalman
filter based methods) have been proposed in literatures.

Method4) Kalman Taylor method
Kalman filter is an outstanding method to compute state
variables recursively and instantaneously. Regardless to
previous methods, next methods are based on state space
model and Kalman filter. State space is a complete model
for analyzing dynamic system. In this model, state value
at each sample time is calculated by its value at previ-
ous sample. State space model among with Kalman fil-
ter are used to estimate phasor in these methods. The
main advantage of Kalman filter based methods is their
instantaneous tracking property. State transition matrix
can be obtained from the derivatives of p(t). Suppose
t0 = (n − 1).τ and t = (n).τ , are two consecutive samples
where τ is sampling time. The Kth- order Taylor series and
its derivatives are:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(t) = p(t0) + p′(t0)τ + p′′(t0) τ 2

2! + . . . + p(k)(t0) τ k

k!
p′(t) = p′(t0) + p′′(t0)τ + . . . + p(k)(t0) τ (k−1)

(k−1)!
...
p(k)(t) = p(k)(t0)

(19)

where p′(t), p′′(t), . . . , p(k)(t) are derivatives of p(t) in time
domain. Based on (19), state equations are written as (20):

⎡
⎢⎢⎢⎢⎢⎣

p(t)
p′(t)
p′′(t)
...

p(k)(t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 τ τ 2

2! · · · τ k

k!
0 1 τ · · · τ (k−1)

(k−1)!
0 0 1 · · · τ (k−2)

(k−2)!
...
...

... · · · ...
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

p(t0)
p′(t0)
p′′(t0)

...
p(k)(t0)

⎤
⎥⎥⎥⎥⎥⎦

(20)

From left side, the first matrix is named PM(t) which is
state vector at time t, the second one named φ(τ) which
is state transition matrix and the third one named PM(t0)
which is state vector at time t0. After state equations,

Fig. 1 Poles and zeros separation mentioned in (16)
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measurement equations are obtained. Based on (3) and
(20), S(t) is presented by:
⎧⎨
⎩
S(t) = Re

{
hT .PM(t).ej2π .f1t

} = Re
{
hTr(t)
}

hT =[ 1 0 0 · · · 0]
r(t) = PM(t).e2π .f1t

(21)

hT =[ 1 0 · · · 0] is used to extract first component of state
vector (PM(t)). As it can be seen in (21), the term ej.2π .f1.t
is produced in measurement equations. So new vari-
able r(t), rotated vector, is introduced. The rotated state
equations based on r(n) and its conjugates can be written
in discrete time as:
[
r(n)

r∗(n)

]
=
[

φ(τ)ϕ1 0
0 φ(τ)ϕ∗

1

] [
r(n − 1)
r∗(n − 1)

]
(22)

where from left side, the second matrix is named Rφ(τ)

which is rotated state transition matrix and the first and
the third matrix are named X(n) and X(n − 1) which are
rotated state vectors at sample n and n − 1 respectively.
ϕ1 is the sampling factor (ϕ1 = ejθ1 ) of fundamental fre-
quency where θ1 = 2.π/N1 and N1 is sample number in
one fundamental period. S(t) is reconfigured based on r(t)
as:

S(n) = 1
2

[
hThT
] [ r(n)

r∗(n)

]
(23)

In (23), from left side, the first matrix is named S(n)

and second one is named MS which is final measurement
matrix. Finally (22) and (23) are considered as final state
and final measurement equations. Kalman filter is applied
to these two equations in two steps in order to estimate
phasor. Predicting and updating steps are as:
Prediction step:
{
X−(n) = R.φ(τ).X(n − 1)
p−(n) = R.φ(τ).p(n − 1).R.φH(τ ) + 

T .σ 2

v
(24)

where X(n − 1) is rotated state vector at (n − 1)th sample
and X−(n) is its prediction in nth sample. p−(n) is prior
error covariance and σ 2

v is the variance of model error.
Noise is assumed to affect only the rotated state vector
despite of its derivatives thus considered as (hT .hT ). In
(24) H is the Hermitian transpose operator.
Update step:
⎧⎨
⎩
K(n) = p−(n).MST .

