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Abstract 

Natural gas is the main energy source and carbon emission source of integrated energy systems (IES). In existing stud-
ies, the price of natural gas is generally fixed, and the impact of price fluctuation which may be brought by future lib-
eralization of the terminal side of the natural gas market on the IES is rarely considered. This paper constructs a natural 
gas price fluctuation model based on particle swarm optimization (PSO) and Dynamic Bayesian networks (DBN) algo-
rithms. It uses the improved epsilon constraint method and fuzzy multi-weight technology to solve the Pareto frontier 
set considering the system operation cost and carbon emission. The system operation cost is described using Latin 
Hypercube Sampling (LHS) to predict the stochastic output of the renewable energy source, and a penalty function 
based on the Predicted Mean Vote (PMV) model to describe the thermal comfort of the user. This is analyzed using 
the Grey Wolf Optimization (GWO) algorithm. Carbon emissions are calculated using the carbon accounting method, 
and a ladder penalty mechanism is introduced to define the carbon trading price. Results of the comparison illus-
trate that the Pareto optimal solution tends to choose less carbon emission, electricity is more economical, and gas 
is less carbon-intensive in a small IES for end-users when the price of natural gas fluctuates. The impacts of various 
extents of natural gas price fluctuation for the same load are also discussed.

Keywords Low carbon integrated energy systems, Natural gas price fluctuation, Carbon emission accounting, Multi-
objective optimization, GWO

1 Introduction
In the energy industry, carbon neutrality has emerged 
as a prominent research topic of significant interest. 
China, in particular, has made a commitment to imple-
menting robust measures aimed at achieving a carbon 
peak by the year 2030, followed by the ambitious goal of 

carbon neutrality by 2060 [1]. Among electricity, build-
ings, transportation, and fossil fuels, the electricity indus-
try has the largest carbon emission and is the key to 
achieving carbon neutrality [2]. In the existing research 
on the low-carbon transformation of the electricity 
industry, the concept of the Integrated Energy System 
(IES) enables the coordinated planning and adaptable 
dispatch of diverse energy systems, leading to substantial 
enhancements in energy utilization efficiency [3], pro-
moting the consumption of renewable energy [4], and 
minimizing operational expenses plays a crucial role as a 
facilitator in the transition towards a low-carbon trans-
formation process [5].
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IES was first put forward in [6]. It has been widely stud-
ied, taking advantage of energy coupling [7], multi-energy 
complementarity [8], and improved storage conversion 
flexibility. Heat pumps, boilers, and combined heat and 
power (CHP) plants are introduced in [9] to realize the 
coupling of electricity, thermal energy, natural gas, and 
other energy forms, and has been widely implemented at 
different scales, including the district [10], and regional 
levels [11] and industrial parks [12]. Early studies have 
demonstrated the utility of the Integrated Energy System 
(IES) in reducing operational costs and enhancing the 
integration of renewable energy sources, particularly in 
scenarios where processes exhibit a degree of homogene-
ity in [13] in which processes are relatively homogeneous.

In subsequent investigations, a two-level optimiza-
tion algorithm was employed to address the lower-level 
objectives, aiming to minimize repetition of the original 
content, such as the thermal comfort of the user [14], 
the cost of energy storage equipment [15], and the prof-
itability of secondary users [16]. These are combined to 
form a two-level model while ensuring the upper-level 
objectives, resulting in more comprehensive results and 
greater reference significance for realistic operation. On 
the other hand, a multi-objective model can also be con-
structed, encompassing various aspects such as energy 
cost, energy efficiency level [17], and demand response 
[18]. The optimization of this multi-objective model is 
accomplished using either Pareto optimal or heuristic 
algorithms, allowing for considerations of multiple objec-
tives simultaneously.

From the viewpoint of carbon emission management in 
an IES, reference [19] analyzes the multi-objective func-
tions of minimum cost and carbon emission using the 
Pareto frontier. The same multi-objective optimization is 
used in [20, 24] by using the mixed-integer programming 
and weight sum technique to achieve the appropriate bal-
ance between operating and emission costs.

As for the uncertainty of the volatility of energy prices, 
previous research has focused mainly on electricity mar-
ket coupling the energy hub [21] or IES system [22], with 
few studies on the fluctuation of the natural gas prices. 
As an important energy component in IES, the purchase 
price of natural gas is generally fixed in past research [23, 
24], while further opening of its electricity trading mar-
ket in China will also liberalize the future terminal side 
of the natural gas market trading. Reference [25] studies 
the multi-objective optimization of the natural gas price 
fluctuation range in a distribution network and discusses 
the relationship between user energy cost and a flexible 
distribution network. Reference [25] discusses the inte-
grated energy distribution system model to increase the 
robustness of the system, and considered gas price fluc-
tuation. In [26], the PSO-ALS-optimized GRU network is 

used to build a long-term prediction model of natural gas 
price, whereas [27] uses a DBN model to build a short-
term natural gas price fluctuation model and two-level 
optimization model to examine the relationship between 
user thermal comfort and energy use economy.

However, both [25, 27] only consider the economy of 
energy use, without considering carbon emission in the 
optimization results. This is not appropriate for the cur-
rent situation in China. Currently, with the concept of 
carbon neutrality, China is setting up carbon trading 
centers at seven provincial levels [28], and the prices of 
natural gas and electricity, which are the main carriers of 
carbon, will be the first to affect the carbon emission and 
the price of carbon trading.

To provide a viable operating model for future system 
operators to participate in the natural gas market and 
carbon emission market trading, this paper develops a 
low-carbon economic multi-objective dispatch model of 
IES considering the price fluctuation of natural gas and 
carbon emission accounting. This explores system eco-
nomic and environmental options in the light of fluctu-
ating natural gas prices. The main contributions of this 
work are:

(1) A multi-objective model of IES based on natural 
gas price fluctuation is built, one which guarantees 
thermal comfort and reduces carbon emissions.

(2) A dynamic Bayesian network model (DBN) 
improved by particle swarm optimization (PSO) is 
used to study the fluctuation mechanism of natural 
gas price and to avoid network redundancy.

