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Abstract 

Transient stability is the key aspect of power system dynamic security assessment, and data-driven methods 
are becoming alternative measures of assessment. The current data-driven methods only construct correlations 
between variables while neglecting causal relationships. Therefore, they face problems such as poor robustness, 
which restrict their practical application. This paper introduces an improved constraint-inference approach for causal-
ity exploration of power system transient stability. Firstly, a causal structure discovery method of power system tran-
sient stability is proposed based on a PC-IGCI algorithm, which addresses the shortage caused by Markov equivalence 
and massive variables. Then, a relative average causal effect index is proposed to reveal the relationship between rela-
tive intervention strength and causal effects. The results of a case study verify that the proposed method can identify 
the causal structure between the transient stability variables entirely based on data. In addition, the causal effect 
sorting between “cause” and “outcome” of transient stability variables is revealed. This paper provides a new approach 
for data mining to uncover the causal mechanisms between variables in power systems and expand the capabilities 
of data-driven methods in power system application.
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1  Introduction
With the expansion of power grids, the operational mode 
of power systems is becoming more complex. Power sys-
tems face significant challenges in terms of security and 
stability, with transient stability assessment being a cru-
cial component. The mechanism model analysis method 
based on reduction theory plays an important role in 
transient stability assessment. It includes numerical inte-
gration methods, direct methods [1–3], etc. However, the 
effectiveness of mechanism modeling methods relies on 
accurate models and parameters, which are increasingly 

difficult to achieve in complex power systems. In addi-
tion, numerical integration methods are unable to pro-
vide the evaluation results of transient stability directly, 
and thus they still require people to further analyze the 
simulation results and data.

In recent years, with the widespread installation of 
measurement devices in power systems and the improve-
ment of data analysis and processing capabilities, analyz-
ing the complex operational behavior of power systems 
based on data-driven methods has become a research 
hotspot [4–8]. Artificial intelligence models are repre-
sentative applications of data-driven methods, which 
can construct complex mapping between input datasets 
and sample labels. These data-driven models have many 
advantages, including direct output of power system 
transient stability assessment results and significantly 
increasing the speed of evaluation through offline train-
ing and online matching.
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However, these mapping relationships, built under 
the guiding principle of “correlation” with no regard 
for “causation”, cause predictions made by data-driven 
models to face problems such as poor robustness to out 
of distribution datasets [9–12] and difficulty in inter-
pretation [13–16]. This also leads to the fact that such 
data-driven assessment methods have not been widely 
used in safety sensitive engineering scenarios.

In fact, the “causal relationship” between variables is 
a characterization of the physical problem. It plays an 
irreplaceable role in revealing the mechanism of events, 
guiding intervention behavior, and other aspects. It is 
also an important carrier of knowledge that is easy for 
humans to understand [17]. To bridge the gaps of exist-
ing data-driven methods, exploring causal relationships 
from data is a significant requirement in security sensi-
tive scenarios such as power system transient stability 
analysis.

The theory of causation developed from statistics is 
concerned with discovering causal relationships behind 
data. Since the causal model was proposed at the end of 
the twentieth century, relevant research began to flour-
ish, providing an important means for data analysis. At 
present, causal theory has achieved great success in 
many fields such as economics, education, sociology, etc. 
[18–21]. Causal inference is mainly concerned with the 
discovery of causal structure between variables and the 
evaluation of causal effect. Since causal inference usually 
needs to change the generation mechanism of target vari-
ables, this is also the key point in distinguishing between 
correlation and causality.

Currently, there are two widely accepted causal models: 
Rubin causal model (RCM) and structural causal model 
(SCM). RCM, also known as the potential causal frame-
work [22], mainly studies the average causal effect of two 
variables, while SCM proposed by Pearl [23] uses a causal 
graph to model the causal relationship between variables. 
As well as causal effect estimation, it mainly focuses on 
the problem of causal structure discovery. The classical 
methods of causal structure discovery can be divided into 
constraint-based and structural equation-based methods. 
The PC [24], IC [25] and FCI [26] algorithms, as repre-
sentatives of constraint-based methods, have the advan-
tages of dealing with high-dimensional variables and 
being applicable to both linear and nonlinear problems, 
but they can only give equivalence classes of possible 
causal graphs. The methods based on structural equa-
tions are to make certain assumptions about the form 
of structural equations, which can identify the complete 
causal graphs. However, their applicability is also limited 
by the equation form, such as LiNGAM [27] and ANM 
[28] algorithms, etc. New theories and methods of causal 
inference can provide a reference for revealing causal 

relationships between transient stability variables from 
data in modern power systems.