(
MS.p−(n).MST + σ 2

w
)

X(n) = X−(n) + K(n).
(
S(n) − MS.X−(n)

)
p(n) = (I − K(n).MS).p−(n)

(25)

where:
X(n) is rotated state vector at sample n.
K(n), Kalman gain, reveals how much modification is
needed for state variables based on measurement.
σ 2
w is measurement noise variance created by sensors.

p(n) is posterior error covariance. And
I is the unit matrix.
These Kalman equations make it possible to calculate

X(n); Therefore dynamic phasor can be calculated based
on estimated value of X(n).

Method5) Fourier Kalman Taylor method
It is clear that Kalman filter works successfully if input sig-
nal is matched with the model which the filter is designed
based on. In previous method (Kalman Taylor) Kalman
filter is designed based on (1) containing only the funda-
mental frequency. In the cases that input signal is contam-
inated by harmonic, it is expected that Kalman filter not
work properly. So the complete modeling of input signal
is necessary to guarantee the accurate operation of filter.
Based on mentioned reason, the complete model of main
signal is considered as:

S(t) = {a0(t)cos(2.π .f0.t + φ0(t)) (26)
+a1(t)cos(2.π .f1.t + φ1(t))

+ · · · +aN−1(t)cos(2.π .(N − 1)f1.t + φN−1(t))}

where:
N is sample number in fundamental period.
a0(t) and φ0(t) are DC amplitude and phase.
a1(t) and φ1(t) are fundamental amplitude and phase.
aN−1(t) and φN−1(t) are amplitude and phase of (N − 1)th
harmonic.
f0 is zero (DC) frequency and f1 is the fundamental fre-
quency of the signal.
Based on complete model (26), the transition matrix

φ(τ) is extended to include all harmonics as (27). So it is
expected to have individual dynamic phasor for each har-
monic (p0(t) = a0(t).ejφ0(t)) , (p1(t) = a1(t).ejφ1(t)),· · ·,
(pN−1(t) = aN−1(t).ejφN−1(t)). In this condition, funda-
mental phasor is free from harmonics that demonstrates
the superiority of Fourier Kalman Taylor method com-
pared to Kalman Taylor method.

�(τ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ(τ)ej0θ 0 · · · 0
0 φ(τ)ej1θ · · · 0
0 0 · · · 0
0 0 0 0
...

... · · · ...
0 0 · · · φ(τ)ej(N−1)θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(27)

Rest of dynamic phasor estimation in this method is the
same as previous method.

Method6) Modified Kalman Taylor method
Last Kalman based method is obtained by modifying the
modeling process of Kalman Taylor method (4th method)
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in order to decrease error estimation. This model repre-
sents a more accurate dynamic of system. As mentioned
in (21), the term ej2π .f1.t has been created in measure-
ment equations. So new variable r(t), rotated vector,
has been introduced based on multiplyingej2π .f1.t by p(t)
which produces the rotated state equations written as
(22). However this process does not completely express
the dynamic of system due to time-varying term ej2π .f1.t .
Dynamic behavior of this term (derivatives of this term)
has not been considered in the state equation. Therefore,
in this method (6th method) consecutive derivatives of
(ej2π .f1.t .p(t)) are utilized to produce more accurate state
equation. By means of consecutive derivatives we have:

⎡
⎢⎢⎢⎢⎢⎣

r(t)
r′(t)
r′′(t)
...

r(k)(t)

⎤
⎥⎥⎥⎥⎥⎦

= G.

⎡
⎢⎢⎢⎢⎢⎣

p(t0)
p′(t0)
p′′(t0)

...
p(k)(t0)

⎤
⎥⎥⎥⎥⎥⎦

(28)

G = ejω1t

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
jω1 1 0 · · · 0

(jω1)
2 jω1 1 · · · 0

...
...

... · · · ...
(jω1)

k (jω1)
k−1 (jω1)

k−2 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

where ω1 is angular frequency of fundamental compo-
nent. p′(t), p′′(t), · · · , p(k)(t) are derivatives of p(t) in time
domain and r′(t), r′′(t), · · · , r(k)(t) are derivatives of r(t).
Supposed that t0 = (n − 1).τ and t = (n).τ are two con-
secutive samples and τ is the sampling interval, so:

R(t) = ejw1τ .G.φ(τ).G−1.R(t0) (29)

where φ(τ) is the matrix described in (20). By consider-
ing Q = G.φ(τ).G−1, the form of modified state space in
discrete time is:

[
R(n)

R∗(n)

]
=
[
ejw1τ .Q 0

0 e−jw1τ .Q∗
] [

R(n − 1)
R∗(n − 1)

]
(30)

Kalman filter is used in method 6 as methods 4 and 5,
so the rest of dynamic phasor process is similar to these
methods.