(3) An improved epsilon constraint method and fuzzy 
multi-weight technology are used to solve the 
Pareto frontier set considering system operation 
cost and carbon emissions, while the robustness of 
natural gas price fluctuation is also studied.

2  Framework of the integrated energy system 
with price fluctuation

2.1  Steady‑state matrix of the energy hub
The IES studied in this paper, as shown in Fig. 1, contains 
three types of energy: electricity, heat and gas. From the 
user perspective, it can include the upper power grid, 
energy dealers, and end users. The system can include 
distributed energy (DG), energy hub (EH), upper power 
grid, upper gas network, and energy storage equipment. 
The distributed energy can include photovoltaic power 
generation (PV), wind power generation (Wind), biogas, 
and battery energy storage systems (BESS). Energy stor-
age equipment can include BESS, thermal energy storage 
(TES), and the gas tank. Energy hub can include com-
bined CHP units, heat pumps (HP), renewable energy 
sources (RES), BESS, and TES. From the perspective of 
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energy use, the electricity demand can be met by the 
upper power grid, CHP, electric energy storage sys-
tems, and renewable generation equipment. The heat 
demand can be met by both electric boiler and electric 
HP, whereas the gas demand can be met by the upper gas 
network and gas tanks. The system adds the natural gas 
market component compared to the previous IES, and 
the impact of natural gas price fluctuation on the operat-
ing cost and carbon emission of the IES is explored.

Various converters and storage are integrated into the 
process of building equipment models, and equipment 
can be combined or coupled to meet the various energy 
demands of end users. This can greatly increase the flex-
ibility and synergies in the whole system. The energy hub 
is a connected matrix that depicts the interaction of input 
and output energy [21]. The steady-state matrix of the 
energy hub, in which various energy carriers, storages, 
and converters can be divided into electricity, thermal, 
and gas aspects, is shown as:

where LE, LH, and LG are the electricity, thermal, and gas 
loads, respectively. SE, SH, and SG are the energy of the 
electricity, heat, and gas, respectively.

2.2  Price fluctuation model based on PSO‑DBN
At present, the electricity and carbon trading mar-
kets have been opened in some provinces in China. It is 
expected that the natural gas price will gradually become 
market-oriented. Thus the price fluctuation of natural 
gas appears to be an inseparable part of considerations in 
future IES. From the existing North American and Euro-
pean natural gas markets, natural gas prices are related 
to the price of refined oil products [29]. The demand 
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relationship, stock market fluctuation, and seasonal 
changes have also been proven to be vital to price fluc-
tuation [30].

Considering the characteristics of uncertainty, nonline-
arity, and ‘infinite’ factors, this paper uses a Bayesian net-
work (BN) [31] to carry out various data to obtain a price 
fluctuation model of natural gas. Bayesian networks can 
be divided into Static (SBN) and Dynamic (DBN) [31]. 
For the SBN model, all the causality in the network struc-
ture is seen at the same time with only the value of the 
nodes changing, whereas the causality in the DBN model 
can occur between two different time points. The SBN 
network can be expressed as:

where parents(Xi) is the upper node of Xi, parameter 
collection θ = {θ1,θ2,…,θn} is the conditional probability 
distribution, and θi = P(Xi|pa(Xi)) is the conditional prob-
ability distribution of Xi.

In this section, the discrete Bayesian network model is 
built. It is suited for discrete data (polynomial function), 
and the joint probability distribution function of each BN 
is:

The transmission network between adjacent BNs is:

By introducing multiple influencing factors into the 
BN network, temporal factors can be introduced into 
the stationary BN network. The drivers are divided into 
instantaneous impact and lag factors [32], such as finan-
cial markets, sudden disasters, and hidden variables. The 
hidden variables here are the hidden factors that are not 
considered or studied in the current literature, but can 
have great influence on natural gas prices [32]. By intro-
ducing hidden variables, the established DBN of natural 
gas is closer to actual market operation. The topological 
structure of the DBN model and the variable names in 
the DBN model can be seen in [27].

When building a DBN model, the number of nodes in 
the hidden layer of the DBN model is usually determined 
by experience or experiment. It is easy to cause redun-
dancy in the network structure. Considering that DBN 
uses the greedy unsupervised algorithm to train each 
RBM network layer by step during training, this paper 
uses the PSO algorithm to optimize the number of neu-
rons in each hidden layer, so that the model can map the 
original signals to different feature spaces and minimize 

(2)P(X1,X1, ...,Xn) =
n
�
i=1

P(Xi|parents(Xi))

(3)

P(X[1],X[2], ...,X[T]) = PB0 X[1])
T
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N
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(
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Fig. 1 Dispatch structure of the IES considering the price fluctuation 
of natural gas
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the loss of feature information. The PSO optimization of 
a DBN network can be divided into the following three 
steps:

(1) Set the basic parameters of the PSO-DBN network 
(including the number of particle groups, evolution 
times, the number of DBN network layers, etc.), 
and initialize the number of nodes of the hidden 
layer using the PSO algorithm.

(2) The PSO updates the number of hidden nodes 
according to its particle update rules and the objec-
tive function. Once the optimal number of hidden 
nodes satisfying the target is found, the final net-
work structure is determined.

(3) The samples are used to train the PSO-optimized 
DBN network, and the greedy supervision algo-
rithm is used to train each RBM network layer by 
layer to obtain the final network structure and 
weight parameters.

After building the PSO-DBN model, the price fluctua-
tion probability of natural gas is calculated and shown in 
Table 1.

3  Multi‑objective optimization model
This paper focuses on the two aspects of economy and 
carbon emission in an IES. To explore the choices, the 
minimum operating cost and minimum carbon emission 
cost are modeled as the optimization functions.

3.1  Minimum integrated operating costs
3.1.1  Latin hypercube sampling
The IES, which considers the gas market as Fig. 1 shows, 
contains solar energy and wind energy whose output 
power uncertainties have been studied extensively in 
recent years [33]. Meanwhile, the correlation between 
different distributed energy sources also needs to be con-
sidered. Therefore, a Latin hypercube sampling method is 
used to study the uncertain characteristics of wind power 
and PV output:

where rm,l is the sampling value in the mth variable’s lth 
section, and Fzm

−1 is the corresponding inverse function 
of the cumulative distribution function (CDF).

