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Abstract 

With the deregulation of electricity market in distribution systems, renewable distributed generations (RDG) are being 
invested in by third-party social capital, such as distributed generations operators (DGOs) and load aggregators (LAs). 
However, their arbitrary RDG investment and electricity trading behavior can bring great challenges to distribution 
system planning. In this paper, to reduce distribution system investment, a distribution system expansion planning 
model based on a bi-level Stackelberg game is proposed for the distribution system operator (DSO) to guide this 
social capital to make suitable RDG investment. In the proposed model, DSO is the leader, while DGOs and LAs are 
the followers. In the upper level, the DSO determines the expansion planning scheme including investments in sub-
stations and lines, and optimizes the variables provided for followers, such as RDG locations and contract prices. 
In the lower level, DGOs determine the RDG capacity and electricity trading strategy based on the RDG locations 
and contract prices, while LAs determine the RDG capacity, demand response and electricity trading strategy based 
on contract prices. The capacity information of the DRG is sent to the DSO for decision-making on expansion plan-
ning. To reduce the cost and risk of multiple agents, two long-term renewable energy contracts are introduced 
for the electricity trading. Conditional value-at-risk method is used to quantify the RDG investment risk of DGOs 
and LAs with different risk preferences. The effectiveness of the proposed model and method is verified by studies 
using the Portugal 54-bus system.
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1  Introduction
The electricity market in China has been deregulated 
gradually over recent years. Consequently, third-party 
social capital is being granted permits to invest in renew-
able distributed generation (RDG). These organisations 
with capital to invest can be divided into distributed gen-
eration operators (DGOs) and load aggregators (LAs), 
where DGOs sell all renewable energy while LAs use 

part of the renewable energy for their own needs and 
sell the surplus. Accordingly, distribution system opera-
tors (DSOs), DGOs, and LAs co-exist in the distribution 
system. The arbitrary RDG investment and electricity 
trading behavior of DGOs and LAs pose great challenges 
to the security and reliability of the distribution system. 
Consequently, it is important for a DSO to integrate 
those trading aspects in the planning-level issues to guar-
antee both unimpeded renewable electricity trading and 
physical security.

In the numerous traditional distribution system expan-
sion planning (DSEP) studies, the co-optimization 
method is commonly employed to jointly optimize the 
investments in substations, lines and various kinds of 
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flexible resources, (i.e., controllable load, RDG and energy 
storage systems) [1–3]. The traditional co-optimization 
method generally considers flexible resources that belong 
to the DSO, while the objective of the co-optimization 
method in the DSEP problem is usually to maximize all 
social welfare. However, in the deregulated market, these 
flexible resources belong to the third-party social capi-
tals, and consequently, pursuing the maximization of the 
whole social welfare is contrary to the practical electric-
ity market operation. In recent years, the DSEP problem 
in the deregulated market has been researched in several 
studies [4–9]. Reference [4] proposes a DSEP model con-
sidering the interaction among DSOs, DGOs, and end 
users. This model is analyzed using the Stackelberg game 
and robust optimization. In [5], a dynamic DSEP model 
is established with interactive trading among distribu-
tion companies, DGOs, and independent distribution 
network operators, and it is analyzed based on the Bend-
ers decomposition framework. Reference [6] develops a 
DSEP model with various market agents, analyzed using 
a tetra-level decomposition algorithm. In [7], a distribu-
tion network planning method is proposed based on 
the multilateral incomplete information evolutionary 
game, where DGOs, electricity retailers, and DSOs are 
all included. In [8], a risk-based stochastic optimization 
framework is proposed to model DSO participation in 
DEP problems in the presence of an electricity wholesale 
multimarket. Although these studies focus on modeling 
the impact of RDG investment and electricity trading 
behavior on system expansion, multi-agent cooperation 
is not involved. Reference [9] proposes an incentive-
based DSEP model with the interaction between a DSO 
and DGOs, where the DSO provides incentive prices 
to guide RDG investment. Profits of both parties are 
improved because of the suitable RDG investment. How-
ever, these studies ignore some practical factors such as 
the RDG investment on the demand side (i.e., some LAs) 
and the possibility of trading between DGOs and end 
users, and it may yield idealistic results. At the distribu-
tion level, LAs possess large amount of small-scale RDG 
assets, and differ from DGOs in investment and trad-
ing behavior [10–12]. Moreover, trading between DGOs 
and end users may affect the electricity consumption of 
users. Therefore, the presence of prosumers and trading 
between DGOs and end users are important factors for 
long-term distribution system expansion planning.

The DSEP problem faced by a DSO is a hierarchical 
interactive problem with imperfect information exchange 
[13]. This can be simulated by the Stackelberg game. This 
game has been applied in various fields such as conges-
tion management [14], demand-side management [15], 
and microgrid transactions [16], and has been exten-
sively used to effectively deal with the ‘one-leader and 

multi-follower’ problem. This paper proposes a bi-level 
Stackelberg framework to handle the DSEP problem 
under multi-agent interactive trading. In the framework, 
the DSO is the leader, while DGOs and LAs are the fol-
lowers. It is also to be noted that the decisions of the 
DSO are subject to the reactions of DGOs and LAs, and 
vice versa. Thus, a DSO may face two main concerns in 
the DSEP problem: (1) how to precisely model the invest-
ment behavior of DGOs under uncertainty; and (2) what 
price strategy should a DSO adopt to properly and posi-
tively guide the RDG investment decisions. Reference 
[17] summarizes that the anticipated market returns of 
RDG investments is not only based on multiple uncer-
tainty sources, namely, RDG output uncertainty and 
short-term market price, but also heavily influenced by 
investor opinion. That is to say, aside from the behavior 
difference between DGOs and LAs, these agents may 
have different attitudes towards risk under uncertainty 
[18]. It is also demonstrated in [19] that assuming risk 
neutrality could result in poor and unrealistic solutions 
in certain conditions. The above-mentioned studies [4–
9] adopt various uncertainty methods to deal with the 
DSEP problem under uncertainty from the viewpoint 
of the DSO. However, most studies neglect the risk of 
RDG investment projects under uncertainty. This neglect 
adversely affects the accuracy of DGOs’ investment 
model and ultimately results in decreased effectiveness of 
the expansion option of the DSO.