Simulation results
First, the test signal which is common in oscillating con-
ditions has been used to examine the proposed methods.
Consider the test case as:

S(t) = a(t) cos
(
2.π .f1.t + φ(t)

)
(31)

where
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a(t) = a0 + (a1cos
(
2.π .fat
))

φ(t) = φ0 + (φ1cos
(
2.π .fφ .t

))

a0 = φ0 = 1, a1 = φ1 = 0.1
fa = fφ = 5,N1 = 16

The signal is sampled at 960 Hz, so 16 samples are
obtained over a window of 16.66 ms, which corresponds
to one period of the 60 Hz. σ 2

v and σ 2
w values are 1 × 10−2

and 1 × 10−4 respectively. The oscillation of main signal,
shown in Fig. 2, is perceptible around the fundamental
frequency. The dynamic phasor is estimated using second
order Taylor model in all methods except method 1 which
is based on zeroth-order. Figures 3 and 4 show amplitude
and phase estimation of dynamic phasor respectively. In
these figures the dashed and solid lines represent ideal
(real) components and their estimates. According to the
figures, it is clear that the main difference between least
square based methods (methods 1, 2 and 3) and Kalman
based ones (methods 4, 5 and 6) is the estimation delay
due to utilization of data window in least square. As
a first result, Kalman filter based methods are able to

Fig. 2Main signal
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Fig. 3 Amplitude estimation

provide instantaneous estimations which are promising
result in wide area protection field and synchrophasor
application (PMU). An essential attribute of these applica-
tions is their synchrony that is provided by Kalman based
methods.
As the second result, dynamic phasor concept (methods

2, 3, 4, 5, 6) compared to traditional one (method 1) is
more flexible in oscillating conditions. In method 1, a
slight distortion appears at estimated amplitude (Fig. 3)
and phase (Fig. 4) while this distortion is disappeared in
other methods. This improvement is caused due to relax-
ing amplitude and phase in dynamic phasor model. Total

Vector Error (TVE) criterion detects phasor magnitude
and angle estimation error, defined as:

TVE = |Xr − Xe
Xr

| (32)

where Xr and Xe are real and estimated values. Figure 5
depicts the total vector error of all six methods. In
order to represent more clearly, first ten cycles has been
shown in this figure. These results indicate that the
high estimation errors of least square based methods
(methods 1, 2 and 3) are mainly due to their one cycle

Fig. 4 Phase estimation
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Fig. 5 Total Vector Error (TVE)

delay. TVE index is not a useful index to compare tra-
ditional and dynamic phasor concept because the delay
causes high error values in TVE. It is apparent that the
low estimation error of Kalman filter based methods
(methods 4, 5 and 6) are due to their instantaneous esti-
mations. The value of TVE is achieved approximately
6 × 10−2 by the method 4. Even though method 5 has
been designed to deal with harmonic conditions, this
design increases the estimation error. Method 6 pro-
vides least error (approximately 4 × 10−2) which vali-
dates the applied modification in modeling process in this
method.

Another feature of dynamic phasor concept compared
to traditional one is its ability to calculate the derivatives
of the phasor. Based on traditionalmodel, it is obvious that
estimating the phasor speed and acceleration are impos-
sible by method 1. However, it is possible to obtain esti-
mations of the first and second derivatives of the phasor
with the second order Taylor model (all methods except
method 1), which are shown in Fig. 6. In these figures
the dashed and solid lines represent ideal (real) derivatives
and their estimates.
According to Fig. 6, it is observed that phasor deriva-

tive estimations are not as accurate as the phasor

Fig. 6 First derivative of phase
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estimation (Fig. 4) which indicates the elimination
of higher terms in Taylor expansion. These deriva-
tives have two important roles. First, they reduce
error estimation as shown in simulation results; Sec-
ond, they are able to calculate frequency and detect
faults and power swings. It is the superiority of
dynamic phasor compared to traditional concept of
phasor.
In order to clarify this capability, consider a disturbance