As the number of samples in LHS increases, the matrix 
becomes unstable when considering a symmetric positive 
definite matrix. This paper uses the modified alternat-
ing projections technique to locate a nearest matrix [34], 
and the nearest matrix can be managed to assure sym-
metry and positive definiteness. Equation (6) summarizes 
the alternate projections approach. When the number of 
iterations approaches infinity, the output X is proven to 
be the desired correlation matrix represented by P.

After using the LHS method to consider the correlation 
between different PV devices and wind generators, typi-
cal scenes are generated after using the backward scene 
reduction method [35]. Figure 2 shows the predicted out-
put of wind and PV, in which the upper and lower dis-
trict of the curves are the 2000 initial scenes of renewable 
energy, and the curves are the practical scenes after the 
backward scene reduction method.

3.1.2  Thermal comfort of customers
Different from the user electric load demand, the thermal 
load, because of its obsoleteness characteristics, means 
that any temperature increases or falls in the room at a 
certain time will not be perceived by the human body. 
In this paper, the interval estimation method is used to 
quantize the thermal comfort degree of the human body. 
Firstly, Predicted Mean Vote (PMV) indicators are built 
to estimate the thermal comfort degree, and the relation 
between PMV degree and the temperature is shown in 
Fig. 3 [36]. The equation can be expressed as:

(5)

rm,l = F−1
Zm

(

l − a

L

)

m = 1, 2 . . . ,M, l = 1, 2, . . . ,L

(6)

X = PU(PS(PU(...PS(P)))) → P

PU(P) = P − diag
(

diag(P − I)
)

PS(P) = Z × diag(max(vi, 0))× ZT

P = ZAZT

A = diag(vi)

Table 1 Conditional probability results

P_CT P(priceT |CT )

(−∞, −0.2) [−0.2, −0.1) [−0.1, −0) [0, 0.1) [0.1, 0.2) [0.2, + ∞)

(−∞, −0.15) 0.3985 0.098 0.114 0.112 0.123 0.1546

[−0.15, 0) 0.1463 0.3781 0.1053 0.1315 0.1458 0.0929

[0, 0.15) 0.1128 0.1043 0.4072 0.1358 0.1137 0.1362

[0.15, + ∞) 0.1026 0.1165 0.0982 0.1248 0.4849 0.073
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From (7), the user thermal comfort temperature is 
26 ℃, and according to China’s ISO7730, the user ther-
mal comfort interval is [−2.5, 2.5], indicating a tem-
perature interval of [23.5–28.5] which the users cannot 
perceive. Therefore, adjusting the temperature in the 
room can reduce the heating capacity in the room, and 
the energy cost of the system and the carbon emission 
of the system [14], as:

where σ is a penalty factor, which can be determined 
from [37]. Tin

t+1 is the indoor temperature at the (t + 1)th 

(7)DPMV =

{

0.9895(T − 26), T ≥ 26
0.4065(−T + 26), T < 26

(8)

Min
∑

t∈T

pricete ·
(

Pt
B + Pt

CHP.e

)

+ σ ·

(

Tt+1
in − Topt

)2

time slot, and Topt is the most comfortable temperature 
according to PMV.

In this paper, the heating equipment of the user is set 
as a CHP unit and an electric boiler. When calculating 
the user heat load, the thermodynamic difference of 
the user room is not considered, and the time domain 
differential thermodynamic model in [14] is uniformly 
adopted.

3.1.3  Minimum costs objective function
For the system proposed in this paper, total operating 
costs can be expressed by the following equation, which 
contains six parts, as:

where Fu,t is the cost of purchasing the electricity and the 
gas energy, Fre,t is the penalty cost of wind or PV aban-
donment, Fchp,t is the operating cost of the CHP unit, 
Flo,t is the cost of energy charging and discharging losses, 
Fcon,t is the equipment operation and maintenance cost, 
and Fσ,t is the heating cost penalty function for consider-
ing user thermal comfort. The above six costs are further 
described in (10)–(15) below, respectively.

where pricee
t is the electricity price at the tth period, 

pricegas
t is the gas price at the tth period, Pgrid,t is the elec-

tricity purchased from the upper grid at the tth period, 
and Vgrid,t is the gas quantity purchased from the upper 
network at the tth period.

where λW is the unit penalty of abandoning wind power, 
while Pwind,t

f and Pwind
t are the forecast and actually used 

power of wind generators at the tth time slot, respec-
tively. λP is the unit penalty of abandoning PV power, 
while Ppv,t

f and Ppv
t are the forecast and actually used PV 

power at the tth time slot, respectively.

where λon
CHP and λoff

CHP are the start-up/ shut-down 
costs of the CHP unit, ut is the binary variable of 1 or 0 
representing on or off state of the CHP at the tth time slot.

(9)min F1 =

T
∑

t=1

(Fu,t + Fre,t + Fchp,t

+Flo,t + Fcon,t + Fσ,t)
·�t

(10)Fu,t =

T
∑

t=1

[pricete · Pgrid,t

+pricetgas · Vgrid,t] ·�t

(11)Fre,t =

T
∑

t=1

[�w · (Pf
w,t − Pact

w,t)

+�p · (P
f
pv,t − Pact

pv,t)] ·�t

(12)

Fchp,t =

T
∑

t=1

[

�
chp
on · ut · (1− ut−1)+ �

chp
off · ut−1 · (1− ut)

]

·�t

Fig. 2 Output of new energy equipment
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where λloss is the cost of the energy loss, Pch,t and Pdis,t are 
the charging and discharging power of the BESS at the tth 
time slot, respectively. ηe

ch and ηe
dis are the charging and 

discharging efficiencies of the BESS, respectively.

where αchp, αeb, αwind, αBESS, αtank, and αpv are the main-
tenance charges of the CHP unit, electric boiler, 
wind power unit, BESS, gas tank, and PV power unit, 
respectively.

where σ is the penalty factor, Tin
t+1 is the indoor tempera-

ture at the (t + 1)th time slot, and Topt is the most com-
fortable temperature people feel indoors.