In this paper, the conditional value-at-risk (CVaR) 
method is introduced to model the RDG investment 
uncertainties. CVaR can help quantify the potential 
losses that may occur in extreme scenarios. These are 
often difficult to estimate but may have a significant 
impact on investment decisions. In addition, the gener-
ally used feed-in tariff may lead to the unwillingness of 
some potential RDG investors to invest in RDG assets 
due to the gradually decreased subsidy. Therefore, it is 
important for a DSO to design suitable long-term con-
tracts for them to ensure basic investment profit. As a 
consequence, two long-term contracts called power pur-
chase agreement (PPA) and contract of difference (CFD) 
applicable for renewable energy trading are introduced 
to enable DGOs and LAs to realize more steady income 
than participating in the short-term electricity market. 
Consequently, a DSO can affect their investment deci-
sions in a financial fashion and ultimately defer system 
expansion.

Based on the aforementioned discussion, a novel bi-
level Stackelberg game-based distribution system expan-
sion planning model considering long-term renewable 
energy contracts is proposed here. The leader and multi-
follower pursue their maximum profit and are allowed 
to exchange imperfect information with each other. As 
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the leader, the DSO determines the long-term contract 
pricing strategy, RDG location, and substation and line 
investment option. As the followers, DGOs determine 
the installed RDG capacity and renewable energy trading 
scheme, while LAs determine the PV capacity and loca-
tion investment, and electricity trading solution. Then, 
two long-term renewable energy contracts with different 
performance of risk aversion and complexity are intro-
duced. These enable the DSO to move towards an opti-
mal substation and line investment option by providing 
flexible price signals to guide the RDG decisions. The 
main contributions of the paper are as follows:

(1)	 Within the context featuring different kinds of DG 
investors and electricity trading between DGOs 
and LAs, a bi-level one-leader and multi-follower 
Stackelberg theoretical framework is proposed for 
the DSO to facilitate ever-expanding RDG integra-
tion in the DSEP problem.

(2)	 The CVaR method is applied to qualify the RDG 
investment risk with long-term contracts in the 
RDG investment decision of DGOs and LAs. The 
different attitudes of RDG investors towards risk 
are taken into special consideration instead of 
assuming the particular instance of risk neutrality.

(3)	 Two contracts applicable for long-term renew-
able energy trading are introduced. These enable 
the DSO to provide flexible price signals to guide 
the privately-motivated DG investment decisions 
towards the least network investment cost solution.

The rest of the paper is organized as follows: Sect.  2 
explains the framework in the multi-agent interactive 
trading context, and the planning model for each agent 
is established in Sect. 3, which includes the DSEP model, 
and the DGOs’ investment model, LAs’ investment 
model and the trading models between DGOs and LAs. 
A specific solution structure is designed to analyze the 
proposed model in Sect. 4, while in Sect. 5 the effective-
ness of the proposed model is verified by a simulation of 
the Portugal 54-node system. Conclusions are drawn in 
Sect. 6.

2 � Problem statement
2.1 � Multiple participants in the deregulated market
In recent years, some policies, such as feed-in tariff, in 
many countries grant permits to the third-party social 
capitals (i.e., DGOs) to invest in RDG in distribution 
systems. As a result, the scale of RDG units installed 
by DGOs is growing rapidly. Moreover, many tradi-
tional consumers gradually transform to prosumers by 
setting up rooftop photovoltaics. However, individual 

consumers have resources of limited flexibility, and 
this hampers their ability to meet flexible energy 
demand. To overcome the challenge, neighboring 
prosumers and consumers can form a virtual alliance 
called an LA, which integrates flexible resources, such 
as renewable energy and controllable load facilities, to 
better meet the flexibility requirements and improve 
overall energy efficiency. In each LA, prosumers pri-
oritize the provision of renewable energy to alliance 
members at an affordable price, while any surplus 
renewable energy is exchanged with the DSO through 
the LA agent. By forming the virtual alliance, partici-
pants can share resources and collaborate to address 
challenges arising from changes in the energy market 
and the increasing availability of dispatchable energy 
resources. From a system perspective, each LA is 
considered as an individual entity with bi-directional 
power interaction with the DSO. This paper regards 
Residential LA (RLA), Commercial LA (CLA), and 
Industrial LA (ILA) as separate entities. Accordingly, 
the DSO, LAs (including prosumers and pure consum-
ers), and DGOs are taken into consideration in the 
deregulated market as shown in Fig.  1. As seen, the 
DSO is responsible for operating the distribution sys-
tem while RDG units are installed by both DGOs and 
LAs.

In addition, the risk preference issue is specially 
incorporated to precisely model the RDG investment 
decisions. Residential LAs are used as an example to 
model the similar risk preference since the number of 
residential consumers is usually larger than those of 
commercial and industrial consumers. RLAs and DGOs 
are categorized into three risk profiles: risk-averse, risk-
neutral, and risk-seeking. Additionally, it is noteworthy 
that apart from purchasing electricity from the DSO, 
LAs can trade with DGOs to reduce the electricity con-
sumption costs.

Fig. 1  The participants in the deregulated market



Page 4 of 15Gao et al. Protection and Control of Modern Power Systems            (2023) 8:62 

2.2 � Long‑term renewable energy contracts
Risk aversion is a primary focus for many investors [17], 
while long-term contracts can avoid the price uncertain-
ties for the investors in renewable energy investments [20]. 
In this paper, two long-term contracts are introduced, as 
shown in Fig. 2, to mitigate the investment risks for DGOs 
and LAs, and prompt the collaboration of the DSO, DGOs 
and LAs. The DSO can guide DGOs and LAs to invest in 
RDG reasonably by providing suitable RDG locations and 
contract prices. Therefore, substation and line upgrading of 
DSO can be deferred. Those two contracts are different in 
terms of the risk aversion and the implementation process.