which occurs in a power system. It is important for us
to be discovered immediately to take accurate actions.
Power systems make use of distance relays in transmis-
sion lines to detect this condition. A distance relay is
a device that measures the apparent impedance as an
index of distance from the relay location. The power
swing is a consequence of a severe disturbance like line
fault, loss of generator unit and switching heavy load
and creates large fluctuations (just like dynamic pha-
sor condition) of active and reactive power between two
areas of a power system. Power swing affects the distance
relay behavior and causes its malfunction. Fast detec-
tion of power swing is interested in distance protection
of transmission lines. Several methods have been pro-
posed to solve this problem till now [24–29]. However
the detection based on first and second derivatives of
dynamic phasor can be a novel method and makes this
aim accessible.

Lack of comprehensive indices to explain the discrep-
ancy of different methods motivated us to establish a
framework for comparing presented methods. Twelve
indices that are utilized to form a complete benchmark in
the paper, are:

• TVE to examine error bound
• Step amplitude-phase benchmark tests to analyze

dynamic response of the methods in amplitude and
phase step condition

• Step frequency benchmark tests to analyze dynamic
response of the methods in frequency step condition

• Frequency response to demonstrate the delay of the
methods

• Histogram tool to examine RMS error of amplitude
estimation

• Signal taken from a PMU to check presented
methods in practical conditions

• Harmonic and DC offset infiltration
• Derivatives of amplitude and phase
• Transient monitor index
• Computation time
• Sampling number
• Noise infiltration

This benchmark is shown in Fig. 7. As mentioned in
IEEE standard, the exact algorithm used by PMU in

Fig. 7 Outline of benchmark for comparison
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non-steady state condition is beyond of standard scope.
However, some simple tests are proposed to evaluate this
condition. Two benchmark tests are described in standard
as: Magnitude-phase step and Frequency step.

Magnitude-phase step test
To investigate the dynamic response of presented meth-
ods, dynamic benchmark based on amplitude-phase step
is considered. The test has the form as:

⎧⎪⎪⎨
⎪⎪⎩

a(n) = 1,φ(n) = 0 0 < n < 10N1

a(n) = (1 + 0.9)/2,φ(n) = π/4 n = 10N1

a(n) = 0.9,φ(n) = π/2 10N1 ≤ n
(33)

It is 10% magnitude step and 90° phase step. Accord-
ing to Figs. 8 and 9, the estimated amplitude and phase
track their real values accurately after transient period.
Method 5 shows the longest transient period which indi-
cates the presence of extremely close poles to unit circle
in the z plane among the other methods. Settling time in
methods 1 and 2 is twice as method 3 which is dependent
on their observation window. The high overshoot value
of Kalman based methods is because of their instanta-
neous behavior which estimate based on previous sample
behalf of a samples window. Another reason of this tran-
sient response comes from Taylor model which is more
appropriate for smooth signals and not sudden changes
in signals. This test results show further investigations are
needed to improve these transient responses. A possible

solution is to add feedback path in observer space state in
order to make the dominate poles away from unit circle in
z plane.

Frequency step test
The second test waveform is 5 Hz frequency step used to
evaluate transient response in frequency step condition.

{
S(n) = cos(2π .f1
t) 0 < n < 10N1

S(n) = cos(2π .(f1 + 5)
t) 10N1 ≤ n
(34)

Transient responses of magnitude and phase estima-
tion in subjected to frequency step condition are similar
to magnitude-phase step condition, which are shown in
Figs. 8 and 9 respectively. The main contribution of
dynamic phasor can be easily evaluated by this test as
shown in Fig. 10. This figure shows the estimation of phase
derivative obtained from all six presented methods. The
first derivative of the phase is related to frequency (multi-
plied by 1/(2π)). According to Fig. 10, + 5 Hz frequency
step is tracked by all methods except method 1. This
negative aspect comes from serious limitation of tradi-
tional phasor concept which considers phasor as constant
amplitude and phase. Therefore the output of this method
(method 1) is zero. However, all other methods have fre-
quency and ROCOF (rate of change of frequency) tracking
feature. Power system frequency measurement has been
in use since the advent of alternating current genera-
tor and systems. A number of techniques for measuring
power system frequency have been published in technical
literatures [30–34]. The frequency estimation of a power

Fig. 8 Amplitude estimation (magnitude and phase step test)
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Fig. 9 Phase estimation (magnitude and phase step test)

signal has wide applications in the control and protection
of power systems. Furthermore increasing penetration of
distribution generator makes the electrical network to
estimate the power signal parameters such as frequency
accurately.
Frequency measurement is an important parameter in

power system operation because it indicates the dynamic
balance between power generation and its consumption.
To protect power system and detect islanding situation
and its time, the frequency and its rate of change are uti-
lized as indicators. Synchronized phasor measurements
offer an opportunity to measure power system frequency.

