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Abstract 

To maximize improving the tracking wind power output plan and the service life of energy storage systems (ESS), 
a control strategy is proposed for ESS to track wind power planning output based on model prediction and two-
layer fuzzy control. First, based on model predictive control, a model with deviations of grid-connected power 
from the planned output and the minimum deviation of the remaining capacity of the ESS from the ideal value 
is established as the target. Then, when the grid-connected power exceeds the allowable deviation band of track-
ing, the weight coefficients in the objective function are adjusted by introducing the first layer of fuzzy control 
rules, combining the state of charge (SOC) of the ESS with the dynamic tracking demand of the planned value 
of wind power. When the grid-connected power is within the tracking allowable deviation band, the second layer 
of fuzzy control rules is used to correct the charging and discharging power of the ESS to improve its ability to track 
the future planned deviation while not crossing the limit. By repeatedly correcting the charging and discharging 
power of the ESS, its safe operation and the multitasking execution of the wind power plan output tracking target 
are ensured. Finally, taking actual data from a wind farm as an example, tests on a simulation platform of a combined 
wind-storage power generation system verify the feasibility and superiority of the proposed control strategy.

Keywords Wind power, Energy storage system, Track planned output, Model predictive control, Two-layer fuzzy 
control

1 Introduction
Development of wind power is an effective way to accel-
erate the construction of a clean, low-carbon, safe, and 
efficient energy system, and to achieve sustainable energy 
development and dual-carbon goals [1, 2]. However, 
the fluctuating and intermittent nature of wind power 
impacts on the safe and stable operation of power grids 
[3–5]. Power generation plans based on short-term wind 

forecasts can stabilize the impact of variable wind power 
integration to a certain extent, but there are still large 
deviations between short-term forecast power and actual 
wind power [6, 7]. Energy storage systems (ESS) can 
effectively compensate for the drawbacks of wind power 
generation and improve the tracking accuracy of wind-
storage co-generation systems for planned power output 
[8, 9]. However, the tracking accuracy of ESS is limited by 
their service life, capacity, and control mechanisms [10–
13]. Given these limitations, it is critical to study the opti-
mal control strategies for wind-storage systems [14, 15].

Many in-depth studies have looked at applying ESS in 
tracking the output of wind power plans [16–22]. Energy 
storage improves the output of wind farm tracking and 
power generation through either post hoc real-time sec-
tion or real-time advance optimization control. Under 
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real-time section control, the ESS corrects the deviation 
between the actual wind power and the planned value at 
each moment in real-time.

Reference [23] studies the use of ESS in a wind farm to 
track short-term planned output to improve wind farm 
tracking ability. In [24], an ESS control strategy contain-
ing five control coefficients is established and a particle 
swarm optimization algorithm is used to optimize and 
correct the charge and discharge control coefficients at 
each time in real-time. This improves the ability to con-
trol the ESS and track wind power planning. Reference 
[25] proposes a coordinated optimization control strat-
egy combining online rolling optimization and real-time 
active power control. These reduce the number of energy 
storage charge and discharge conversions, and show 
improved ability to track planned output. Real-time sec-
tion control adopts timely regulation without consider-
ing the future changes in the SOC of ESS batteries, while 
the control effect and economy of a wind-storage system 
are affected by battery overcharge, over-discharge, and 
capacity under-utilization.

The combination of real-time lead optimization control 
with ultra-short-term wind power prediction can achieve 
forward-looking lead control. Reference [12] proposes 
energy storage SOC feedback control based on ultra-
short-term wind power prediction and scenario analysis 
in order to reduce the number of energy storage com-
mands and avoid excessive charging and discharging. In 
[26], an optimization model is constructed to reduce the 
fluctuation range and the charge and discharge depth of 
energy storage SOC. This model, combined with wind 
power prediction information, adopts real-time rolling 
optimization to track the generation schedule and use the 
full ESS capacity. In [27], ultra-short-term power predic-
tion is used to minimize the ordered times of energy stor-
age, while advance rolling optimization is realized in the 
assessment period. This improves the precision of a wind 
power tracking plan. In [28], the Kalman filter algorithm 
is used to enhance the minute level of ultra-short-term 
wind power prediction data so as to improve the fine-
grained power prediction. The algorithm, when com-
bined with advanced rolling optimization, can accurately 
optimize the wind-storage system’s power assessment 
and energy storage life. However, the effect of real-time 
advanced optimization control depends heavily on the 
accuracy of wind power prediction.

The model predictive control (MPC) algorithm has 
good robustness and anti-interference ability, and can 
better solve optimal control problems with a variety 
of uncertainties. A two-stage stochastic MPC with the 
aim of determining the optimal ESS size is proposed in 
[29], whereas a new control strategy based on the MPC 
method to fulfill the committed energy production of 

wind farms is presented in [30]. However, the service life 
of the ESS is neglected. References [31, 32] apply MPC 
to wind-storage systems and propose tracking schedul-
ing instructions and minimizing energy storage output as 
control objectives. This improves the ability to schedule 
wind farm production. However, fixed values are used for 
the objective function weighting factors while no method 
is given for determining the weighting factors. In fact, 
the selection of weighting factors has a significant impact 
on MPC [33–35]. In the reviewed publications, MPC 
is used to determine the optimal ESS size and schedul-
ing with the aim of reducing wind power forecast error. 
However, there is little research on improving the track-
ing capability of a wind-storage system for future planned 
curve by optimizing the current residual capacity of ESS 
in advance.