(1) Power Purchase Agreement (PPA): A PPA generally 
exists in the early stages of the electricity market. This long-
term contract is based on the installed capacity of RDG, 
which means that sellers sell all the electricity production 
to buyers at a fixed price. The short-term operation risk 
arising from RDG uncertainty the responsibility of buyers. 
Thus, the buyers are required to have high-risk tolerance 
and large renewable energy absorption capacity if they sign 
PPA contracts. PPA contracts offer simplicity and conveni-
ence in execution but lack flexibility, and are suitable for 
the sellers who are very confused about their future trading 
rules when there is uncertainty. In this study, a PPA is con-
sidered in the trading process when LAs sell electricity to 
the DSO. The anticipated benefit and risk of each LA sign-
ing a PPA are given as:

Equation  (1) denotes that as the long-term price of a 
PPA is fixed, the benefit fluctuation of each LA signing 

(1)
f (x, ξs)=

T
∑

t=1

[f loads,t (PDG
s,t − Psell

s,t )+ f PPAPsell
s,t ]

where P
buy
s,t − Psell

s,t = Pload
s,t − PDG

s,t

(2a)
F(x,β) = β +

1

1− α

S

s=1

π(s)[f (x, ξs)− β]+

where [t]+ = max {0, t}

(2b)CVaR = min F(x,β)

a PPA is associated with the actual active power output 
of the RDG, the actual active load, and the actual price of 
power charged to end users. Equation (2) represents the 
corresponding CVaR model calculated in discrete multi-
scenario simulation [21].

(2) Contract for Difference (CFD): As the electricity 
market develops, the long-term CFD contract becomes 
more prevalent. This long-term contract is based on the 
electricity generation of an RDG during a specific time 
period, which means that sellers primarily sell renewable 
energy in long-term trading while the surplus electricity 
is sold in the short-term market. CFD is a highly flex-
ibly financial contract because it does not compel sellers 
to meet the exact contracted electricity amount. Mean-
while, the buyers face lower risks in CFD than in a PPA 
because they are not responsible for the surplus electric-
ity. Although CFD performs better than PPA in terms of 
risk, it is very complex, because the seller and buyer need 
to collaborate to make the hourly electricity curve. The 
complexity makes CFD more applicable for DGOs to sell 
renewable energy, while LAs may find it challenging to 
create the hourly electricity curve considering their own 
electricity needs.. In this study, CFD is considered in the 
trading process. The expected revenue and risk of each 
DGO signing a CFD are:

Equation  (3) denotes that as the long-term price and 
the electricity of a CFD in the first term are fixed, the 
revenue fluctuation of sellers signing a CFD is associated 
with the actual surplus electricity and the wholesale mar-
ket price. Analogously, Eq. (4) represents the correspond-
ing CVaR function.

2.3 � Bi‑level stackelberg framework
A bi-level Stackelberg theoretical framework is proposed 
to deal with the DSEP problem, where the DSO is the 
leader, and DGOs and LAs are the followers when con-
sidering the interactive trading among all three. Each 
agent is regarded as an individual, making investment 
and trading decisions to maximize their profits. The 
interaction among these three agents is depicted in Fig. 3.

(3)

f (x, ξs)=f1(x)+ f2(x, ξs)

=

T
∑

t=1

f CFDPCFD
t +

T
∑

t=1

fWS
s,t

(

PDG
s,t − PCFD

t

)

(4a)
F(x,β) = β +

1

1− α

S
∑

s=1

π(s)[f2(x, ξs)− β]+

where [t]+ = max {0, t}

(4b)CVaR = min F(x,β)

Fig. 2  Form of signing power purchase agreement and signing 
contract for difference
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From the perspective of the leader, the target of the 
DSO is to obtain the optimal substation and line invest-
ment option and long-term renewable energy pricing 
strategy. The diagram reveals that the DSO can simul-
taneously provide the long-term contract prices and 
the network topology for DGOs and LAs. Moreover, it 
is noteworthy that the DSO can also provide the RDG 
installation locations for DGOs.

As followers, each DGO aims to obtain the optimal 
installed RDG capacity according to the CFD prices and 
RDG location signals from the DSO. Analogously, the 
target of each LA is to obtain the optimal installed PV 
capacity and location option, and demand-side flexible 
load scheduling scheme according to the PPA price sig-
nal from the DSO. After investing in RDG, each DGO 
considers the possibility of electricity trading with the 
LA based on the network topology, and then provides 
CFD prices for LAs. Each LA then makes the electric-
ity trading strategy and the flexible loads re-scheduling 
scheme according to the price signals from DGOs.

After the followers have made investment and trading 
decisions, they provide the electricity trading schemes 
as feedback to the DSO. Based on the feedback, the 
DSO can regulate the substation and line investment 
decisions, update and publish the signals including 
renewable energy prices, network topology and RDG 
locations to DGOs and LAs.

In summary, the bi-level Stackelberg framework 
mainly contains four parts: the distribution system 
investment and contract price decision of the DSO, 
the RDG investment of DGOs, the PV investment 

and demand side management of LAs, and the trading 
between DGOs and LAs. The processes of the bi-level 
game interaction are modeled in Sect. 3.

3 � Mathematical formulation
3.1 � DSEP model of the leader
In the DSEP model, the DSO aims at obtaining an opti-
mal investment decision (substation and line), multiple 
contract price and RDG connected location (bus). The 
optimal decisions are derived from the following model:

The objective of (5) maximizes the profit of the DSO. In 
(5), the first term represents the profit of the DSO trad-
ing with LAs, the second term represents the cost to the 
DSO of purchasing electricity from DGOs, the third term 
represents the network usage fee charged by the DSO 
when DGOs trade with LAs, the fourth term represents 
the power loss cost, the fifth term represents the cost of 
the DSO purchasing electricity from the external grid, 
and the last term denotes the cost of the existing substa-
tion upgrading, new substation installation, existing line 
upgrading and new line installation. The mathematical 
formulations for each of the costs in (5) are shown in 
(6a)–(6g) as:

(5)
max PS = PSLA − CSDGO + PSnet − CSloss − CSSub − CSinv

(6a)

PSLA =

S
∑

s=1

π(s)

T
∑

t=1

∑

j∈�LA

(

f loads,t,j P
buy
s,t,j − f PPAPsell

s,t,j

)

(6b)

CSDGO =

S
∑

s=1

π(s)

T
∑

t=1

∑

i∈�DG

fWS
s,t (PDG

s,t,i − zDGi PDG,CFD
t )

+

T
∑

t=1

∑

i∈�DG

∑

j∈�LA

(1− �
DGO,LA
i,j )f DG,CFDzDGi PDG,CFD

t

(6c)