3.1.4  Minimum carbon emissions
In China, carbon credits are generally distributed by the 
government. For producers and operators, carbon credit 
surplus or deficit can be traded in carbon trading mar-
kets. In this paper, the electricity purchased from the 
upper grid comes from thermal power, and the refer-
ence line method is adopted to determine the free carbon 
emission of the system. By reducing the actual carbon 
emission minus the free carbon emission obtained from 
the market purchase, the carbon emission generated by 
the actual operation of each piece of equipment in the 
system is obtained.

where F2 is carbon emission and Cem is the amount of 
actual carbon emission.

where Eco2 is the amount of total carbon emission and 
Eco2

* is the amount of free carbon emission.

(13)

Flo,t =

T
∑

t=1

�loss ·

[

Pch,t ·
(

1− ηche

)

+ Pdis,t ·
(

1− ηdise

)]

·�t

+

T
∑

t=1

�loss ·

[

Vch,t ·

(

1− ηchtank

)

+ Vdis,t ·

(

1− ηdistank

)]

·�t

(14)Fcon,t =

T
∑

t=1

[

αchp · Pchp,t + αeb · Peb,t + αpv · P
f
pv,t + αwind · P

f
w,t + αBESS ·

(

Pch,t + Pdis,t

)

+ αtank ·
(

Vch,t + Vdis,t

)

]

·�t

(15)Fσ,t =

T
∑

t=1

σ ·

(

T t+1
in − Topt

)2
·�t

(16)min F2 =

T
∑

t=1

Cem·�t

(17)Cem = Eco2 − E∗
co2

(18)E∗
co2

= E∗
grid,co2

+ E∗
gas,co2

where Egrid,co2 and Egrid,co2
* are the amounts of total car-

bon emission and free carbon emission coming from the 
upper grid purchased, respectively. Egas,co2 and Egas,co2

* 
are the amounts of total carbon emission and free carbon 
emission coming from the gas purchased, respectively. βe 
and βh are the respective carbon emissions per unit elec-
tricity and heat, whileβe

* and βh
* are the free carbon emis-

sions per unit electricity and heat, respectively.
There are currently seven provincial carbon trading 

centers in China, and carbon trading prices fluctuate 
with the number of transactions and trading hours per 
day. There is no specific literature on carbon trading 
prices. In future research, a detailed study of the car-
bon trading price will be conducted to more accurately 
describe the cost of carbon trading for users. This paper 
adopts the ladder penalty mechanism to define the car-
bon trading price [38], and the specific carbon trading 
price is expressed in (24) [39].

As expressed in (24), if the actual carbon emission of 
the operator is less than the rated carbon emission, the 
operator can make a profit from selling the extra rated 
carbon emission to others, while the price of carbon 
emission quota is inversely proportional to the amount 
of selling carbon emission. On the contrary, the opera-
tor needs to enter the carbon trading market to buy a 
missing carbon emission quota. When the actual car-
bon emission of the operator is greater than the sum 
of the rated carbon emission and the carbon emission 
amount allowed to trade from the market, the opera-
tor also needs to pay a penalty for the excess amount, 

(19)E∗
grid,co2

= β∗
e ·

T
∑

t=1

Pgrid,t ·�t

(20)E∗
gas,co2

= β∗
h ·

T
∑

t=1

Vgrid,t ·�t

(21)Eco2 = Egrid,co2
+ Egas,co2

(22)Egrid,co2 = βe ·

T
∑

t=1

Pgrid,t ·�t

(23)Egas,co2
= βh ·

T
∑

t=1

Vgrid,t ·�t
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with the penalty increasing proportionally as the excess 
amount increases.

where c is the benchmark price of carbon emission, h is 
the carbon credits at different stages, and α is the penalty 
increase factor.

3.1.5  Network constraint
As well as the multi-objective functions, the typical 
constraints of the proposed IES can be divided into five 
parts. A nonlinear quadratic model appears in CHP unit 
constraints and constraints of natural gas pipelines. For 
quadratic problem solving, it is necessary to ensure the 
convexity of the problem, so piecewise linear functions 
have been used to ensure the determined size and the 
specific method [40].

3.1.5.1 Equipment output and input constraints All the 
equipment in this paper works within the normal range 
of equipment output, i.e., the maximum output does not 
exceed the rated maximum output, the minimum output 
is not lower than the rated minimum output, the maxi-
mum input does not exceed the rated maximum input, 
and the minimum input is not lower than the rated mini-
mum input.

where Pout(t) and Pin(t) are the output and input power of 
the equipment at the tth time slot, respectively. η is the 
conversion efficiency of the equipment. Pin

min and Pin
max 

are the minimum and maximum inputs of the equip-
ment, respectively.

3.1.5.2 Battery constraints State of charge (SOC) indi-
cates the battery’s remaining capacity, and (26) prevents 
the overcharging and over-discharging of battery, as:

where Ee is the electric quantity of the battery energy 
system.

(24)priceco2,t=







































−ch− c(1+ ∂)
�

E∗
co2
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�

−h < Eco2 − E∗
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≤ 0

c
�

Eco2 − E∗
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�

0 < Eco2 − E∗
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≤ h

ch+ c(1+ ∂)
�

Eco2 − E∗
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− h
�

h < Eco2 − E∗
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≤ 2h

c(2+ ∂)h+ c(1+ 2∂)
�

Eco2 − E∗
co2

− 2h
�

2h < Eco2 − E∗
co2

≤ 3h

c(3+ 3∂)h+ c(1+ 3∂)
�

Eco2 − E∗
co2

− 3h
�

3h < Eco2 − E∗
co2

≤ 4h

c(4 + 6∂)h+ c(1+ 4∂)
�

Eco2 − E∗
co2

− 4h
�

4h < Eco2 − E∗
co2

(25)
Pout(t) = η · Pin(t)

Pmin
in ≤ Pin(t) ≤ Pmax

in

(26)

SOCBES,t = SOCBES,t−�t +
ηche Pch,t−�t�t

Ee
−

Pdis,t−�t�t

ηdise Ee

The real-time charging and discharge of battery storage 
meet the constraints of maximum charging power and 

maximum discharge power, and the dual variable is used 
to restrict the battery storage to only charge or discharge 
at the same time.

where Pch,max and Pdis,max are the maximum allowed 
charging and discharging power, respectively, while kt 
and rt are all binary variables.