Thus, it is clear that there is a lack of comprehensive 
consideration of wind power prediction error and uncer-
tainty of energy storage SOC on future tracking accuracy, 
and that further research is needed on how to effectively 
balance the contradiction between ESS lifetime and wind 
power plan tracking capability. Therefore, this paper pro-
poses a combined wind-storage system tracking wind 
power plan control strategy based on MPC and double-
layer fuzzy control, with the aim of improving both the 
wind-storage system tracking plan output and the ESS 
service life. The main contributions of this study can be 
summarized as:

(1) An ESS tracking wind power plan control model is 
established based on the MPC method. An objec-
tive function is proposed to minimize the devia-
tion of grid-connected power from the planned 
output and the deviation of ESS remaining capac-
ity from the ideal value. Consequently, the deviation 
of grid-connected power from the planned curve 
is reduced, while the ESS lifetime is taken into 
account.

(2) When the grid-connected power exceeds the track-
ing allowable deviation band, a method of using the 
first layer of fuzzy controller is proposed to cor-
rect the weight coefficients of the objective func-
tion to effectively resolve the contradiction between 
the deviations from the wind power plan and the 
energy storage overrun limit. The proposed method 
reduces the dead time and extends the service life of 
the ESS while improving the tracking of the planned 
curve.

(3) Statistical factor analysis theory is used to construct 
the contradictory factors between the two variables 
of ESS off-limit power and planned power deviation 
in the future optimization period. When the grid-
connected power is within the tracking allowable 
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deviation band, a method of using the second layer 
of fuzzy control rules is used to correct the charg-
ing and discharging power of the ESS. Charging and 
discharging are carried out in advance to improve 
the ESS’s ability to track deviations from the future 
plan.

A simulation platform is developed for a combined 
wind-storage power generation system, and the effec-
tiveness of the proposed control strategy is verified con-
sidering a wind farm’s actual operating data. The rest of 
this paper is organized as follows: Sect.  2 describes the 
topology of the combined wind-storage generation sys-
tem and the creation of allowable deviation bands for 
generation schedule tracking. In Sect. 3, the ESS tracking 
wind power planning control model is established based 
on the MPC method, while in Sect. 4, a two-layer fuzzy 
control strategy is proposed. Case studies are presented 
in Sect. 5, and Sect. 6 concludes the paper.

2  Wind‑storage co‑generation system
Uncertain changes in wind speed lead to weak dispatch-
ability of wind farm active power output. This increases 
the operational risk to the grid. The ability to sched-
ule power production at a wind farm can be effectively 
improved by controlling the ESS charging and discharg-
ing power at the wind farm connection point. The topol-
ogy of the wind-storage co-generation system is shown 
in Fig.  1. It mainly consists of a wind farm, an energy 
storage station, step-up transformers, converters, and an 
energy management system. These are connected to the 
main grid through transmission lines.

During actual grid dispatching, the power generation 
plan value Pp is formulated according to the wind power 
prediction value. The charging and discharging power 

Pb of the ESS is calculated through a suitable control 
strategy to compensate for the difference between the 
actual Pw and planned Pp wind power. Finally, the grid-
connected power Pg of the wind-storage co-generation 
system is obtained. The power balance equation of the 
wind-storage co-generation system is:

For the forecasting of continuous states, in terms of 
mathematical solution, the time is usually discretized 
equally. Therefore, Eq. (1) is discretized to:

where Pb(i) and Pw(i) are the power of the ESS and the 
actual power of the wind power at the current moment, 
respectively. Pg(i + 1) denotes the power of wind-stor-
age co-generation system at the next moment. When 
Pb(i) > 0, the ESS is charged and when Pb(i) < 0, the ESS is 
discharged.

The iterative equation for the State of Energy (SOE) 
after discretization is:

where CSOE(i) denotes the residual ESS capacity at time i, 
and Tc and  Crated are the ESS control period and capacity, 
respectively. η is the ESS conversion efficiency.

According to the “Technical Regulations for Wind 
Power Forecasting” issued by the National Energy 
Administration in 2019 [36], the short-term forecast 
accuracy rate should be greater than or equal to 80%. 
Thus, the allowable deviation band of generation plan 
tracking, i.e., the allowable error ranges between the 
actual power and the planned output curve, can be writ-
ten [37] as:

where Pu(i) and Pd(i) are the upper limit and lower limit 
of the allowable deviation band, respectively. δ denotes 
the deviation band set coefficient, and Pp(i) refers to the 
planned value of wind power at time i.