In the power industry, some initial attempts have been 
made to look at causal relationships. In [29], a reverse 
information entropy causal inference method (RIECI) is 
proposed by revealing the asymmetric attributes of the 
causal relationship between highly correlated pairs of 
variables in power systems, indicating the feasibility of 
analyzing causal relationships from operating datasets. 
However, the transient stability assessment of power sys-
tems is a high dimensional and complicated problem. 
Exploring complex causal relationships between variables 
based on data-driven methods still faces challenges.

The highlights of this paper are:

(1)	 An improved causal structure discovery method 
based on a PC-IGCI algorithm for datasets of power 
system transient stability assessment is proposed. It 
addresses the shortcoming of Markov equivalence 
class of the existing constrained-based method.

(2)	 The related average causal effect (RACE) index is 
proposed to quantitatively evaluate the causal effect 
under unit interventions. This reveals the relation-
ship between relative intervention intensity of the 
cause variable and causal effects.

The rest of the paper is arranged as follows: classi-
cal causal inference methods are briefly introduced in 
Sect.  2, while an improved causality exploring method 
combining causal structure discovery with causal effect 
evaluation for transient stability assessment is proposed 
in Sect.  3. Example simulation and verification are pro-
vided in Sect.  4. Section  5 offers the conclusion of this 
paper.

2 � Introduction to classical data‑driven causal 
inference methods

2.1 � A causal structure discovery method based on PC 
algorithm

The Peter-Clark (PC) algorithm proposed in [26] is one of 
the classic methods for causal structure discovery.

A causal network (also known as a structural causality 
graph) is represented by a directed acyclic graph (DAG) 
showing the probability dependencies between vari-
ables. It can be represented by a triple G = (V, E, P). Here, 
V = {v1, v2, …, vn} is the set of all nodes in the DAG, and 
E = {e(vi, vj)|vi, vj ∈ V} is the set of single-directed edges 
between every two nodes, where e(vi, vj) denotes the 
causal relationship vi → vj between vi and vj. P = {P(vi|pavi) 
|vi, pavi ∈ V} is the set of conditional probabilities.

The PC algorithm for causal structure construction is 
divided into two stages. The first stage aims to identify 
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the dependencies between nodes and represent them 
as an undirected graph. The skeleton of the structural 
causality graph is constructed in this stage, as shown in 
Fig.  1a. The second stage aims to infer the direction of 
causal dependencies between nodes, extending the undi-
rected graph to the DAG as shown in Fig. 1b.

2.1.1 � Casual skeleton construction
A condition independence test is the main method 
for the PC algorithm to identify causal dependencies 
between variables.

The hth order sample partial correlation coefficient 
between any two variables i and j under k conditions can 
be estimated by:

It needs to be transformed into a normal distribution 
through a Fisher Z transformation, shown as:

For a given significance level α ∈ (0, 1) , the test rule is 
shown as:

where Ф is the cumulative distribution function of N(0,1). 
If (3) is true, then the hypothesis that variables i and j are 
independent under condition k, must be accepted.

The d-separation criterion [24] can be applied to iden-
tify causal undirected graphs. Starting with an undirected 
complete graph, if there is no edge between nodes vi and 
vj in the graph, then there must be a set Z that d-separates 
vi and vj. By testing whether the subset of V/{vi, vj} can 
d-separate vi and vj one by one, the causal dependence 
between vi and vj can be inferred. Subsequent removal of 
nonexistent "edges" between variables forms the skeleton 
of the structural causality graph.

(1)
ρi,j|k=

ρi,j|k\h − ρi,h|k\hρj,h|k\h

1− ρ2
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2.1.2 � Causal direction inference
Some causal directions between cause variable and out-
come variable can also be inferred based on the result of 
conditional independence. Consider a skeleton of three 
variables, vi—vk—vj, where vi and vj are not connected 
by an edge and are independent, denoted as vi⊥vj. How-
ever, if vi and vj are not independent under the condi-
tion of variable vk, then the causal dependency direction 
between variables in the undirected graph vi—vk—vj can 
only be vi → vk ← vj as shown in Fig.  2a. This is called a 
V-structure. The V-structure is a special form in struc-
tural causality graphs, and has unique identifiability in 
causal direction identification.