PSnet =

T
∑

t=1

∑

i∈�DG

∑

j∈�LA

�
DGO,LA
i,j f netlDGO,LA

i,j zDGi PDG,CFD
t

(6d)δ� =
r(1+ r)LT

(1+ r)LT − 1
,� ∈

{

sub,line
}

(6e)

CSinv = δsub
∑

i∈�US

∑

a∈A

cUSa xUSi,a + δsub
∑

i∈�NS

∑

a∈A

cNS
a xNS

i,a

+δline
∑

ij∈�UL

∑

b∈B

cULb xULij,bl
UL
ij + δline

∑

ij∈�NL

∑

b∈B

cNL
b xNL

ij,bl
NL
ij

Fig. 3  The flow of power and information between the multiple 
agents
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which are subject to:

(6f )CSloss=

S
∑

s=1

π(s)

T
∑

t=1

∑

ij∈�

clossI2s,t,ijrij

(6g)CSsub =

S
∑

s=1

π(s)

T
∑

t=1

∑

i∈�sub

fWS
s,t Psub

s,t,i

(7a)f PPA,min ≤ f PPA ≤ f PPA,max

(7b)
f CFD,min ≤ f DG,CFD ≤ f CFD,max, DG ∈ {PV,WTG}

(8a)
∑

a∈A

xsubi,a ≤ 1, ∀i ∈ �sub,sub ∈ {US,NS}

(8b)
∑

b∈B

xlineij,b ≤ 1, ∀ij ∈ �line, line ∈ {UL,NL}

(9)

NEL+
∑

ij∈�Line

∑

b∈B

zNL
ij,b = NNodes − NES −

∑

i∈�Sub

∑

a∈A

zNS
i,a

(10a)P
inj
s,t,j =

∑

k∈δ(j)

Ps,t,jk −
∑

i∈π(j)

(

Ps,t,ij − I2s,t,ijrij

)

(10b)

Q
inj
s,t,j =

∑

k∈δ(j)

Qs,t,jk −
∑

i∈π(j)

(

Qs,t,ij − I2s,t,ijxij

)

+ bjṼs,t,j

(10c)

V 2
s,t,j = V 2

s,t,i − 2
(

Ps,t,ijrij + Qs,t,ijxij
)

+ I2s,t,ij

(

r2ij + x2ij

)

,

∀s ∈ S, ∀t ∈ T , ∀ij ∈ E

(10d)I2s,t,ij =
P2
s,t,ij + Q2

s,t,ij

V 2
s,t,i

,∀s ∈ S, ∀t ∈ T , ∀ij ∈ E

(11a)S2s,t,i ≤

(

Sinii +
∑

a∈A

SUS,max
i,a zUSi,a

)2

(11b)S2s,t,i ≤

(

∑

a∈A

SNS,max
i,a zNS

i,a

)2

(11c)S2s,t,i=P2
s,t,i+Q2

s,t,i,∀s ∈ S, ∀t ∈ T , ∀i ∈ �sub

Equations (7a) and (7b) define the multiple contract price 
constraints, while (8a) and (8b) define the substation and 
line investment constraints. Equation  (9) defines the sys-
tem radial topology constraint, and (10a)–(10d) define the 
typical branch flow model (BFM) in a distribution system. 
Equations  (11a)–(11c) define the substation capacity con-
straints, Eqs.  (12a)-(12b) define the branch current con-
straints considering the line investments, Eq.  (13) defines 
the voltage constraint, and (14a)–(14c) define the con-
straints of DG location.

3.2 � The followers decision model
3.2.1 � RDG investment model of DGOs
From the perspective of DGOs, their decision variables in 
this part are the installed RDG capacity (including PV and 
WTG) according to the CFD contract price signals from 
the DSO. The investment decision for the optimal RDG 
capacity is derived from the following model:

The objective function (15) maximizes the profit of each 
DGO. It is noteworthy that the objectives and constraints 
are the same, but the risk preference coefficient ηDGO may 
be different for different DGOs. The mathematical formu-
lations for the objective functions are shown in (16a)–(16c), 
as:

(12a)
I2s,t,ij ≤

(

I iniij

)2
(1− xULij,b)+

(

IUL,max
ij,b

)2
xULij,b,

∀s ∈ S, ∀t ∈ T , ∀ij ∈ �UL

(12b)
I2s,t,ij ≤

(

INL,max
ij,b

)2
xNL
ij,b ,∀s ∈ S, ∀t ∈ T , ∀ij ∈ �NL

(13)Vmin
j ≤ Vs,t,j ≤ Vmax

j ,∀s ∈ S, ∀t ∈ T , ∀j ∈ �

(14a)
∑

j∈�DG

zDGj = xDG

(14b)0 ≤ zDGj ≤ NDG,max
j , ∀j ∈ �DG

(14c)PDG
s,t,j = zDGj P

DG,pre
s,t ,∀s ∈ S, ∀t ∈ T , ∀j ∈ �DG

(15)max PG = −CGinv + PGoper − ηDGOCGCVaR

(16a)CGinv=
r(1+ r)LT

(1+ r)LT − 1
cDGxDG
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which are subject to:

The objective function (16a) represents the cost of RDG 
investments, while in (16b), the first term represents the 
certain profit with the price and electricity of CFD fixed, 
and the second term represents the uncertain profit under 
uncertainties of RDG output and wholesale market price. 
Equation  (16c) represents the corresponding CVaR func-
tion, Eq. (17) defines the budget limitation for any invest-
ment, and (18) defines the constraint of the RDG output.