The target is for the output from the combined wind-
storage power generation system to be within the 
planned range. As shown in Area I of Fig. 2, the ESS does 
not act when the actual power of the wind farm is within 
the allowable range. When the actual power exceeds 
the upper limit or lower limit of the deviation band and 
reaches Area II, the combined output of the wind and 
storage at the moment is controlled within Area I via the 
ESS by absorbing or releasing power.

(1)Pg = Pb + Pw

(2)Pg(i + 1) = Pb(i)+ Pw(i)

(3)CSOE(i + 1) = CSOE(i)− ηPb(i)× Tc/Crated

(4)Pu(i) = (1+ δ)Pp(i)

(5)Pd(i) = (1− δ)Pp(i)

Fig. 1 Schematic diagram of the structure of a wind-storage 
co-generation system
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According to the above analysis, the target power Pa(i) 
can be calculated as follows:

3  Control model of MPC energy storage system
Based on the above power balancing equation and SOE 
iteration equation, the MPC system model is created. 
Meanwhile, the MPC rolling optimization objective 
function and constraints are established by combining 
the target power sources, taking into account the energy 
storage lifetime and tracking capability, and transform-
ing the power into a quadratic programming problem for 
solution.

3.1  Based on MPC system model
MPC is a class of methods that consider open-loop opti-
mal control in a finite-time domain, using the idea of roll-
ing planning and advance control. The MPC for tracking 
the planned wind power output is shown in Fig. 3. At its 
core lies the time-domain rolling optimization process:

(1) Establish the objective function and constraints.
(2) Solve the optimization problem with constraints 

to obtain a sequence of control instructions for a 
future period using the values of state variables at 
the current moment.

(3) Apply the 1st value of the control instruction 
sequence to the control system.

(4) Scroll to the next moment and update the state var-
iables to repeat the above process.

The schematic block diagram of the tracking plan with 
MPC is shown in Fig.  4. The MPC conducts real-time 
rolling optimization for system control. This is comprised 

(6)Pa(i) =
Pu(i) Pw(i) ≥ Pu(i)

Pp(i) Pd(i) < Pw(i) < Pu(i)

Pd(i) Pw(i) ≤ Pd(i)

of three parts: a prediction model, rolling optimization, 
and feedback correction.

The prediction model plays a fundamental role in 
model predictive control as it anticipates the future 
dynamic behavior of the system. Such a model relies 
on historical data and the current status of the system, 
incorporating future time domain system change trends 
and the impact of control instructions to forecast the sys-
tem’s dynamic behavior within a limited future time span. 

Fig. 2 Schematic diagram of the allowable deviation band 
for generation schedule tracking

Fig. 3 MPC time domain rolling optimization process

Fig. 4 MPC block diagram for tracking planned wind power output
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These prediction outcomes serve as inputs for the rolling 
optimization stage. Here, under the influence of specific 
optimization objectives, the control sequence that aligns 
the system’s predicted trend most effectively with the 
optimization problem requirements is considered as the 
optimal control instruction.

Rolling optimization serves as the central element of 
MPC. Its core concept involves continuously integrat-
ing system prediction information and control sequences 
within a limited time window to perform real-time opti-
mization based on the specific goals defined for the con-
trolled system. The results obtained from this process are 
then used to guide the system’s future outputs. At each 
time step, the initial component of the optimal control 
sequence that brings the system closest to the defined 
optimization goal is selected as the control input for the 
upcoming moment. Subsequently, the new measure-
ments generated by the system at that moment refresh 
the initial state of the controlled system, and the cycle 
repeats itself through model prediction and rolling opti-
mization. As time progresses, the prediction time hori-
zon also advances until the desired control objective is 
achieved.

In each step, MPC uses the initial element of the pre-
viously solved optimal control sequence from the prior 
moment to interact with the system, yielding new system 
state information and outputs. This process effectively 
refreshes the rolling optimization problem. During this 
process, MPC establishes both feedforward and feed-
back components. On the one hand, the newly acquired 
system state information and the ongoing system predic-
tion information at each time step are used as inputs for 
the feedforward component. If any changes are detected, 
they are fed back into the prediction model, enabling the 
re-computation of the optimal control sequence through 
rolling optimization, thus achieving feedforward correc-
tion. On the other hand, because feedforward control has 
limitations in addressing existing system errors, MPC 
introduces a feedback loop by inputting the discrepancy 
between the actual system output and the predicted out-
put at each time step into the feedback component. This 
creates a closed-loop system, allowing for feedback cor-
rection of the overall prediction error at that moment. 
This feedback mechanism enhances the robustness of the 
control strategy by addressing deviations that may have 
occurred.

