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Abstract

Introduction: Large-scale integration of wind generation brings great challenges to the secure operation of the
power systems due to the intermittence nature of wind. The fluctuation of the wind generation has a great impact
on the unit commitment. Thus accurate wind power forecasting plays a key role in dealing with the challenges of
power system operation under uncertainties in an economical and technical way.

Methods: In this paper, a combined approach based on Extreme Learning Machine (ELM) and an error correction
model is proposed to predict wind power in the short-term time scale. Firstly an ELM is utilized to forecast the
short-term wind power. Then the ultra-short-term wind power forecasting is acquired based on processing the
short-term forecasting error by persistence method.

Results: For short-term forecasting, the Extreme Learning Machine (ELM) doesn’t perform well. The overall NRMSE
(Normalized Root Mean Square Error) of forecasting results for 66 days is 21.09 %. For the ultra-short term
forecasting after error correction, most of forecasting errors lie in the interval of [−10 MW, 10 MW]. The error
distribution is concentrated and almost unbiased. The overall NRMSE is 5.76 %.

Conclusion: The ultra-short-term wind power forecasting accuracy is further improved by using error correction in
terms of normalized root mean squared error (NRMSE).
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Introduction
Wind power has been undergoing a rapid development in
recent years. The large-scale integration of wind power is
challenging power grids operation and management [1].
Compared with conventional generation, one of the lar-
gest problems of wind power is its dependence on the
volatility of the wind [2]. Unexpected variations of wind
generation may increase operating costs, increasing re-
serves requirements, and posing potential risks to system
reliability. In order to schedule the spinning reserve cap-
acity and manage the grid operation, persistence approach
was commonly used to predict changes of the wind power
production in the ultra-short-term [3, 4].
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Wind power is impacted by wind speed, temperature, hu-
midity, latitude, terrain topography, air pressure, and other
factors [5]. Modeling the behavior of wind is a challenge
due to its stochastic nature. The existing forecasting
methods can be mainly classified as physical approaches,
statistical approaches, as well as a combination of both [6].
The physical models use physical considerations, such as
meteorological (numerical weather predictions), and topo-
logical (orography, roughness, obstacles) information and
technical characteristics of the wind turbines (hub height,
power curve, thrust coefficient) [7]. Statistical models find
the relationships between a set of explanatory variables in-
cluding NWP results and online measured generation data
[7]. The basic statistical approach includes the time-series
analysis and neural networks, such as Box-Jenkins ARMA
(p, q) models, where p represents most recent wind speeds
and q represents most recent forecasting errors [8]. Neural
network (NN) models have been widely applied in a variety
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of business fields including accounting, management infor-
mation systems, marketing, and production management.
Many researchers focus on the improvement of NN, in-
cluding recurrent NN, deep NN and so on [9–14]. Extreme
Learning Machine(ELM) is based on a single-hidden layer
feed-forward neutral network and only needs to calculate
random weight between inputting layer and hidden layer.
The performance of ELM is better than traditional NN in
terms of numerical experiments. Furthermore, the com-
bined models have been widely used to improve wind
power forecasting accuracy. Wind power forecasting
method based on empirical mode decomposition (EMD)
and support vector machine (SVM) was proposed to cope
with the nonlinearity and non-stationarity of wind speed
data. The combined approach can improve the forecasting
accuracy by 5–10 % compared to single statistics [15].
Several wind power forecasting tools have been devel-

oped across the world. A Wind Power Prediction Tool
(WPPT) is developed to predict the wind power on various
time scales, from half an hour to 36 h ahead. This tool is
based on adaptive recursive least square estimation with ex-
ponential forgetting factor [16]. The WPPTcan forecast the
wind power production in relatively large geographical re-
gions. For each individual wind farm, it uses statistical
models to describe the relationship between observed
power production and the weather predictions. Another
tool named as the Prediktor developed at Risø mainly uses
physical relations to transform the predicted wind into pre-
dicted power [17]. The Zephyr tool is the combination of
the Wind Power Prediction Tool (WPPT) and Prediktor
tool and its main goal is to merge Prediktor and WPPT to
obtain synergy between the physical and the statistical ap-
proach [17]. The Sipreolico tool, developed by the Univer-
sity of Carlos III of Madrid, consists of nine adaptive
nonparametric statistical models that are recursively esti-
mated with either the recursive least squares algorithm or a
Kalman filter. The tool is based on Spanish HIRLAM fore-
casts, taking into account hourly SCADA data from 80 %
of all Spanish wind turbines [18]. The EWIND model de-
veloped by TrueWind, Inc. applies a once-and-for-all
parameterization for the local effect by using the output of
the ForeWind NWP model, and it uses either a multiple
screening linear regression model or a Bayesian neural net-
work to find out the systematic errors [19]. The Advanced
Wind Power Prediction tool (AWPT) was developed by
ISET (the institute of “Solare Energieversorgungstechnik”)
and the tool uses weather forecasts coming from Lokalmo-
dell (LM) of the Deutsche Wetterdienst (DWD) and pre-
dicts the wind power with artificial neural networks [20].
Ecole de Mines de Paris (ARMINES) and Rutherford Ap-
pleton Laboratory (RAL) have developed models for short-
term prediction based on fuzzy-neural networks [20].
The individual forecasting method cannot achieve a