3.1.5.3 Natural gas storage constraints The SOC of a 
natural gas storage tank should be limited to the above-
mentioned battery constraints [14], as:

where Vbio,t is the SOC of biogas tank at the tth time 
slot, while Vbio,min and Vbio,max are the minimum and 
maximum storage of the biogas tank, respectively. VGDS,t 
and VGCS,t are the amounts of gas tank provided and 
purchased at the tth time slot, respectively. VGDS,min, 
VGCS,min, and VGDS,max, VGCS,max are the lower and upper 
speeds of the gas tank charge or discharge, respectively. 
fgas,t = 0 means the gas tank at the discharging state, while 
fgas,t = 1 indicates the gas tank at the charging state.

3.1.5.4 CHP unit constraints In this paper, the output 
characteristics of CHP unit are considered. The power 
change of CHP unit per unit of time should meet certain 

(27)Pch,t ≤ Pch,max · kt

(28)Pdis,t ≤ Pdis,max · rt

(29)kt + rt ≤ 1

(30)Vbio,t = Vbio,t−�t + VGCS,t−�t − VGDS,t−�t

(31)Vbio,min ≤ Vbio,t ≤ Vbio,max

(32)
0 ≤ VGCS,t ≤ fgas.t · VGCS,max fgas.t

∈ {0, 1}

(33)
0 ≤ VGDS,t ≤ (1− fgas.t)VGDS,max fgas.t

∈ {0, 1}
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constraints, and the secondary nonlinear convex function 
is used to describe the output characteristics of the CHP 
unit [41], as:

where ramp is the ramp rate of the CHP unit. QCHP,min 
and QCHP,max are the lower and upper limits of the ther-
mal output of the CHP unit, respectively. GLt is the gas 
consumption of the CHP unit at the tth time slot, and a1, 
b1, and c1 are the gas consumption coefficients.

3.1.5.5 The constraints of  a  natural gas pipeline The 
natural gas pipeline model is partially simplified before 
modeling in [14], e.g., excluding the temperature change 
of natural gas during pipeline transmission, the friction of 
natural gas between pipeline and pipe wall, and the vari-
ation of compression ratio of a natural gas compression 
station. After simplification, the transmission model of 
natural gas in the pipeline can be derived from the law of 
conservation of energy and flow conservation, as:

where ωij,t is the gas flow from node i to node j in the gas 
network at the tth time slot, and ωwell

j,t is the gas flow of 
node j from the gas source at the tth time slot. ωchp

j,t and 
ωload

j,t are the gas consumption of the CHP unit and gas 
load of the node j at the tth time slot, respectively. Z(j) 
is the set of gas pipelines which set the node j as the end 
node, while v(j) is the set of gas pipelines which set the 

(34)
QCHP,min ≤ PCHP,tη

CHP
h /ηCHP

e

≤ QCHP,max

(35)
∣

∣PCHP,t − PCHP,t−�t

∣

∣ ≤ ramp

(36)GLt = a1 + b1 · PCHP,t + c1 ·
(

PCHP,t

)2

(37)ωj,t +
∑

ij∈Z(j)

ωij,t =
∑

jk∈v(j)

ωjk,t

(38)ωij,t + ωjk,t = 0

(39)ωj,t = ωwell
j,t − ωCHP

j,t − ωload
j,t

(40)ωij,t = Cij

√

∣

∣

∣
ψ2
i,t − ψ2

j,t

∣

∣

∣

(41)ψmin ≤ ψi,t ≤ ψmax

(42)ωij,min ≤ ωij,t ≤ ωij,max

(43)0 ≤ ωloadcut
j,t ≤ ωload

j,t

node j as the start node. ψi,t is the gas pressure of the 
node i at the tth time slot, while ψmin and ψmax are the 
minimum and maximum gas pressures of the node at 
the tth time slot, respectively. ωij,min and ωij,max are the 
respective minimum and maximum gas flows of the gas 
pipeline from node i to node j, and Cij is the pipeline con-
straint of a gas pipeline from node i to node j.

4  Solution method
Based on the multi-objective model built in the previous 
section, the Grey Wolf Optimization (GWO) algorithm 
is used first. This considers the quadratic form of the 
objective function. The multi-objective solution method 
based on the improved epsilon constraint is then used to 
examine the Pareto frontier sets, and finally, fuzzy multi-
weight technology is used to determine the optimal 
result.

4.1  The grey wolf algorithm
The GWO algorithm is a neoteric bio-intelligence algo-
rithm proposed by Mirjalili [42], which is based on wolf 
pack group intelligence. It simulates the wolf wandering, 
summoning, and sieging behaviors, and the head wolf 
generation rules. This algorithm can integrate the genetic 
algorithm (GA) and basic PSO algorithm with all their 
advantages, and use a nonlinear control parameter to 
guarantee a more rapid convergence rate of late iteration.

In this paper, GWO is used to solve the minimum inte-
grated operating cost in (25), which contains a quadratic 
form. Assuming the spatial dimension of the optimal 
solution of integrated operating cost is d and the number 
of the wolves is N, the location of ith wolf is given as:

Using a, b and c to represent the first, second, and third 
optimal solutions of the whole wolf pack, respectively, 
the range of the target solution can be expressed as [42]:

where t is the iteration number, Xp(t) is the location of 
the optimal solution, while X(t) and X(t + 1) express the 
location changes between the adjacent location of the 
optimal solution. A is convergence factor, c is a swing fac-
tor, and the computational formulas are:

where r1 and r2 are random numbers between [0,1]. a is a 
distance controlling parameter, given as:

(44)Xi =

{

X1
i ,X

2
i , ...,X

d
i

}

, i = 1, 2, ...,N

(45)X(t + 1) = Xp(t)− A ·
∣

∣c · Xp(t)− X(t)
∣

∣

(46)
A = 2a · r1 − a

c = 2 · r2
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where Tmax is the maximum number of iterations. aini 
and afin are the initial and end values, respectively.

Using (46) and (47) to get the locations of a, b, and c as:

where Xnext(t + 1) is the location for the next iteration, 
and Xa is the optimal solution of GWO.