Dynamic phasor estimation, presented in this paper, as an
inner part of PMU can be utilized in this field.

Frequency response
The frequency analysis illustrates the relationship
between input and output in frequency domain. It is
done by stimulating the estimator with complex expo-
nential sequence (ejkω0 , where ω0 is fundamental angular
frequency) as:
{
H(z) = P̂(z)

S(z)

z = ejkω0 −∞ < k < ∞
(35)

Fig. 10 Frequency estimation (frequency step test)
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where S(z) and p̂(z) are z transforms of input (main
signal) and output (estimated dynamic phasor). The fre-
quency responses of all methods are shown in Figs. 11 and
12 (first row includes the magnitude responses and sec-
ond row includes phase responses). As shown in Figs. 11
and 12, magnitude responses are unsymmetrical. This is
explained by the fact that they belong to complex fil-
ters. It is apparent that when the input signal corresponds
to a constant amplitude and phase signal, all methods
work properly with a gain equals to one p.u in magni-
tude response and group delay equals to zero in phase
response.
However method1 does not work appropriately when

the input frequency deviates from nominal frequency
even in very little amount. According to Fig. 11 (method1),
magnitude response gain decreases sharply before and
after fundamental frequency. This frequency domain
analysis simply shows the drawback of method1 in oscil-
lating condition. In contrast to method1, other methods
show different behaviors around fundamental frequency.
The main feature of an appropriate filter is to provide
a gain by the value of two around positive and a zero-
gain in negative fundamental frequency. This is mainly
because the signal model corresponds to two rotator com-
ponents: first one rotates at positive and second one
rotates at negative fundamental frequency. Therefore,
complete elimination of negative one and complete pass
of positive one is the main duty of the filters (presented
methods).
This feature could be accessible by dynamic phasor con-

cept as shown in Figs. 11 and 12. The flatter interval
around fundamental frequency leads to lower distortion

in phasor estimation. The more persistent flat gain of
method 2 compared to method 1 validates the strength of
dynamic phasor concept in oscillating conditions. These
figures also help to explain the behavior of the estima-
tions when other frequency components are present in the
input signal. Methods 1, 2 and 5 provide zero-gain in non
fundamental component which demonstrates their ability
to remove harmonic in the output.
However methods 3, 4 and 6 do not have this capability.

So these methods have difficulties in harmonic condi-
tions especially when subjected to DC component which
is common in fault time. In addition, a useful result is
attainable based on phase response of output. According
to Fig. 11 (second row), all least square based methods
(methods 1, 2 and 3) show non-zero around fundamen-
tal frequency point which indicates non-zero group delay
when subjected to oscillation.
However Kalman filter based methods (methods 4, 5

and 6) show instantaneous estimation property because
of their constant zero phase around nominal frequency.
The great advantage of these methods is that they can be
truly employed in PMU due to their synchronization in
nanosecond scale.
It is worthy to note that good performances of all meth-

ods except method1, in off nominal frequency are limited
around nominal frequency (small vicinity), but because
frequency never deviates from the nominal value more
than a few mHz in real conditions, the performances of
these methods are acceptable. It is also worth noting that,
noise effect in dynamic phasor concept is higher than
traditional concept which is shown in noise simulation
section. This fact can be explained by increase the flat

Fig. 11 Frequency response (method 1 , 2 , 3)
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Fig. 12 Frequency estimation (Frequency response (method 4 , 5 , 6)

gain length in the interval of fundamental frequency that
makes methods more sensitive to noise.