From (2) and (3) and combined with the superposi-
tion theorem, the grid-connected power Pg(i) and the 
ESS residual capacity CSOE(i) are selected to form the 
state variables, which are x(i) = [Pg(i),CSOE(i)]T. The ESS 
output Pb(i) is used as the control variable in the form 
of u(i) = Pb(i), while the ultra-short-term wind power 
Pf(i) is used as an input variable as r(i) = Pf(i). The ESS 

Pg(i) and CSOE(i) are selected as the output variables as 
y(i) = [Pg(i),CSOE(i)]T. Then the state space equation of the 
wind-storage co-generation system is:

where A =

[

0 0
0 1

]

 , B1 =
[

1
−ηTc/Crated

]

 , B2 =
[

1
0

]

 , and 

C =

[

1 0
]

.

3.2  Objective function and constraints
From the perspective of extending the life of the ESS, 
the energy storage output is reduced while satisfying the 
tracking plan, and the SOE converges to the ideal value by 
introducing the storage SOE variation into the optimiza-
tion process to improve the adaptability of ESS to future 
wind power changes. Therefore, the objective function is 
established with the deviation of grid-connected power 
from the planned output and the minimum deviation of 
ESS remaining capacity from the ideal value, as:

where Cideal denotes the ideal ESS residual capacity, 
which is 0.5 times the rated capacity, and α and β denote 
the weight coefficients with α + β = 1.

The following charging and discharging power and 
SOC constraints should also be satisfied along with the 
MPC rolling optimization objective function.

(1) ESS capacity constraints

Considering factors such as ESS service life and safety, 
the SOC should satisfy the inequality constraint equation 
of:

where Esoc.min and Esoc.max are the lower and upper limits 
of ESS SOC, respectively.

(2) ESS power constraints

The unequal constraint condition of ESS charging 
power is:

(7)
{

x(i + 1) = Ax(i)+ B1u(i)+ B2r(i)

y(i) = Cx(i)

(8)
min J = β

N
∑

k=1

∣

∣

∣P2
g (i + k|i )− P2

a(i + k|i )
∣

∣

∣+

α
N
∑

k=1

∣

∣C2
SOE(i + k|i )− C2

ideal

∣

∣

(9)ESOC . min ≤ ESOC(i) ≤ ESOC . max

(10)

0 < Pb(i) ≤ min

{

Prated,
(ESOC . max − ESOC(i))Crated

Tc

}
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where Prated is the rated power of the ESS.
The unequal constraint condition of ESS discharge power 

is:

3.3  Energy storage target power solution based on MPC 
rolling optimization method

Using the MPC control principle and combining (7)–(11), 
the problem can be transformed into a quadratic program-
ming form to obtain the sequence of control variables, i.e., 
the target power tracked by the ESS, in the present and 
future periods.
x(i) is the known actual state value at moment i. From (7), 

the state variable x(i + 1) at moment i + 1 can be obtained, 
and the state variable at moment i + 2 can be further calcu-
lated by x(i), as:

By analogy, an expression for the state variables at each 
moment can be obtained from x(i), all consisting of the 
known state and perturbation quantities, and the control 
variables to be solved. Let the sequence of state variables, 
the sequence of control variables, and the sequence of 
input quantities be divided as shown as:

As x(i) = x0, Eq. (12) can be expanded as:

where the matrices of the coefficients are

(11)

max

{

−Prated,
(ESOC . min − ESOC(i))Crated

Tc

}

≤ Pb(i) < 0

(12)
x(i + 2) = A2x(i)+ AB1u(i)+ AB2r(i)+

B1u(i + 1) + B2r(i + 1)

(13)

xi =











x(i + 1)

x(i + 2)

· · ·
x(i + k)











,ui =











u(i + 1)

u(i + 2)

· · ·
u(i + k − 1)











, ri =











r(i + 1)

r(i + 2)

· · ·
r(i + k − 1)











(14)X i = Gx0 + I1U i + I2Ri

(15)

G =













A

A2

· · ·

Ak













I1=







B1 0 · · · 0
AB1 B1 · · · 0
· · · · · · · · · · · ·

Ak−1B1 Ak−2B1 · · · B1







I2=







B2 0 · · · 0
AB2 B2 · · · 0
· · · · · · · · · · · ·

Ak−1B2 Ak−2B2 · · · B2







Through matrix operations, all state variables in the 
optimization objective can be represented by control 
variables. Since the constant terms are not involved in 
the optimization and can thus be omitted, the objective 
function can be transformed into the standard quadratic 
programming form, as:

where H and f are the quadratic term and primary term 
parameter matrices of the control variable that need to be 
solved, respectively.

The optimal sequence of control variables Ui that satis-
fies the optimization conditions and constraints, i.e., the 
storage tracking target power Pb(i), Pb(i + 1)…Pb(i + k), 
can be obtained by mathematical solutions. In theory, 
if the real system model aligns perfectly with the estab-
lished mathematical model and the predictions are 
highly accurate, substituting the control sequence into 
the actual system should yield results consistent with the 
theoretically predicted state variables. However, various 
factors, such as model inaccuracies and disturbances, 
necessitate the use of rolling optimization to enhance 
control precision. When determining the optimal power 
storage target, it is essential to recognize that prediction 
information closer to the current time tends to be more 
accurate. Therefore, during each optimization step, only 
the first element of the sequence is chosen for controlling 
the system. As time progresses, at each moment, the state 
sequence is refreshed for prediction, and this process is 
repeated iteratively to correct errors that may have accu-
mulated during the control process, ultimately leading to 
improved control accuracy.