high accuracy due to the intrinsic characteristics of wind
speed and wind power. In this paper, a combined statis-
tical approach for wind power forecasting is presented
by using Extreme learning method and error correction.
The ultra-short-term power forecasting is acquired
based on processing the forecasting error of short-term
forecasting results based on the persistence method in
terms of Normalized Root Mean Square Error (RMSE).

Methods
Extreme Learning Machine (ELM)
ELM theory was proposed to predict wind power, which
tends to provide good generation and performance at ex-
tremely fast learning speed in theory and practical applica-
tions. ELM has the following several advantages:

1) The parameters of ELM can be set easily, and ELM
originally can get a good performance only with
fitful references in hidden layers.

2) The computation of ELM is efficient, which does
not need as many iterations as Neural Network
(NN) and as complexity as Support Vector Machine
(SVM) in when solving quadratic optimization.

3) ELM has good generalization performance. And the
experimental results show that the ELM can achieve
good generalization performance in most cases and can
learn faster than feed-forward neural networks [21].

Now the EML has been widely used in several fields
such as face recognition, image classification,wind pre-
diction in short-term scale. Wind power forecasting can
be regarded as an ELM problem, because some factors
such as wind speed, air condition, temperature & hu-
midity, wind turbine arrangement have influence on
wind production. As for how they exactly affect wind
production has not been clearly known [22]. ELM model
can be established by using example data and predict the
curve of power in short-term.
The ELM model is based on a single-hidden layer

feed-forward neural network (SLFN). The advantage of
the ELM algorithm is that it distributes the weights and
thresholds between the inputting layer and the hidden
layer in random and does not need to adjust these ran-
dom parameters during the whole learning process so
that it can complete the training process extremely fast.
Based the above advantage, ELM is chosen as a predictor
to predict day-ahead wind power in the short-term time
scale. The structure of a standard ELM network is
demonstrated in Fig. 1.
The main parameters of ELM are described as follow:

ω ¼
ω11 ω12 ⋯ ω1n

ω21 ω22 ⋯ ω2n

⋮ ⋮ ⋮ ⋮
ωl1 ωl2 ⋯ ωln

2
664

3
775
l�n

ð1Þ



Fig. 1 Architecture of Extreme Learning Machine
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where ‘ω’ is the network weight between the input layer
and the hidden layer, and ‘ωij’ is the weight between the ith

input node of the input layer and the jth hidden node of
the hidden layer. ‘l ’ is the number of input nodes in input
layer. ‘n’ is the number of hidden nodes in output layer.

β ¼
β11 β12 ⋯ β1m
β21 β22 ⋯ β2m
⋮ ⋮ ⋮ ⋮
βl1 βl2 ⋯ βlm

2
664

3
775
l�m

ð2Þ

where the ‘β’ is the network weight between the hidden
layer and the output layer, and ‘βij’ is the weight between
the ith hidden node of the hidden layer and the jth hid-
den node of the output layer. ‘m’ is the number of out-
put nodes in output layer.

b ¼ b1 b2 ⋯ bl½ �−1l�1 ð3Þ

where ‘b’ is the threshold of the hidden layer.
X is supposed to be the input matrix and the history

data X are used to train the ELM network.

X ¼
x11 x12 ⋯ x1p
x21 x22 ⋯ x2p
⋮ ⋮ ⋮
xn1 xn2 ⋯ xnp

2
664

3
775
n�p

ð4Þ

The real outputting matrix of the ELM network can
be defined as below:

T ¼ t1 t2 ⋯ tp½ �m�p ð5Þ

And based on the equations (1)–(4), the real output-
ting matrix of the ELM can be defined as follow:
tj ¼
t1j
t2j
⋮
tmj

2
664

3
775
m�1

¼

Xl

i¼1

βi1g ωiXj þ bi
� �

Xl

i¼1

βi2g ωiXj þ bi
� �
⋮Xl

i¼1

βimg ωiXj þ bi
� �

2
66666666664

3
77777777775
m�1

; j ¼ 1; 2; 3; ::::::; pð Þ

ð6Þ
where

ωi ¼ ωi1 ωi2 ⋯ ωin½ � ð7Þ

Xj ¼ x1j x2j ⋯ xnj
� �T ð8Þ

g(x) is an activation function in the hidden layer of the
ELM.
The following equations can be acquired by Eqs.