4.2  Multi‑objective optimization with epsilon constraint
Given that the two optimization models proposed in 
Sect.  3 are minimized objective functions, the intrin-
sic connection between the minimum operating cost 
and the minimum carbon emission is difficult to deter-
mine. Therefore, this paper uses the improved epsilon 
constraint method to solve multi-objective models. This 
helps to examine the choice between economy and low-
carbon in different Pareto frontier sets [25]. As the basal 
epsilon constraint method tends to maldistributed Pareto 
frontier sets [43], the improved epsilon method adopted 
in this paper uses the utopia line [44] to improve the uni-
formity of the Pareto frontier set distribution. To reduce 
the influence of the order of magnitude and dimension 
of the objective functions on the final result, the formal 
optimization results are normalized as:

where F1’ is defined as the minimum integrated operat-
ing cost, and F2’ is defined as the minimum carbon emis-
sion. x1* and x2* represent the optimal results of F1’ and 
F2’, respectively.

The Pareto frontier can be obtained by optimizing (50) 
and (51), and iteratively adjusting the essential param-
eters ε2,k.

After determining the Pareto frontier, we use fuzzy 
multi-weight technology to determine the score of each 
solution belonging to the optimal target level of member-
ship and then the optimal solution. The detailed calcula-
tions are:

(47)a = aini − (aini − afin) ·
t

Tmax

(48)







X1(t + 1) = Xa(t)− A1 · |c1 · Xa(t)− X(t)|
X2(t + 1) = Xb(t)− A2 · |c2 · Xb(t)− X(t)|
X3(t + 1) = Xc(t)− A3 · |c3 · Xc(t)− X(t)|

(49)

Xnext(t + 1) =
X1(t + 1)+ X2(t + 1)+ X3(t + 1)

3

(50)F1(x) =
F ′
1(x)− F∗

1

(

x∗1
)

F∗
1

(

x∗2
)

− F∗
1

(

x∗1
)

(51)F2(x) =
F ′
2(x)− F∗

2

(

x∗2
)

F∗
2

(

x∗1
)

− F∗
2

(

x∗2
)

Equations  (53)–(55) are the values of the objective 
function’s upper, middle, and lower membership degrees 
at the kth iteration, respectively. Fi,pumean represents the 
objective function’s average, and the final solution of each 
objective function can obtain the final objective result, as:

4.3  Flowchart of solution process
The flowchart of the solving process is shown in Fig.  4 
and can be divided into 3 parts. The left part is the GWO 
optimization, which is used to solve the quadratic convex 
function (8). The middle part and the right part are the 
processes of multi-objective optimization with epsilon 
constraint. Compared with previous research, the right 
part shows the fuzzy multi-weight technology which is 
used to determine the score of each solution belonging to 
the optimal target level of membership. All the equations 
can be seen in Fig. 4.

5  Case studies
5.1  Basic configurations
The system architecture for the case studies is shown 
in Fig. 5, in which the power grid connects a 1200 kWh 
BESS, PV equipment, and wind turbine. The network 
encompasses four nodes, namely the upper gas field, 
gas tank, Combined Heat and Power (CHP) unit, and 
residential consumers, which collectively facilitate gas 
utilization. To meet the thermal load demands, two 
potential sources are available: an electric boiler with 
an installed capacity of 800  kW and a CHP unit with 
an installed capacity of 3300  kW. Detailed specifica-
tions of the remaining units are provided in Table  2, 
while Fig.  6 graphically represents the 24-h profiles of 
electric load and gas load for a typical winter’s day. Per-
tinent information regarding predicted temperature 
and electricity price can be found in Fig. 7. The baseline 

(52)FUZZYi,k = αiϑ
u
i,k + βiϑ

m
i,k + γiϑ

l
i,k

(53)ϑu
i,k =

Fi,pumax − Fi,pu,k

Fi,pumax−Fi,pumin

(54)ϑm
i,k =







Fi,pumax−Fi,pu,k
Fi,pumax−Fi,pumean

, Fi,pu,k ≥ Fi,pumean

Fi,pu,k−Fi,pumin

Fi,pumean−Fi,pumin
, Fi,pu,k ≤ Fi,pumean

(55)ϑ l
i,k

=
Fi,pu,k − Fi,pumin

Fi,pumax − Fi,pumin

(56)
OBJ∗ =

[

F1, pu
∗, F2, pu

∗, .....F∗
i,pu

]

F∗
i,pu = max

(

FUZZYi,k
)
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gas price is fixed at 2.73  m3/￥, while its fluctuation 
adheres to the model presented in Sect.  2. For addi-
tional insight, the intricate parameters governing the 

natural gas networks can be found in [14]. This case is 
implemented in MATLAB R2020b and the commercial 
optimization solver Gurobi (Version 9.1.2).

Fig. 4 Flowchart of the multi-objective optimization method

Fig. 5 Structure of the IES network
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5.2  Analysis of multi‑objective optimization
5.2.1  Energy consumption
Figure 8a and b show the electrical output and gas out-
put of the IES when the system operating strategy is to 
minimize operating cost (MOC), In comparison, Fig. 9a 
and b show the electricity and gas outputs when the sys-
tem operating strategy is to minimize carbon emission 
(MEC). As can be seen in Figs. 8a and 9a, when the sys-
tem operating strategy is MEC, the output of the electric 
boiler is reduced, and the CHP unit is used as the main 
heat source. Upper trading with the grid also decreases 

as the system reduces carbon emission. As can be seen in 
Figs. 8b and 9b, the system will correspondingly increase 
its purchases to the upper gas grid when in MEC.