4  Weight coefficient adjustment based 
on two‑layer fuzzy control

The MPC rolling optimization objective function was 
defined in Sect. 3 taking into account the multi-objective 
optimization problem in which the deviations of grid-
connected power from the planned output capacity and 
ESS remaining capacity from the ideal value are mini-
mized. In the optimization process, optimizing the ESS 
output capacity depends entirely on the SOE. Therefore, 
in this section, the relationship between the ESS output 
capacity CSOE and the dynamic regulation coefficient α is 
calculated by designing a two-layer fuzzy controller. The 
ESS operating state and grid-connected power are deter-
mined by adjusting the weights of the two optimization 
parts.

4.1  Weight coefficient analysis
To further analyze the influence of the weight coefficients 
on the objective function, we make N = 1 in (8) and derive 

(16)min J =
1

2
UT

i HU i +UT
i f
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the derivative for J. Letting the derivative equal 0 allows 
for finding the ESS output power with the smallest objec-
tive function at the moment i + 1, i.e.:

As can be seen from (17), the ESS output power is con-
trolled by α such that the larger α is, the closer the ESS 
residual capacity is to the ideal value, but the less effec-
tive the tracking plan curve is. On the contrary, if α is 
smaller, the tracking effect is better, but it could make 
the SOC over-bound. Therefore, the following method is 
used here to dynamically adjust α in real-time.

(1) At time i + 1, when the predicted ultra-short-term 
wind power exceeds the upper or lower limits of 
the planned deviation band, the combined output 
of wind-storage should be ensured to be within the 
allowable deviation band of tracking. At the same 
time, the first layer fuzzy controller is used to cor-
rect α to keep the SOC from exceeding the limit.

(2) At time i + 1, when the ultra-short-term wind 
power prediction is within the tracking allow-
able deviation band, it balances the contradiction 
between the planned power deviation and the ESS 
limit overrun in the future rolling optimization 
period. It improves the ability of the combined 
wind-storage system to track deviations from future 
plans while ensuring ESS life. At this time, the sec-
ond layer fuzzy controller is used to correct the 
charging and discharging power of the ESS, and the 
correction formula is given as:

where P′
b(i + 1|i ) is the operation instruction after 

ESS correction at time i + 1 and ∆k is the correction 
coefficient.

4.2  First layer of fuzzy control
As the capacity and charge and discharge power of an 
ESS have certain ranges, if the SOC and charge and dis-
charge power exceed their allowable ranges, the service 
life of the ESS can be seriously affected. Based on this, a 
first layer fuzzy controller is used to adjust the charging 
and discharging power of the ESS to maintain the SOC 
within the allowed working range. The fuzzy controller 
is designed as double-input and single-output, i.e., the 
inputs are the energy storage output Pb(i) and SOC at 

(17)
Pb(i + 1) =
Tcα[CSOE(i)− Cideal]− β

[

Pg(i)− Pa(i)
]

Tcα + β

(18)
P′
b(i + 1|i ) = Pb(i + 1|i )+�k × δPp(i + 1|i )

time i, and the output is α. The fuzzy control input and 
output membership functions are shown in Fig. 5.

The universe of fuzzy control input variable Pb(i) is 
[− 1,1], and the fuzzy set is {NB,NS,Z,PS,PB}, which 
sequentially represent values that are negative large, 
negative small, zero, positive small, or positive large. 
The universe of Esoc(i) is [0.2,0.8], and the fuzzy set 
is {VS,S,M,B,VB}, which in turn sequentially represent 
values that are small, slightly small, slightly large, or 
large. The domain of fuzzy control output variable 
α is [0,1], and the fuzzy set is {VS,S,M,B,VB}, which 
sequentially represent values that are very small, 

Fig. 5 Membership function of the first layer fuzzy controller
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small, moderate, large, or very large. The first layer 
fuzzy control rules are shown in Table 1.

4.3  Second layer fuzzy control
Based on the ultra-short-term wind power forecast value 
and the wind power plan value, the future SOE is evalu-
ated, and then the charging and discharging are car-
ried out in advance to improve the ESS’s ability to track 
deviations from the future plan. The ESS off-limit power 
W(i + k) and the planned power deviation Pd(i + k) at each 
sampling point during the rolling optimization period are 
calculated as:

where k = 1,2,…,N and N takes the value of 8. The covari-
ance and correlation coefficients of the off-limit power 
and planned power deviations calculated from historical 
data are less than 0. It can be concluded that W and Pd 
are negatively correlated, and the contradiction factor F 
of the two variables W and Pd can be constructed by the 
following method.