3.2.2 � PV investment and DSM model of LA
From the perspective of LAs, their decision variables in this 
part are the prosumers’ PV capacity and location according 
to the PPA price signals from the DSO, and the demand-
side flexible demand scheduling (mainly transferrable 
load). The optimal PV investment and transferrable load 
scheduling scheme are derived from the following model:

The objective function (19) minimizes the cost of each 
LA, including a risk-neutral CLA, a risk-neutral ILA, and 
multiple RLAs with different risk preferences ηLA . The 
mathematical formulations for the components of the 
objective function are shown in (20a)-(20d), as:

(16b)

PGoper = f1(x)+

S
∑

s=1

π(s)f2(x, ξs)

=

T
∑

t=1

f DG,CFDxDGPDG,CFD
t +

S
∑

s=1

π(s)

T
∑

t=1

fWS
s,t (PDG

s,t − xDGPDG,CFD
t )

(16c)
CGCVaR=βDGO+

1

1− αDGO

∑

s

π(s)[f2(x, ξs)

−βDGO]+

(17)CGinv ≤ CGinv,max

(18)0 ≤ PDG
s,t ≤ xDGP

DG,pre
s,t , ∀s ∈ S, ∀t ∈ T

(19)minCL = CLinv + CLoper + ηLACLCVaR

(20a)CLinv=
r(1+ r)LT

(1+ r)LT − 1

∑

j∈�LA

cPVxPV,PSMj

(20b)
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S
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T
∑

t=1

∑
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(

f loads,t,j P
buy
s,t,j − f PPAPsell

s,t,j

)

which are subject to:

The objective function (20a) represents the PV invest-
ment cost of prosumers in each LA, and (20b) represents 
the operational cost of each LA. Equation (20c) represents 
the anticipated benefit of installed PV units from self-suffi-
ciency and electricity sale from multiple uncertain sources, 
namely, PV output uncertainty, active load and the price 
of electricity purchased from the DSO, whereas (20d) rep-
resents the corresponding CVaR function. Equation  (21) 
defines the budget limitation for any investment, Eq. (22) 
defines the capacity limitation of the PV installation at 
each node, and (22) defines the power balance constraint. 
Equations (24a)-(24c) define the constraints that only one 
state (e.g., electricity purchasing or selling) can be permit-
ted at the same time. Equation (25) defines the PV output 
constraint, and (26a)–(26b) define the constraints of trans-
ferrable load based on the principle that the total electric-
ity consumption during 24 h remains unchanged.

(20c)
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T
∑

t=1

∑
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∑
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Page 8 of 15Gao et al. Protection and Control of Modern Power Systems            (2023) 8:62 

3.2.3 � DGOs and LAs interactive trading model
The premise of electricity trading between each DGO and 
LA is that both participants can thereby obtain higher prof-
its than by trading with the DSO. From the perspective of 
DGOs, the decision variables are the CFD contract pricing 
strategies and trading decisions, whereas from the perspec-
tive of LAs, the decision variables are the trading decisions 
based on the price signals from DGOs. Their optimal elec-
tricity trading decisions are derived from the following 
model:

The objective function (27a) maximizes the profit of 
each DGO considering the network usage cost. The net-
work usage fee increases with the increasing distance and 
electricity exchange. In (27a), the first term is shown in 
(6b), the second term is shown in (28), and the third term 
is shown in (6c). Equations (27b) and (27c) ensure that the 
operational costs of LAs trading with DGOs in (18) are not 
less than the operational costs of LAs trading with the DSO 
in (10b) at each node j.

and are subject to (24), (26), and the constraints as 
follows:

(27a)max PGtrans=CSDGO + PGLA + PSnet

(27b)CLtrans = PSLA+PGLA

(27c)CLtransj ≤ CL
oper
j

(28)

PGLA=

T
∑
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∑
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∑

j∈�LA

�
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i,j zDGi PDG,CFD
t

(29)
f DG,PFD ≤ f DGO,LA

i,j ≤ f DG,max, ∀i ∈ �DG, ∀j ∈ �LA

(30a)
∑

j∈�LA

�
DGO,LA
i,j ≤ 1, ∀i ∈ �DG

(30b)
∑

i∈�DG

�
DGO,LA
i,j ≤ 1, ∀j ∈ �LA

(30c)
∑

j∈�LA

�
DGO,LA
i,j ≤ zDGi , ∀i ∈ �DG

(30d)

∑

i∈�DG

�
DGO,LA
i,j zDGi PDG,CFD

t,i ≤ Pload
s,t,j − �PTL

s,t,j ,

∀s ∈ S, ∀t ∈ T , ∀j ∈ �LA

The first term in (28) represents the cost of each LA 
purchasing electricity from the DSO, and the second 
term represents the cost of each LA purchasing electricity 
from DGOs. Equation (29) defines the pricing limitation 
of each DGO selling electricity to LAs. Equations  (30a) 
and (30b) define the constraints that an installed RDG 
node of DGOs can only trade with an end-user node, and 
vice versa. Equation (30c) defines the renewable electric-
ity trading premise that DGOs have set up RDG at the 
corresponding nodes, while (30d) defines the renewable 
energy trading premise that an LA needs to absorb all the 
electricity purchasing from DGOs. It is noteworthy that 
the PV output of prosumers is excluded in (30d) because 
the prosumers’ PV electricity trading scheme of each LA 
will be adjusted according to the trading and demand 
response results. Equation  (31) defines the constraint of 
RDG output at each node, and (32) defines the power 
balance constraint of an LA, which is different from (23).

3.3 � Solution method
The solution structure as shown in Fig. 4 is designed to 
analyze the proposed one-leader and multi-follower 
model. As demonstrated, the proposed model is divided 
into a master problem and a subproblem which are 
solved following a specific sequence. The particle swarm 
optimization (PSO) method is introduced to find the best 
long-term contract prices, and the CPLEX solver is used 
to solve the decision model of each agent.

3.3.1 � The master problem
The target of the master problem is to calculate the opti-
mal substation and line investment solution under the 
best contract pricing strategy. First, a particle swarm of 
the contract prices is generated. Secondly, each DGO 
and LA make investment and trading decisions accord-
ing to the price signals, and then provide their electricity 
trading schemes to the DSO as feedback. Subsequently, 
the DSO calculates the net injection power of each node 
based on the feedback and makes the optimal substation 
and line investment decision. Finally, the net saving for 
the DSO is taken as the fitness function to make the opti-
mal pricing strategy.