(5)–(8):

β̂ ¼ H−1TT ð9Þ
where

H ω1;ω2;⋯;ωl; b1; b2;⋯; bl;X1;X2;⋯Xp
� �

¼
g ω1⋅X1 þ b1ð Þ g ω2⋅X1 þ b2ð Þ ⋯ g ωl⋅X1 þ blð Þ
g ω1⋅X2 þ b1ð Þ g ω2⋅X2 þ b2ð Þ ⋯ g ωl⋅X2 þ blð Þ

⋮ ⋮ ⋮ ⋮
g ω1⋅Xp þ b1
� �

g ω2⋅Xp þ b2
� �

⋯ g ωl⋅Xp þ bl
� �

2
664

3
775

ð10Þ

And H−1 is pseudo-inverse matrix of H. The ELM can
be solved in the following algorithm:
Algorithm ELM: Given a training set {(X, T)| X∈Rn×p,

T∈Rm×p }, activation function g(x), testing set X̂ and hid-
den node number p.
Step one: Randomly assign input weight ω and bias b.
Step two: Calculate the hidden layer output matrix H.
Step three: Calculate the output weight matrix β.
Step four: Input matrix X̂ and get the output testing
results by the transform (9).

Error correction
Based on the ELM forecasting results, an error cor-
rection model is applied to obtain the ultra-short-
term forecasting. The persistence method is used as a
benchmark model to examine whether an advanced
model can perform well. In this model the future



Fig. 3 Scatter plot of wind power versus wind speed

Fig. 2 Flow chart of wind power forecasting procedure

Li et al. Protection and Control of Modern Power Systems  (2016) 1:1 Page 4 of 8
wind power will be the same as occurred in the
present time step as given by

P̂ tþkjt ¼ Pt ð11Þ

where P̂ tþkjt is the forecast at time t for the look-ahead
time k and Pt is the measurement at time t.
In comparison with wind power, the temporal char-

acteristics of wind power forecasting errors are less
mentioned in literatures. However, it is found that the
forecasting error level at next time point tends to
keep the same as present time point by analyzing the
states transition probability among different error
levels. Thus, the error for next time point can be
written as

êtþ1jt ¼ et ð12Þ

where et is the deviation between forecasted and mea-
sured wind power.

et ¼ pt−p̂tjt−1 ð13Þ

The computed error is then added to the forecasted
wind power for next time point to get the corrected
forecasting.

~ptþ1jt ¼ p̂tþ1jt þ êtþ1jt ¼ p̂tþ1jt þ et ð14Þ

The flow chart of wind power forecasting procedure is
shown in Fig. 2.

Data description and pre-processing
The proposed model is verified using the measured
data in a wind farm located in the northern China
for a period of about 15 months from 24 February
2014 to 31 May 2015. The 41072 non-consecutive
data points before 02 March 2015 are used for train-
ing the ELM models whereas the consecutive time
series of 66 days from 02 March 2015 to 31 May
2015 is used to verify the models performances. The
total installed capacity of the wind farm is 50 MW.
The measured data are used for both training the
ELM model and verifying the model. The time scale
of collecting data is 15 min. The scatter of wind
power versus wind speed of the wind farm is plotted
in Fig. 3.
The characteristic of wind speed is shown as the fre-

quency histogram in Fig. 4. It can be well fitted using a
Webull distribution.
The mechanical power extracted from wind by a wind

turbine is a function of the wind speed, blade pitch
angle, and shaft speed. The algebraic equation shown
below characterizes the power extracted [23].
Pm ¼ 1
2
ρv3wπr

2Cp λð Þ ð15Þ

where Pm is the power extracted from the wind, in watts;
ρ the air density, in kg/m3; r the radius swept by the
rotor blades, in m; vw the wind speed, in m/s; Cp the
performance coefficient; λ the tip ratio, i.e., the ratio of
turbine blade speed to that of the wind

λ ¼ ωtr
vw

ð16Þ

where ω is mechanical rotor speed in radians/s.
From Eq. (15) it is noted that the air density, the

wind speed are not quantities that can be con-
trolled. That means a wind turbine will yield



Fig. 6 Short-term forecasting results of ELM and their corresponding
measurements

Fig. 4 Characteristics of wind speed data
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different wind power output even at the same wind
speed. A wind farm comprises tens or even hun-
dreds of turbines, which making the relationship be-
tween the farm output and speed much weaker
than that of a wind turbine. Even so, the wind
power output depends on wind speed obviously, as
shown in Fig. 3. The object of modeling an ELM is
to characterize such kind of implicit dependence.
However some anomalous data exists in the original
datasets, which will have negative influence on the
wind power forecasting accuracy. Two kinds of
anomalies are supposed to be eliminated before
building an ELM model.