First, the matrix is constructed through:

(19)

W (i + k) =



















(ESOC(i + k)− ESOC.max)× Crated

ESOC(i + k) > ESOC.max

(ESOC.min − ESOC(i + k))× Crated

ESOC(i + k) < ESOC.min

(20)Pd(i + k) = Pg (i + k)− Pa(i + k)

(21)hij =
1

2





1

q

q
�

j=1

d2ij +
1

q

q
�

i=1

d2ij − d2ij − I





(22)I =
1

q2

q
∑

i=1

q
∑

j=1

d2ij

(23)d2ij =
l

∑

r=1

(

zir − zjr
)2

where d2ij denotes the square of the Euclidean distance 
of the ith and jth objects in matrix Z, and Z is composed 
of the off-limit power and the planned power deviation. 
q is the number of rows in Z (q = 2), and l is the number 
of columns in Z (l = 8). zir is the element in row i and col-
umn r of Z, while hij is the element of matrix H.

After the eigenvalue decomposition of H, the following 
is obtained:

where U is the matrix with corresponding eigenvectors 
as columns and V is the diagonal matrix generated by the 
eigenvalues of H. Then the contradiction factor F for the 
two variables W and Pd can be expressed by:

A very large F indicates that the ESS is overproduc-
ing in the future rolling optimization period, i.e., ESOC 
has exceeded ESOC.max and the ESS should be discharged 
in advance. If F is very small, it means that the ESS has 
insufficient ability to track the planned output in the 
future rolling optimization period, i.e., ESOC is lower than 
ESOC.min, and the ESS needs to be charged in advance. 
If the spear F is moderate, the ESS is charged and dis-
charged according to the original instructions. The input 
quantities of the second layer fuzzy controller are F and 
Pb(i), and the output quantity is ∆k. The fuzzy control 
input and output membership functions are shown in 
Fig. 6.

The universe of fuzzy control input variable Pb(i) 
is [-1,1], and the fuzzy set is {L,LM,M,MH,H}, which 
sequentially represent values that are negative large, neg-
ative small, zero, positive small, or positive large. The uni-
verse of F is [-0.2,0.2], and the fuzzy set is {VS,S,B,VB}, 
which sequentially represent values that are small, 
slightly small, slightly large, or large. The universe of 
fuzzy control output variable ∆k is [-1,1], and the fuzzy 
set is {NB,PB,N,Z,P,PH,NH}, which sequentially repre-
sent minimum, small, slightly small, moderate, slightly 
large, large, or maximum values. The fuzzy control rules 
are shown in Table 2, and Fig. 7 shows the specific pro-
cess of the proposed control strategy.

5  Simulation analysis of numerical examples
The example scenario is based on the measured wind 
power data of a wind farm with an installed capacity of 
50 MW, and the experiments are conducted to simulate 
integrated control in the combined wind-storage power 
generation system, as shown in Fig. 8.

The topological structure, system functions, and sec-
ondary parameters of the simulation platform refer to the 

(24)H = UVUT

(25)F = U
√
V

Table 1 The first layer of fuzzy control rules

ESOC(i) Pb(i)

PB PS Z NS NB

VS VB VB B M M

S B B M M S

M S VS VS VS S

B S M M B B

VB M M B VB VB
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actual engineering design, as shown in Fig.  9. The plat-
form consists of an energy storage station energy man-
agement system, a wind farm SCADA system, a reactive 
power compensation monitoring system, a booster-sta-
tion integrated automation system, and a system for the 

integrated intelligent monitoring of automatic power 
generation, voltage control, etc.

In this paper, the simulation parameters are mainly set 
by referring to the methods in [38] and [39]. In real-world 
engineering applications within China’s power grid, the 
planned power generation curve is evaluated at 5-min 
intervals. Therefore, we also opt for a 5-min sampling 
period. Table 3 lists the main wind farm and ESS parame-
ter settings. To illustrate the feasibility and superiority of 
the proposed control strategy (Scheme 4), it is compared 
with MPC control Schemes 1, 2 and 3, and Table 4 shows 
the settings of the four control methods.

5.1  Evaluation index
The advantages and disadvantages are evaluated based on 
the following four indicators: power prediction accuracy 
Pre, maximum tracking deviation Pd.max, ESS dead time 
Td, and ESS output coefficient Cb. Each of the indicators 
is descripted as follows.

 (1)(1) Power prediction accuracy Pre

where n is the number of samples, and Cap is the start-
up capacity of the wind farm.

 (2)(2) Maximum tracking deviation Pd.max

where Td is the time when the energy storage 
SOC exceeds the set safety threshold.

 (3)(3) ESS dead time Td

where Td is the time when the energy storage 
SOC exceeds the set safety threshold.