Error bounds
In order to determine the error bound of phasor estima-
tion in all six methods, test signals with variable envelopes
are used. 150 amplitude oscillation signals were generated
over 10 cycles under the signal model, represented in:

a(t) = 1 + 0.5
i=3∑
i=1

e−t/τ icos(2π .f1t) (36)

where the time constants (τi) were generated by a uniform
random process in the interval of [20, 40] cycles. In a sim-
ilar way, the three frequencies were randomly generated
in the intervals of [1, 3], [3, 5] and [5, 7] Hz. The error is
calculated by:

rms − error =
√∑

(a(n) − â(n)) (37)

where a(n) and â(n) are real and estimated amplitudes
respectively. In statistics, histogram is a graphical rep-
resentation of the data distribution. It is an estimate of
the probability distribution of a continuous variable. His-
togram tool creates disjoint categories (known as bins)
and counts the number of observations that fall into each
of these bins. Thus, by considering N as the total num-
ber of observations, K as the total number of bins, andmk
as the number of observations in kth bin, the histogram

meets
∑k=K

k=1 .In this study, 20 bins and 150 observations
have been considered.
Histogram tool distributes the bins along the x-axis

between the minimum and maximum values of the error.
Thus, by analyzing histogram plot, minimum and maxi-
mum errors of methods are attained and the error with
the most distribution (the most probable) is also obtain-
able. Figure 13 shows the histograms of the errors attained
by six methods. According to this figure, it is observed
that the lowest error is related to method 5 which ranges
between 2 × 10−3 and 8 × 10−3. Method 3 is also in
the second level. The magnitude errors of Kalman based
methods (methods 4, 5 and 6) are reasonable compared
to least square based methods (methods 1, 2 and 3). The
higher errors of least square based methods (methods 1,
2 and 3) correspond to their delays which range between
0.04 and 0.13. It is better to compare all methods with-
out taking account the delay, so the superiority of dynamic
phasor concept is more perceivable.

Harmonic infiltration (power system test case)
In real conditions, power system signals may be polluted
by harmonics or DC component which is necessary to
be examined. In order to analyze oscillated signal along
with harmonic, quite identical signal examined in [18] is
used in this section. The data were taken from a PMU ,
installed in a substation. A three-phase fault is created in
one of power system lines at 0.1 sec. The fault is cleared
at 0.2 sec by opening breakers at the ends of faulted line.
Line removing causes a swing condition with frequency 5
Hz. Measured signal consists of fundamental component
(60 Hz) and fifth harmonic component (300 Hz,1.5 % of
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Fig. 13 RMS error of amplitude estimation

fundamental). This signal was sampled at 32 samples per
cycle.
All six methods are applied to main signal shown in

Fig. 14. Results of estimated amplitude based on six meth-
ods are illustrated in Fig. 15. The ideal amplitude compo-
nents of the phasor are represented in dashed lines and
their estimates are shown in solid ones. The discussion
on this section is very close to frequency response section
and the results are almost similar to those results shown
in Figs. 11 and 12. As mentioned before, in frequency
response section, least square based methods (methods
1, 2 and 3) create one cycle delay in output due to non-
zero flat gain around the fundamental frequency but
Kalman filter based methods estimate immediately. These
delayed and immediate estimates are clearly shown in

Fig. 15. Moreover, this experimental test shows the effect
of harmonic component on presented methods. Based
on frequency response section, methods 3, 4 and 6 pro-
vide non-zero gains in harmonic component. According
to Fig. 15, these methods are not able to remove fifth
harmonic from the output. It is easy to see that under har-
monic condition, input’s harmonics infiltrate to output in
methods 3, 4 and 6. However, other methods are able to
remove harmonics.
By analyzing the derivative of amplitude shown in

Fig. 16, it is possible to distinguish fault from power
swing as explained earlier. This derivative provides ben-
eficial information about power system state. It is obvi-
ous that method 1 does not provide this information
since it has been built on traditional phasor concept

Fig. 14Main signal ([18])
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Fig. 15 Amplitude estimation

(constant amplitude and phase). Abrupt change at 0.1 sec
in estimated derivative obtained by all methods except
method 1, demonstrates occurrence of fault in power sys-
tem. Fault detection process is done by setting appropriate
threshold and calculating index in every sample. First
derivative of phase and second derivatives of amplitude
and phase are also valuable in diagnosis process similar to
first derivative of amplitude.