(31)PDG
s,t,i ≤ zDGi P

DG,pre
s,t ,∀s ∈ S, ∀t ∈ T , ∀i ∈ �DG

(32)

P
buy
s,t,j − Psell

s,t,j = PLoad
s,t,j − PPV,PSM

s,t,j − �
DGO,LA
j PDG,CFD

t,i

−�PTL
s,t,j , ∀s ∈ S, ∀t ∈ T , ∀i ∈ �DG, ∀j ∈ �LA
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3.3.2 � The subproblem
The target of the subproblem is to calculate the optimal 
RDG capacity and location, and the electricity trading 
strategy of DGOs and LAs. First, each DGO calculates 
the optimal RDG capacity investment option according 
to the price signals, and provides the investment plan for 
the DSO. Simultaneously, each LA calculates the optimal 
PV investment and transferrable load scheduling option. 
Secondly, the DSO calculates the optimal RDG location 
of DGOs and network topology based on the principle 
of minimizing substation and line investment costs, and 
then provides the network topology for DGOs and LAs 
to compute the electricity network usage costs. Finally, 
each DGO calculates the optimal contract pricing strat-
egy in the renewable electricity trading process between 
the DGO and the LA. Meanwhile, each LA calculates the 
optimal electricity trading scheme and flexible load re-
scheduling option.

4 � Numerical results
4.1 � Basic data
The proposed model is tested on the Portugal 54-node 
distribution system, where the rated voltage is 15 kV. The 
initial network topology can be found in [22], and com-
prises 2 existing substations and 17 existing lines. The 
predicted total load is 48.67 MW and the system power 
factor is 0.9. There are 34 new load nodes, 2 candidate 
new substations, and 44 new candidate lines. The param-
eters of the candidate substations can be found in [22] 

and [23]. The parameters of the candidate lines are shown 
in Table 1, and the parameters of the candidate RDGs are 
shown in Table 2.

The typical predicted loads, i.e. residential, commercial 
and industrial, are shown in Fig. 5. The predicted active 
loads of resident, commerce and industry are 32.48 MW, 
9.66  MW and 6.53  MW, respectively. Based on differ-
ent risk preferences, DGOs and RLAs are respectively 
divided into three types, including risk-averse, risk-neu-
tral and risk-seeking. The three types are respectively 
defined as: ηRLA1 = ηDGO1 = 0.1,ηRLA2 = ηDGO2 = 0.5 , 
ηRLA3 = ηDGO3 = 0.9 . The risk preferences of the 
CLA and ILA are regarded as risk-neutral where 
ηCLA = ηILA = 0.5.

The typical prices of electricity purchased from the 
external grid, and electricity sold to end users, are shown 
in Fig. 6. The electricity network usage price is set to 0.5 
$/(MWh·km) and power loss price is set to 50 $/MWh. 
The predicted output of wind power and PV can be 

Fig. 4  Flowchart for solving the proposed model

Table 1  Parameters of the candidate lines

Line type R (Ω) X (Ω) Current limit 
(A)

Cost (104$)

A1 0.85 0.4 150 12.4

A2 0.45 0.35 275 16

A3 0.24 0.32 450 23

A4 0.13 0.12 600 30.2

A5 0.08 0.06 800 38

Table 2  Parameters of the candidate RDGs

DG Capacity (MW) Cost (104$) CFD electricity of each 
unit during 24 h (MWh)

WTG​ 0.1 20 0.78

PV 0.2 40 1.52

Fig. 5  The active load curve of residential, commercial, and industrial 
loads
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found in [1]. Considering the uncertainty of the RDG, 
prices and active loads, 10,000 uncertainty scenarios are 
generated by Monte Carlo simulation. Then, the K-means 
clustering method is used to select 12 discrete scenarios.

The penetration of RDG in the system is assumed to be 
above 30%. The price ranges of CFD contracts for DGOs’ 
PV units and WTG units are 62–73 $/MWh and 56–66 
$/MWh, respectively, while the price range of a PPA con-
tract for LAs’ PV units is 40–60 $/MWh. The number of 
particles is set to 50 and the number of iterations is set to 
20.

4.2 � Results and analysis
To demonstrate the effectiveness of the proposed model, 
three cases are considered:

Case 1: DSEP with RDG assets of DGOs;
Case 2: DSEP with RDG assets of DGOs and LAs;
Case 3: DSEP with RDG assets of DGOs and LAs con-

sidering the electricity trading between them.
The results of these case studies are summarized in 

Tables 3, 4, 5, 6. Table 3 depicts the distribution system 
expansion option including substation and line invest-
ments, Table 4 reveals the two long-term contract prices 
provided for DGOs and LAs, Table 5 lists the RDG assets 
investments of DGOs and LAs, and Table  6 reveals the 
costs and revenues of DSO in the DSEP problem.

4.2.1 � Results of case 1
In this case, the DSO makes the distribution system 
expansion decisions considering RDG assets of DGOs. 
Table 6 reveals that the annual net savings for the DSO 
in the planning horizon are 1.721 × 106 $. The total 
cost and revenue of the DSO are the highest in the 
three case studies since the DSO is the sole supplier of 
electricity to end-users. The total distribution system 
investment cost is 4.887 × 106 $, of which 41.64% is the 
cost of line investments. Table 3 reveals that the exist-
ing substation S2 is reinforced and the new substation 

Fig. 6  Price curves for the DSO purchasing electricity 
from the external grid and selling electricity to users

Table 3  The optimal distribution system expansion option of 
the DSO

Network assets Case1 Case 2 Case3

Substation S2 (13.3) S1 (16.7) S3(22.2)
S4 (22.2) S4 (22.2) S4(22.2)

Existing line 51–1 (A4) 51–1 (A4) 51–1 (A4)

51–3 (A3) 51–3 (A3) 51–3 (A3)

3–4 (A3) 3–4 (A3) 3–4 (A3)

4–7 (A2) 4–7 (A2) 4–7 (A2)

4–5 (A2) 7–8 (A2) 7–8 (A2)

7–8 (A2) 1–9 (A2) 1–9 (A2)

1–9 (A2) 52–14 (A2) 52–14 (A2)

52–14 (A5) 14–15 (A2) 14–15 (A2)

14–15 (A3) 52–11 (A3) 52–11 (A3)

15–16 (A3) 11–12 (A3) 11–12 (A3)

52–11 (A4)

11–12 (A3)

New line 19–20 (A1) 19–20 (A1) 19–20 (A1)

18–19 (A2) 18–19 (A1) 18–19 (A1)

18–17 (A3) 18–17 (A1) 18–17 (A3)

21–18 (A5) 21–18 (A3) 21–18 (A5)

54–21 (A4) 54–21 (A5) 54–21 (A3)

54–22 (A5) 54–22 (A5) 54–22 (A3)