1) When the wind speed is very large (e.g. larger than
5 m/s) but the corresponding wind power is close to
zero.
Fig. 5 NRMSE for day-ahead forecasting by ELM models with different
hidden nodes number
2) When the wind speed is close to zero but the wind
farm output is very large (e.g. larger than half of the
rated capacity of the wind farm).

Moreover, wind speed and power data are normalized
by using the following formula

xnormal ¼ x−max xð Þ
max xð Þ−min xð Þ ð17Þ

where x is the original data, xnormal is the normalized
data, max(x) is the maximum of original datasets, and
min(x) is the minimum of original datasets.
Fig. 7 Ultra-short-term forecasting results and their corresponding
measurements after error correction



Fig. 8 Short-term forecasting error by using ELM
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Results and discussion
Model parameterization
The input of the ELM model is wind speed and the out-
put is wind power, hence the number of nodes for both
of input layer and output layer is set as one. As for the
hidden layer, different values of the hidden nodes num-
ber are tested. The criterion for quantifying the perform-
ance of wind power forecasting is normalized root mean
squared error (NRMSE).

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

pi−p̂ið Þ2
s

Cap⋅
ffiffiffi
n

p ð18Þ

NRMSE for day-ahead (24 h-ahead) forecasting by
ELM models with different hidden nodes number are
shown in Fig. 5.
Fig. 9 Short-term forecasting error distribution by using ELM
From Fig. 5 it can be seen that, the value of
NRMSE decreases dramatically when the hidden
nodes number ranges from 1 to 3. With 3 hidden
nodes, the ELM has the best performance of 21.09 %
in terms of NRMSE. Adding more nodes will not lead
to better results. Thus, the nodes number is finally
set to be 3.

Results and analysis
The day-ahead forecasting results in short-term scale be-
fore error correction by using ELM and their corre-
sponding measurements dated from 22 April 2015 to 23
April 2015 are shown in Fig. 6. The 15 min-ahead fore-
casting results in ultra-short-term scale and their corre-
sponding measurements after error correction are
shown in Fig. 7.
In Fig. 6, the ELM doesn’t perform well due to the

strong stochastic feature of wind and the weak relation-
ship between wind farm output and wind speed. Particu-
larly, the ramp events are not accurately forecasted. It
can be seen that large errors occur around peak value of
measurement curve, where wind power changes drastic-
ally in a short time. The overall NRMSE of forecasting
results for 66 days is 21.09 %.
The short-term forecasting errors are shown in

Fig. 8 and their distribution is shown in Fig. 9. Ultra-
short-term forecasting error after error correction is
depicted in Fig. 10. As can be seen from Fig. 10, the
forecasting error fluctuates drastically with large amp-
litude. The maximal error reaches up to 50 % of in-
stalled capacity of the wind farm. It is noted that
from Fig. 8, though most of the errors lie in the
interval of [−20 MW, 20 MW], there is still a portion
of large errors that cannot be neglected. It is indi-
cated that the spread range of errors distribution is



Fig. 12 Computation time for training and testing ELM models with
varying hidden nodes number

Fig. 10 Ultra-short-term forecasting error after error correction
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large and positively biased, which reveals the poor
forecasting performance.
While in Fig. 7 the ultra-short-term forecasting

curve follows closely with the measurement curve. In
addition, Figs. 10 and 11 show that most of fore-
casting errors lie in the interval of [−10 MW,
10 MW]. The distribution is concentrated and almost
unbiased. The overall NRMSE is 5.76 %, indicating a
good result of the correction method for ultra-short-
term forecasting.
In terms of the computational efficiency, time con-

sumed for training and testing ELM models with varying
hidden nodes number is depicted in Fig. 12.
It is noted that the computation time is approxi-

mately proportional to the hidden nodes number.
When the hidden nodes number is 3, the computa-
tion time is 1.5377 s, including the time for training
model with 41072 data points and forecasting 6336
data points. That indicates a high computational
Fig. 11 Ultra-short-term forecasting error distribution after
error correction
efficiency for wind power forecasting, which can sat-
isfy the practical needs.

Conclusions
In this paper, an extreme learning machine model with
error correction with higher efficiency is developed to
predict power output of a wind farm in a ultra-short-
term time scale. Case study shows that the ultra-short-
term wind forecasting accuracy is further improved in
terms of normalized root mean squared error (NRMSE).
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