From Table  3, it can be seen more intuitively that in 
MEC, the operating cost of the system will increase. In 
terms of energy purchase, the purchases from the upper 
grid and gas network are increased, and the dependence 
on external energy sources is greater. In terms of renew-
able energy sources, because of the increased depend-
ence on external energy sources, the consumption of 
new energy sources is reduced to a certain extent, and 

Table 2 Parameters of the units

Carbon emission βe = 1.08 kg/kW βe
* = 0.728 kg/kW

βh = 0.3672 kg/kW βh
* = 0.234 kg/kW

α = 0.25 c = 0.254

h = 80 kg

CHP ηe
CHP = 0.55 ηh

CHP = 0.4

PCHP.e.min = 32 kW PCHP.e.max = 1320 kW

PCHP.h.min = 44 kW PCHP.h.max = 1815 kW

ramp = 200 kW

Electric boiler PB
max = 800 kW ηB = 0.75

Battery energy storage system Ee.min = 120 kW Ee.max = 1080 kW

Pch,min = 40 kW Pdis,min = 400 kW

Pdis,min = 40 kW Pdis,max = 400 kW

ηe
ch = 0.91 ηe

dis = 0.91

Gas tank Vbio,min =  120m3 Vbio,max =  1200m3

VGDS,max =  300m3/h VGCS,max = 300  m3/h

Unit cost λon
CHP = 52 ￥/kW λoff

CHP = 52 ￥/kW

λloss = 6.5 ￥/kW λW = 0.47 ￥/kW

λP = 0.49 ￥/kW

Maintenance cost αchp = 0.03 ￥/kW αeb = 0.04 ￥/kW

αwind = 0.05 ￥/kW αBESS = 0.026 ￥/kW

αtank = 0.011 ￥/kW αpv = 0.039 ￥/kW

Fig. 6 Predicted gas load and power load Fig. 7 Predicted temperature and electricity price
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the amount of wind and PV abandoned is expanded. In 
terms of energy transmission, electrical energy storage 
and gas tank are used more frequently. For heating, the 
penalty cost for misjudging the thermal comfort of users 
becomes greater, the carbon emission of the system is 
reduced, but the thermal comfort of the system is also 
reduced.

5.2.2  Carbon emission
Table 4 presents the carbon emissions data for the system 
in two different operational modes, namely the Mode of 
Electricity Consumption (MEC) and the Mode of Gas 
Consumption (MOC). Additionally, Fig.  10 illustrates 
the specific carbon emissions associated with electric-
ity and gas purchases on each occasion. A notable find-
ing in MEC is the substantial reduction in electricity 

purchased from the upper tier, resulting in a decrease in 
carbon emissions. This reduction in electricity purchase 
can be effectively compensated for by the thermoelectric 
coupling of the CHP unit, enabling it to meet the reduced 
electrical load demand while simultaneously fulfilling 
the heat supply requirements that would have otherwise 
relied on the electric boiler’s output. Consequently, the 
economic viability of directly purchasing electricity at 
the terminal is found to surpass that of purchasing gas 
directly at the terminal. Moreover, the direct terminal 
purchase of electricity exhibits lower carbon emissions 
than the direct terminal purchase of gas.

The MEC mode can also increase the frequency of gas 
tank use and the independence of the gas system. In sum-
mary, electricity is more economical, and gas is less carbon-
intensive in a small integrated energy system for end-users.

Fig. 8 Electrical and gas outputs of MOC Fig. 9 Electrical and gas outputs of MEC
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5.2.3  Storage equipment The IES built in this paper contains two types of energy 

storage device, i.e., BESS and gas tank. As can be seen 
in Table  5, MEC increases the energy transfer cost of 
the system, which is the frequency of use of the energy 
storage devices. Figure 11a and b show specifically the 
usages of the two different energy storage devices for 
the different modes of operation. It can be seen that 
BESS varies more during the period of 3 am—10 am, 
during which the MEC mode gives priority to the use 
of batteries to meet the electricity demand of the users. 
For the gas tank, also during the 3–10 am period, the 
MEC mode increases the amount of gas saved in the 
upper gas layer, while during the peak gas consump-
tion period of 2–7  pm, because of the capacity of the 
gas pipeline transmission, it gives priority to the use 
of storage tanks to meet the gas demand. This analysis 
shows that the reduction in carbon emission reduces 
the dependence of the system on the upper grid, while 
it uses CHP equipment and electric storage to meet the 
electricity demand of customers, with CHP equipment 
being used mainly during daytime hours and BESS late 
at night when the electricity price is low.

5.3  Performance of Pareto optimal solution
The study presents the optimal results of MOC and 
MEC using the proposed multi-objective optimization 
algorithm based on the improved epsilon constraint 
method. This algorithm is applied to determine the 
optimal objective N in MOC and the optimal objec-
tive M in MEC. Additionally, fuzzy multi-weight tech-
nology is employed to obtain a compromise solution 
P that gives priority to both objectives M and N. The 

Table 3 Operating costs of MOC and MEC

Modes Operating cost (￥) Maintenance cost (￥) Energy flow cost (￥) Energy purchasing cost 
(￥)

Thermal comfort 
cost (￥)

MOC 43,427 4003.1 2922.9 34,819 527.3

MEC 46,933 4010.6 3299.7 37,847 569.6

Table 4 Carbon emissions of MOC And MEC

Modes Total carbon emission 
(kg)

Actual carbon emission 
(kg)

Free carbon emission 
(kg)

Actual power carbon 
emission (kg)

Actual gas 
carbon 
emission (kg)

MOC 16,289 45,156 28,867 16,267 28,888

MEC 14,991 40,155 25,664 13,574 26,581

Fig. 10 Carbon emissions of MOC and MEC
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Pareto frontier is constructed using twenty optimal 
solutions lying between M and N, and the results are 
illustrated in Fig.  12, with a subset of these solutions 
presented in Table  6. The analysis of Table  6 reveals 
that the optimal solution N achieves a cost reduc-
tion of 1.8% compared to the compromise solution P, 
but it comes with a trade-off of 4.6% higher carbon 
emissions. On the other hand, the optimal solution 
M exhibits a noteworthy reduction of 7% in carbon 
emissions; however, it incurs an 8% higher cost when 
compared to the compromise solution P. These find-
ings highlight the trade-offs between cost and envi-
ronmental impact, underscoring the importance of the 
proposed multi-objective optimization approach in 
decision-making processes. Table 7 shows the specific 
results of the compromise solution P. To balance the 
minimum operating cost with minimum carbon emis-
sion, the operator of this IES can select the appropri-
ate operating mode from the Pareto frontier in Fig. 12 
according to the actual demand for economy and envi-
ronmental friendliness by policy or actual energy use, 
while the compromise solution P in this section is 
more biased towards the minimum carbon emission in 
the selection of the operating mode.