23–22 (A2) 23–22 (A3) 23–22 (A5)

24–23 (A4) 24–23 (A4) 24–23 (A5)

25–24 (A2) 25–24 (A5) 25–24 (A4)

26–27 (A1) 26–27 (A2) 26–27 (A1)

28–27 (A2) 28–27 (A3) 28–27 (A4)

54–30 (A5) 54–30 (A4) 54–30 (A4)

29–30 (A1) 29–30 (A3) 29–30 (A3)

43–30 (A5) 43–30 (A2) 43–30 (A2)

37–43 (A1) 37–43 (A1) 37–43 (A1)

31–37 (A1) 31–37 (A1) 31–37 (A1)

45–12 (A3) 45–12 (A2) 45–12 (A2)

44–45 (A2) 44–45 (A2) 44–45 (A2)

38–44 (A2) 38–44 (A2) 38–44 (A2)

39–38 (A1) 39–38 (A1) 39–38 (A1)

32–39 (A1) 32–39 (A1) 32–39 (A1)

33–34 (A1) 35–34 (A1) 35–34 (A1)

36–35 (A1) 36–35 (A1) 36–35 (A1)

53–36 (A1) 53–36 (A1) 53–36 (A1)

53–28 (A1) 53–28 (A2) 53–28 (A2)

53–41 (A1) 53–41 (A2) 53–41 (A2)

40–41 (A2) 40–41 (A1) 40–41 (A1)

16–40 (A2) 42–41 (A1) 42–41 (A2)

48–42 (A1) 48–42 (A1) 48–42 (A1)

49–48 (A1) 49–48 (A1) 49–48 (A1)

50–49 (A1) 50–49 (A1) 50–49 (A1)

47–42(A1) 47–42(A1) 47–42(A1)

46–47 (A2) 14–46 (A1) 14–46 (A1)

14–46 (A2)
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S4 is installed. This is the most economical planning 
option in the three case studies. The distribution sys-
tem investment and RDG assets investment options are 

shown in Fig.  7. The schematic diagram demonstrates 
that the candidate substation S3 is not installed owing 
to an immense amount of WTG units integrated into 
the neighboring nodes. However, both the existing line 
upgrading investments and new line installation invest-
ments in Case 1 are the largest in these case studies. 
That is to say, the DSO in Case 1 defers the substation 
expansion but increases the line investments.

Table 4  The optimal renewable energy contract pricing strategy

Contract DG assets Prices ($/MWh)

Case1 Case 2 Case3

CFD PV 62.8 68 68

WTG​ 65.87 56.57 56.57

PPA PV – 40 40

Table 5  The optimal RDG investment option of DGOs and LAs

Agents RDG type The location and capacity (MW) of 
RDG assets

Case1 Case 2 Case3

DGOs PV 10 (0.4) 5 (1) 5 (1)

16 (0.2) 8 (0.6) 10 (1)

32 (1) 9 (0.2) 16 (1)

33 (1) 10 (1) 20 (0.4)

39 (0.4) 16 (1) 31 (0.6)

50 (1) 20 (0.2) 32 (0.4)

31 (0.4) 33 (1)

32 (0.4) 37 (0.6)

33 (1) 38 (1)

37 (0.6) 39 (0.6)

38 (1) 50 (0.4)

39 (0.6)

WTG​ 1 (1) 1 (0.1) 1 (0.2)

8 (1) 8 (1) 8 (1)

26 (1) 32 (1) 32 (1)

27 (1) 33 (1) 33 (1)

32 (0.2) 49 (0.6) 49 (0.5)

33 (1) 50 (0.3) 50 (0.33)

34 (1)

35 (0.9)

36 (0.9)

40 (1)

41 (0.7)

49 (0.3)

53 (1)

LA PV – 3 (0.4) 3 (0.4)

4 (0.6) 4 (0.6)

7 (0.4) 7 (0.4)

9 (0.6) 9 (0.6)

26 (0.6) 26 (0.6)

28 (0.4) 28 (0.4)

36 (0.2) 36 (0.2 s)

Table 6  Profits of the DSO in the three case studies

Cost and revenue of DSO (106$) Case 1 Case 2 Case 3

Cost of substation investments 2.852 3.667 3.667

Cost of line investments 2.035 1.620 1.629

Cost of power loss 0.887 0.507 0.530

Cost of electricity purchased from external 
grid

8.735 8.775 8.752

Cost of electricity purchased from DGO 3.753 2.675 1.708

Cost of electricity purchased from LA / 0.020 0.020

Revenue earned from selling electricity to LA 19.982 19.162 18.104

Revenue earned from network usage / / 0.006

Total cost 18.261 17.263 16.265

Total revenue 19.982 19.199 18.110

Net savings for DSO 1.721 1.936 1.845
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Fig. 7  The distribution system expansion option in Case 1
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The total cost of the DSO purchasing electricity is 
12.488 × 106 $, of which 30.05% is the cost of the DSO 
purchasing electricity from DGOs. As demonstrated in 
Table 4, the CFD contract prices of the electricity gener-
ated by WTG and PV are 62.8 $ and 65.87 $, respectively. 
As shown in Table  5, the total installed RDG capacity 
is 16 MW and the penetration of RDG is 32.88% in the 
system, which is the highest in the three cases. Moreo-
ver, Fig. 7 also reveals that the locations of the PV units 
optimized by the DSO are mainly in the commercial and 
industrial load nodes, while few PV units are installed in 
residential load nodes.

4.2.2 � Results of case 2
In this case, the RDG assets of DGOs and LAs are taken 
into account in the DENP problem. Table 6 reveals that 
the annual net saving for the DSO in the planning hori-
zon is 1.936 × 106 $, which is the most profitable option 
among the three case studies. Compared with Case 1, the 
revenue of the DSO has decreased from 19.982 × 106$ to 
19.162 × 106$ as a result of the end-user electricity con-
sumption characterized by partial self-sufficiency. The 
total distribution system investment cost is 5.287 × 106 
$, of which 30.64% is the cost of line investments. The 
distribution system investment and RDG assets invest-
ment options are shown in Fig. 8. It can be demonstrated 
from Table  3 and Fig.  0.8 that the substation and line 
investment option in Case 2 is significantly different 
from that in Case 1. The substation investments in Case 
2 are reduced where the candidate new substations S3 
and S4 are installed, and the line investments in Case 2 
are reduced where the existing branch 4–5 and branch 
15–16 are not upgraded, and the candidate new branch 
16–40 and branch 46–47 are replaced by branch 53–51. 