Noise infiltration
It is useful to analyze the estimation error when noise
level changes. A criterion named transient monitor (TM)

is used in this section [19]. TM is an index to monitor
sudden change of measured signal and is calculated by:
⎧
⎪⎨
⎪⎩

[tn] =
[
Sn − Ŝn

]

TM =
n=r∑

n=r−N1

|tn|
(38)

where Sn is the real sample, measured by PMU and Ŝn
is recomputed sample of Sn obtained by dynamic phasor.
Estimation error tn, is difference of these two quantities.
TM is calculated by estimation error in every sample and
can be used as a quality measure of phasor estimation.

Fig. 16 First derivative of phase
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Fig. 17 Transient monitor versus noise variance

Figure 17 shows the TM as a function of noise variance.
As the noise variance increases, higher errors are obtained
by all methods. So there is an upward trend when noise
level increases. According to Fig. 17, there is a stable trend
for least square based methods (method 1, 2 and 3) before
critical point with variance about 10−2.

After this point, transient monitor increases steeply by
increasing error variance. Generally Kalman based meth-
ods (methods 4, 5 and 6) show lower values compared
to least square based methods according to Fig. 17. It is
also observed that method 6 providesminimum TM index
before critical point. However after critical point (Vari-
ance =10−2) method 1 showsminimumTM index because
the dynamic phasor concept is more sensitive to noise
due to its flat gain around fundamental frequency. This
flat gain allows the noise to be transferred into the output
(estimated dynamic phasor).

It is also interesting to analyze the relation between TM
behavior and sampling number per cycle which is shown
in Fig. 18. Based on the figure, all methods except method
3 generally depict downward trend by increasing the sam-
pling frequency because the estimation accuracy increases
by high sampling rate. The different behavior of method 3
can be explained by increasing its noise sensitivity at high
sampling rate.

Simulation time
All presented methods are examined in computation
time when sampling frequency is increased due to its
importance in practical cases. This index is utilized
to evaluate the capability of methods to be employed
off-line or on-line. So this comparison has been done
and the results are shown in Fig. 19. A 50-cycle window
(computed sample number = 50∗ sample per cycle) is

Fig. 18 Transient monitor versus sampling frequency



Khodaparast and Khederzadeh Protection and Control of Modern Power Systems  (2017) 2:1 Page 17 of 18

Fig. 19 Computation time versus sampling frequency

considered in this section and results are obtained by
Processor:Intel(R) Core(TM)2Duo CPUT9550. Accord-
ing to the figure, by increasing the sample number per
cycle, the calculation times of CPU move up in all meth-
ods. Method 5 (Taylor-Kalman-Fourier) is appropriate
to estimate dynamic phasor under harmonic condition,
but this matter increases the computation time accord-
ing to Fig. 19. It is mainly due to its state space model
which includes all of harmonic. As it is apparent, the best
method in high sampling rate is method 4 and the worst
one is method 5.

Conclusion
Phasor and its derivatives are very useful tools to improve
the simulation programs of power system and its control.
The constant amplitude and phase (traditional defini-
tion) impose serious restriction on monitor and control of
power system, thus dynamic phasor attracted lots of atten-
tions nowadays. Six dynamic estimation methods have
been classified based on least square and Kalman filter;
then they have been explained and compared in differ-
ent test cases. All methods have both advantages and
disadvantages. The defect of least square based meth-
ods is that they create a delay in estimation process but
Kalman filter based methods provide instantaneous esti-
mation. The advantage of all method except 1 is that the
speed (first derivative) and acceleration (second deriva-
tive) of phasor could be calculated. Lack of comprehensive
indices to explain the discrepancy of different method
is motivating to establish a framework in order to com-
pare presented methods. Twelve indices are utilized to
form a complete benchmark in the paper including: TVE
to examine error bound, amplitude-phase step bench-
mark test to analyze dynamic response of the meth-
ods in amplitude and phase step condition, frequency
step benchmark test to analyze dynamic response of the

methods in frequency step condition, frequency response
to demonstrate the delay of the methods, histogram
tool to examine RMS error of amplitude estimation,
signal taken from a PMU to check presented methods
in practical conditions, harmonic and DC offset infiltra-
tion, derivatives of amplitude and phase to detect the
fault occurrence time, transient monitor index, com-
putation time, sampling number and noise infiltration.
Simulation results show that the the dynamic phasor
concept gives advantageous results in slow frequency
oscillation.
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