 (4)(4) ESS output coefficient Cb

(26)

Pre =













1−

�

1
n

n
�

i=1

�

Pw(i)− Pp(i)
�2

Cap













× 100%

(27)Pd.max = max
∣

∣Pg(i)− Pp(i)
∣

∣

(28)

Td = Ts ×
N−1
∑

i=0

[

h

(

ESOC(i)

ESOC.min

)

⋃

h

(

ESOC.max

ESOC(i)

)]

h(x) =
{

1, x ≥ 1

0, x < 1

(29)Cb =

√

√

√

√

1

T − 1

T−1
∑

i=1

[ESOC(i)− 0.5]2

Fig. 6 Membership function of the second layer fuzzy controller

Table 2 The second layer of fuzzy control rules

F Pb(i)

L LM M MH H

VS NB PB P NH P

S PB N Z PH Z

B P PH Z N PB

VB PH NH PB PB NB
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where T is the number of sampling periods in 
the energy storage output cycle. The smaller the 
value of Cb, the larger the output capacity.

5.2  Analysis of simulation results
The curves of the actual and planned wind power values 
selected in this paper are shown in Fig.  10. Taking the 
planned wind power in Fig. 10 as a reference, Fig. 11 dis-
plays the effect of the power generation planning curves 
of the wind-storage joint output tracking for the four 

control methods, and Table 5 shows the evaluation indi-
ces for the different control schemes.

As can be seen from Fig.  11, Schemes 1, 2 and 3 can 
largely ensure the joint output of wind-storage to be 
within the allowable deviation band of tracking for most 
of the time, while Scheme 4 fully meets the requirements. 
Table 5 shows that, compared to without energy storage, 
the prediction accuracies of the four control schemes 
with energy storage increase by 10.43%, 5.35%, 8.32%, 
and 11.31%, respectively, while the maximum tracking 

Fig. 7 Control flowchart
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Fig. 8 Simulation test platform
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deviations decrease by 34.79%, 18.25%, 40.41%, and 
58.08%, respectively. In summary, Scheme 4 has the best 
tracking effect, followed by Schemes 1, 3 and then 2.

The energy storage SOC variation curves in Fig.  12 
show that Scheme 1 ESS is in a high energy state during 
the two time periods of 80–200  min and 710–850  min. 
This decreases its charging capacity. Table  5 also shows 
that Scheme 1 ESS dead time is as long as 170 min, and 
the capacity coefficient is 0.226. These do not support 
the ESS for tracking the planned capacity in the future. 

Scheme 2 takes the minimum deviation of ESS remaining 
capacity from the ideal value as the optimization target, 
and the SOC change curve is gradually adjusted toward 
0.5. Although the ESS overrun limit is avoided, the track-
ing effect is poor. Figure 12 shows that the Scheme 3 ESS 
is in a high energy state during the time period of 145–
200 min, which decreases its charging capacity. Table  5 
also shows that Scheme 3 ESS dead time is 55 min, and 
the capacity coefficient is 0.197. These reduce the ability 
of ESS to track planned power output. Combined with 
the ESS power in Fig. 13, Scheme 4 improves the ability 
of the ESS to track the future planned curve by dynami-
cally adjusting the weighting coefficient and charging 
and discharging in advance. Compared with Scheme  1, 

Table 3 Simulation parameters

parameters Symbol Value & Units

Installed capacity of wind farms Cinstall 50 MW

Cycle of control Tc 5 min

Rated capacity of ESS Crated 20 MW·h

Rated power of ESS Prated 10 MW

The deviation band sets the coefficient δ 0.2

Sampling time Ts 5 min

Upper limit of ESS state of charge ESOC.max 0.85

Lower bound of ESS state of charge ESOC.min 0.15

Table 4 Four different control schemes

Control scheme Setup mode Principle of 
optimization

Scheme 1 α = 0 The tracking plan 
has the smallest devia-
tion

Scheme 2 α = 1 The deviation 
of the residual capacity 
of ESS from the ideal 
value is minimal

Scheme 3 – MPC method for mini-
mum output of ESS

Scheme 4 Dynamic adjustment 
α、∆k

The optimization 
method proposed 
in this paper

Fig. 10 Wind power actual output and planned output curve

Fig. 11 Combined output curves of wind-storage with different 
control schemes

Table 5 Evaluation indices

Control scheme Pre/% Pd.max/MW Td/min Cb

Without ESS 84.73 15.29 – –

Scheme 1 93.57 9.97 180 0.226

Scheme 2 89.26 12.50 0 0.134

Scheme 3 91.39 9.11 55 0.197

Scheme 4 94.31 6.41 0 0.145

Fig. 12 SOC variation curves for the different control schemes



Page 13 of 16Yang et al. Protection and Control of Modern Power Systems            (2023) 8:58  

Scheme  4 reduces the dead time and extends the ser-
vice life of the ESS while improving the tracking of the 
planned curve. Compared with Scheme  2, Scheme  3 
ESS output capacity is slightly reduced, but the ability to 
track the wind power planning curve is greatly improved. 
Compared with Scheme  3, Scheme  4 reduces the dead 
time and output coefficient while improving the tracking 
of the planned curve. Therefore, compared with Schemes 
1, 2 and 3, the proposed method effectively balances the 
conflict between energy storage crossing limit and wind 
power plan tracking, and verifies the superiority of the 
proposed method.