The power loss cost in Case 2 is the lowest among the 
three case studies, which is 57.5% of that in Case 1.

The total cost of the DSO purchasing electricity is 
11.47 × 106 $, of which 23.32% is the cost of the DSO pur-
chasing electricity from DGOs and 0.2% is the cost of the 
DSO purchasing electricity from an LA. As demonstrated 
in Table 4, the PPA price and two kinds of CFD prices are 
40 $/MWh, 68 $/MWh, and 56.57 $/MWh, respectively, 
where the wind electricity price is lower and the solar 
electricity price is higher than in Case 1. As shown in 
Table 5, the total installed RDG capacity is 14.8 MW and 
the penetration of RDG is 30.41%.

From the perspective of the LA, the benefits of RDG 
installation come from two sources, namely, electricity 
self-sufficiency with a proportion of 96.24%, and electric-
ity sold to the DSO in the amount of of 3.76%. The results 
demonstrate that prosumers may set up an RDG without 
considering selling electricity to the DSO. On the other 
hand, the impact of long-term contract price on DGOs is 
more significant than that on prosumers.

4.2.3 � Results of case 3
In this case, the RDG assets of DGOs and LAs and 
the electricity trading between those agents are both 
taken into consideration. The results reveal that the 
annual net saving for DSO in the planning horizon are 
1.845 × 106 $. The annual total cost and total revenue 
of DSO are the lowest in these cases as a result of the 
end-user electricity consumption being supplied from 
three sources including DSO, DGOs, and LAs. The 
total distribution system investment cost is 5.296 × 106 
$, of which 30.76% is the cost of line investments. The 
distribution system investment and RDG assets invest-
ment options are shown in Fig. 9, which reveals that the 
network topology and substation investments in Case 
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Fig. 8  The distribution system expansion option in Case 2
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Fig. 9  The distribution system expansion option in Case 3
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3 are the same as those in Case 2. But it can be demon-
strated from Table 3 that the DSEP results of those two 
cases are significantly different in the type alternatives 
of new line investments.

The total cost of the DSO purchasing electricity is 
10.48 × 106 $, of which 16.30% is the cost of the DSO 
purchasing electricity from DGOs and 0.2% is the cost 
of DSO purchasing electricity from LA. As demon-
strated in Tables 4 and 5, the contract prices and total 
capacity of installed RDG in Case 3 are the same as 
those in Case 2. However the locations of the RDG are 
different in the two cases.

From the perspective of DGOs, the total revenue 
of selling renewable energy is 2.803 × 106 $, of which 
60.92% is from selling to the DSO and 39.08% is from 
selling to LAs. The renewable energy trading results 
between DGOs and LAs are shown in Table  7. This 
reveals that 47.5% of installed PV units and 37.5% of 
installed WTG units are involved in the electricity 
trading between DGOs and LAs. Except for where the 
DGO at node 19 trades with the LA at node 20, all elec-
tricity trading processes between DGOs and LAs are 
implemented locally. The results reveal that the price 
of electricity sold to ILA is higher than that to RLAs. 
It means that there is a higher probability of electric-
ity transactions between DGOs and ILA than between 
DGOs and other LAs.

Comparisons of the active load in node 5 and the 
total load are shown in Fig. 10. The schematic diagram 
reveals that considering the electricity trading between 
DGOs and LAs can affect the distribution system 
investments since the LAs may actively change their 
electricity consumption habits to adapt to the renew-
able energy trading with DGOs.

Finally, it is assumed that the DSO and DGOs also 
sign PPA in the long-term renewable energy trading 
process. In this light, a comparison of the renewable 
energy prices with different contracts is performed 
and shown in Fig. 11. It can be seen that when the risk 

preference of a DGO is risk-neutral, the risk of a DGO 
investing in RDG with CFD is significantly lower than 
that with PPA, where the CFD price is nearly 60% of 
the PPA price. It means that when the RDG penetra-
tion is nearly 30% and half of the RDG units belong 

Table 7  Energy Trading results of DGOs and LAs in Case 3

RDG assets of DGOs RDG integration 
locations

End-user load locations Load types RDG capacity (MW) Price ($/MWh)

PV 5 5 Industry 1 80.52

10 10 Resident 1 70.54

16 16 Resident 1 69.38

19 20 Industry 0.4 83.4

50 50 Industry 0.4 75.18

WTG​ 1 1 Resident 0.2 66.18

8 8 Resident 1 69.38

50 50 Industry 0.3 74.1

Fig. 10  The active load of node 5 and the total load in Case 2 
and Case3

Fig. 11  The prices of PV and WTG electricity with different long-term 
contracts
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to risk-neutral DGO, the proposed CFD contract can 
reduce the cost for the DSO purchasing renewable 
energy from DGOs by 20%, thus reducing the total cost 
of the DSO purchasing electricity by 4.88%.

5 � Conclusions
A bi-level Stackelberg framework is established to 
address the distribution system expansion planning prob-
lem in the electricity trading context, featuring different 
RDG investors, namely, DGOs and prosumers, and the 
electricity trading between DGOs and LAs. Two long-
term contracts are introduced to adapt to the renew-
able energy trading process between multiple agents, and 
the CVaR method is used to model the investment and 
trading behaviors of DGOs and LAs with different risk 
preferences. The numerical studies reveal that whether 
the prosumers are present in the distribution system 
or DGOs intend to trade with end users, the proposed 
model enables the DSO to flexibly adjust contract pricing 
strategy and RDG location to defer distribution system 
expansion, i.e., the proposed model provides the DSO 
with great flexibility and initiative in the DSEP problem 
with the ever-expanding renewable energy. Compared 
with only considering feed-in tariff, the pattern of the 
two long-term contracts can encourage renewable energy 
investments at a lower cost. When the RDG penetration 
is 30%, the proposed pattern can reduce the annual cost 
of a DSO purchasing renewable energy from DGOs by 
20% and the annual total cost of a DSO purchasing elec-
tricity by 4.88%.
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