5.4  Robustness of natural gas price fluctuation
In Fig.  12, the red and black curves represent the 
Pareto curve of the system for fluctuating and constant 

Table 5 Optimal results of MOC and MEC

Modes Total carbon emission (kg) Carbon trading 
cost (￥)

MOC 16,289 8151.1

MEC 14,991 7061.5

Fig. 11 BESS and gas tank of MOC and MEC

Fig. 12 Pareto frontier of the two cases
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natural gas prices, respectively. It can be seen from 
the above analysis that, when the price of natural gas 
fluctuates, because the price of natural gas in the next 
stage is easily affected by the purchase volume of the 
previous stage while it is difficult to maintain in a 
small range, the price of natural gas in the system is 
higher than the initial value. Therefore, in MOC, the 
operating cost of the IES under the fluctuating natu-
ral gas price will be greater than that of the IES under 
constant natural gas price, while the carbon emission 
under the condition of natural gas price fluctuation is 
also greater than that under constant natural gas price. 
For MEC, the system carbon emission under natural 
gas price fluctuation is greater than that when the nat-
ural gas price is constant. Unit gas carbon emission is 
less than unit electricity carbon emission, and there-
fore, the system in MEC will greatly increase the use 
of natural gas and reduce the system for the upper grid 
purchase under natural gas price fluctuation, result-
ing in higher system carbon emission. However, for the 
operating cost of the system, when the gas price is con-
stant, the system operating cost is lower. The results of 
compromise solution P without gas price fluctuation 
can be seen in Table 8.

5.5  Impact of natural gas price fluctuation
The DBN model is used here to predict price fluctua-
tion in the natural gas market. Figure 13 shows the nat-
ural gas price fluctuation curves when the system is run 

Table 6 Results of Oareto Froniter of the two cases

Num Carbon emission (kg) Operating cost (￥) Num Carbon emission (kg) Operating  
cost (￥)

M 14,991 46,933 P 15,425 43,902

2 15,021 46,124 6 15,644 43,821

3 15,134 45,478 7 15,915 43,641

4 15,203 44,515 N 16,289 43,427

Table 7 Results of compromise solution P

Operating cost (￥) 43,902 Total carbon emission (kg) 15,425

Maintenance cost (￥) 4293.1 Actual carbon emission (kg) 42,681

Energy flow cost (￥) 2887.1 Free carbon emission (kg) 27,300

Energy purchasing cost (￥) 35,192 Actual power carbon emission (kg) 14,925

Thermal comfort cost (￥) 537.8 Actual gas carbon emission (kg) 27,755

Table 8 Results of compromise solution P without gas price fluctuation

Operating cost (￥) 42,795 Total carbon emission (kg) 14,878

Maintenance cost (￥) 3898.1 Actual carbon emission (kg) 42,385

Energy flow cost (￥) 2640.1 Free carbon emission (kg) 27,551

Energy purchasing cost (￥) 34,727 Actual power carbon emission (kg) 14,861

Thermal comfort cost (￥) 537.8 Actual gas carbon emission (kg) 27,523

Fig. 13 Gas prices of MOC and MEC
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with MOC and MEC. It can be seen for the day-ahead 
gas trading market that the magnitude of gas price fluc-
tuation is not very large. With MEC, the system has a 
smoother gas trading price between 2 and 8 pm, and the 
trading price is lower than with MOC. When the system 
gas load reaches its peak, the system tends to purchase 
gas on a large scale to meet the multiple energy needs of 
its customers, while the presence of the gas tank reduces 
the variation of adjacent gas purchases. In contrast, a sys-
tem with MOC procures electrical energy to meet the 
electrical and thermal energy needs of customers, so nat-
ural gas purchases are mainly influenced by fluctuation 
in gas load and cannot reduce the volatility of natural gas 
in adjacent periods in the same way as MEC reduces the 
volatility of natural gas through the coordination of mul-
tiple energy coupling devices. Reducing carbon emission 
will, to a certain extent, reduce the system’s gas purchase 
cost and price fluctuation of the gas market.

The extent of natural gas price fluctuation in the 
short-term market is also discussed in this section. Fig-
ure 14 shows the Pareto frontier set of system operat-
ing costs and carbon emissions for natural gas price 
fluctuations, based on the DBN prediction model pre-
sented in Sect.  2, with the fluctuations reduced to 0.8 
times, held constant, and increased to 1.2 times. The 
analysis of the graph shows that the fluctuation of the 
natural gas price affects the economy and environmen-
tal friendliness of the system to a certain extent, and 
that the lower the fluctuation of the natural gas price, 
the smaller the system operating cost and carbon emis-
sion for the same load. In the future, price fluctuation 
in the natural gas market will become increasingly 
important in the operation of integrated energy sys-
tems, especially as electricity trading is now generally 

on a time-of-use basis, and the market price of natural 
gas will be an important factor in the carbon emissions 
of customers. The size of a customer’s carbon emission 
also determines the amount of carbon emission and 
the price at which the customer can participate in the 
carbon trading market, so the prices of natural gas and 
carbon trading will become increasingly linked in the 
future energy market.

6  Conclusion
This paper has used the improved epsilon constraint 
method and fuzzy multi-weight technology to solve the 
Pareto frontier set considering system operation cost 
and carbon emission. The results show that: (1) The 
Pareto solution is more biased towards the minimum 
carbon emission in the selection of the operating mode 
as the operating cost is 43,902 ¥ and carbon emission is 
15,425 kg, respectively; (2) Electricity is more economi-
cal, while gas is less carbon-intensive in a small IES for 
end-users; (3) Reducing carbon emission will, to a certain 
extent, reduce the system’s gas purchase cost and price 
fluctuation of the gas market, and the lower the fluctua-
tion of the natural gas price, the smaller the system oper-
ating cost and carbon emission for the same load.

This paper provides a guiding role for operators in 
dealing with the price uncertainty factors of the fully 
open domestic natural gas market in the future and has 
significance in comparing economic and environmental 
aspects. However, the DBN model for natural gas price 
fluctuation for medium to long-term market is not dis-
cussed and the carbon trading price based on a ladder 
penalty mechanism is not suitable for just-in-time clear-
ing carbon trading market. These are the main limita-
tions of this research.
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