5.3  Parameter analysis
In the process of constructing the proposed method, the 
determined rated power Prated, rated capacity Crated, and 
the size of the ESS deviation band setting coefficient δ 
have great impact on the tracking effect. Therefore, it is 
necessary to analyze the influence of relevant parameter 
changes on the control effect of the proposed method.

 (1)(1) Influence of ESS power rating

For the ESS rated capacity Crated = 20 MW·h and the 
deviation band set coefficient δ = 0.2, the change rule of 
the evaluation index of each control scheme with dif-
ferent power ratings of ESS is compared, as shown in 
Fig. 14.

From Fig.  14, it is seen that ESS dead time and out-
put coefficient are less affected by the rated power in 
Schemes 2 and 4, but more affected in Scheme 1. Com-
pared with Scheme 1, the tracking effect of Scheme 4 is 
better when the rated ESS power is greater than 6.5 MW. 
Compared with Scheme 2, although the output capacity 
of Scheme 4 is slightly lower, its power prediction accu-
racy is much higher. Compared with Scheme 3, Scheme 4 
also has better tracking effect and ESS output capac-
ity. Therefore, as the rated power of ESS increases, the 

tracking effects of the four control schemes become bet-
ter, while the control effect of Scheme 4 is the best.

 (2)(2) Impact of ESS rated capacity

For the ESS rated power Prated = 10 MW and the devia-
tion band coefficient of δ = 0.2, Fig. 15 shows the change 
rules of the evaluation indices for each control scheme 
with different rated ESS capacities.

As is seen from Fig.  15, as the ESS rated capac-
ity increases, its dead time decreases substantially and 
the output capacity also decreases for the four control 
schemes. Compared with Schemes 1, 2 and 3, Scheme  4 
has the best tracking effect, mainly because it considers the 
influence of the current ESS residual capacity on the future 
tracking ability and ensures that the ESS charging and dis-
charging ability can cope with possible future wind power 
schedule deviations. That is, the proposed control method 
can appropriately reduce the required ESS capacity.

Fig. 13 ESS output curves for the different control schemes

Fig. 14 Curves of the evaluation indices with different rated powers

Fig. 15 Curve of the evaluation index with different rated capacities
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 (3)(3) Impact of the deviation band setting coefficient

For ESS rated power of Prated = 10 MW and rated capac-
ity of Crated = 20 MW·h, the change rule of the evaluation 
index of each control scheme with different deviation 
band coefficients is compared, as shown in Fig. 16.

With increasing deviation band coefficients, the 
requirement of tracking wind power plan output is 
relaxed, which reduces the ESS charging and discharging 
energy. The ESS dead time and output coefficient pre-
sented in Fig. 16 show that the tracking is worsened with 
each of the three control schemes, although wind power 
prediction accuracy and maximum tracking deviation 
show that Scheme 4 is still better than Schemes 1, 2 and 
3. Therefore, the proposed method is superior.

6  Conclusion
In this paper, a power control strategy based on model 
prediction and double-layer fuzzy control is proposed 
for a combined wind-storage system to track wind power 
plan output that not only tracks wind power plan devia-
tions but also increases the ESS’s ability to track future 
plan deviations. From the findings, we can draw the fol-
lowing conclusions.

(1) An objective function is proposed to minimize 
the deviation of grid-connected power from the 
planned output, and the deviation of ESS remain-
ing capacity from the ideal value. At the same time, 
a method of using the first layer of fuzzy controller 
is proposed to correct the weight coefficients of the 
objective. Compared with Schemes 1, 2 and 3, the 
power prediction accuracy in Scheme 4 is increased 
by 97.43%, 96.55%, and 93.75%, respectively. Com-
pared with Schemes 1 and 3, Scheme  4 reduces 
the dead time by 180 min and 55 min, respec-

tively. Thus, the proposed method reduces the dead 
time and extends the service life of the ESS while 
improving the tracking of the planned curve.

(2) Statistical factor analysis theory is used to construct 
the contradictory factors between the two variables 
of ESS off-limit power and planned power devia-
tion in the future optimization period. A method 
of using the second layer of fuzzy control rules is 
proposed to correct the charging and discharging 
power of the ESS. Compared with Schemes 1, 2 and 
3, the maximum tracking deviation in Scheme 4 is 
decreased by 35.71%, 48.72%, and 29.64%, respec-
tively. Compared with Scheme 1 and 3, the ESS out-
put coefficient in Scheme 4 is decreased by 35.84% 
and 26.40%, respectively. Hence, charging and dis-
charging are carried out in advance to improve the 
utilization level of the ESS and the ESS’s ability to 
track deviations from the future plan.

(3) The effectiveness of the proposed control strategy 
is affected by the ESS’s rated power, rated capacity 
and deviation band setting coefficient. However, 
under the same conditions, the comprehensive 
index of the proposed control strategy is better than 
the indices under Schemes 1, 2 and 3, and effec-
tively offsets the conflict between the planned wind 
power output tracking and the excess of the ESS. 
The proposed control method can appropriately 
reduce the required ESS capacity, so as to improve 
ESS economy.
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