If the conditional independence constraint is vi⊥vj| vk, 
then there are three possible causal dependence direc-
tions between variables vi, vj, and vk, as shown in Fig. 2b. 
Structures 1 and 2 are called “chain” structures, and 
structure 3 is called a “fork” structure. Thus, these causal 
directions cannot be uniquely identified.

2.1.3 � The problem of incomplete causal structure graph 
caused by Markov equivalence

The generated structural causality graph typically con-
tains both directed edges with non-reversible direction 
and undirected edges with reversible direction. This 
can only be called a completed partially directed acyclic 
graph (CPDAG) rather than a Bayesian network (BN).

For example, considering the CPDAG obtained from 
variables vi, vj, vk and vl using the d-separation criterion, 
as shown in Fig.  3a, G1 contains only a single V-struc-
ture vj → vl ← vk , and the two undirected edges vi − vj 

Fig. 1  Two-stage diagrams of the PC algorithm

Fig. 2  Causal relationship between three variables

Fig. 3  Illustrative diagram of Markov equivalence class
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and vi − vk cannot be inferred with certain causal direc-
tion by the Meek principles [24]. Therefore, G2, G3, and 
G4, which have the same skeleton and V-structure, are 
Markov equivalent and form a Markov equivalence class 
of the Bayesian network.

Markov equivalent classes are a common problem 
faced by constraint-based methods. Because the direc-
tion of edges in the causal network cannot be completely 
determined, this not only greatly affects the understand-
ing of the causal structure in the data, but also makes it 
impossible to infer the causal effect between some key 
variables.

2.2 � Causal effect inference method based on ACE
After obtaining the causal relationship network between 
the variables, causal inference techniques can quantify 
the degree to which the “cause” affects the “outcome” in 
each causal direction, i.e., the causal effect.

The relationship between the outcome variable of sam-
ple i and whether it receives the intervention is shown as:

where yi is the outcome variable, y1i and y0i represent the 
results of sample i after and before receiving the inter-
vention, respectively. Di = {0,1}, i.e., 1 for the treatment 
group and 0 for the comparison group. (y1i − y0i) repre-
sents the causal effect of whether sample i receives the 
intervention. However, because of individual differences 
in different samples, the impact of applying the same 
intervention on the results is different. To minimize the 
impact of individual differences in the samples, expec-
tations can be taken for the causal effect of all samples, 
namely, the average causal effect (ACE), shown as:

The challenge in evaluating causal effects lies in the fact 
that y1i and y0i cannot be observed at the same time. It 
belongs to the “counterfactual” causal inference frame-
work, i.e., for a single data sample, it can only be in one 
of the two states of being intervened or not being inter-
vened. In fact, once data is collected, it is an unchange-
able record, while how to implement “intervention” 
on data is also one of the key concerns of data-driven 
methods.

Matching estimator methods provide a feasible solu-
tion to this problem. If sample i belongs to the treatment 
group, a sample j in the comparison group is found such 
that the covariates x (features other than 

{

yi,Di

}

 ) of sam-
ple j are as close as possible to those of sample i, i.e., xi ≈ 
xj. In this case, yj can be used as the estimation of y0i, i.e., 
ŷ0i = yj.

(4)yi = y0i + (y1i − y0i)Di

(5)ACE=E
(

y1i − y0i
)

Practically, it is difficult to find similar xj to match xi 
in high-dimensional space if the dimension of xi is very 
high, with a great risk of match failure. In addition, the 
average causal effect only controls the intervention 
intensity of cause variables by dividing the samples into 
a treatment group and a comparison group, but cannot 
quantitatively reveal the relationship between interven-
tion intensity and causal effect.

3 � Improved constraint‑inference approach 
for causality exploration of power system 
transient stability

To address the shortcomings of existing causal inference 
methods introduced in Sect.  2, this section proposes 
an improved constraint-inference approach for causal-
ity exploration of power system transient stability. This 
includes an improved causal structure discovery method 
based on the PC-IGCI algorithm, and a causal inference 
method based on propensity score matching with near-
est-neighbour within calliper and relative average causal 
effect indicators (RACE).

3.1 � Improved causal structure discovery method based 
on PC‑IGCI algorithm

To overcome the Markov equivalence problem, some 
have proposed causal function models from the perspec-
tive of the distribution characteristics of data caused by 
the causal mechanism. The information geometric causal 
inference (IGCI) algorithm proposed in [30] is a typical 
representative of the causal function algorithm. It uses 
the independence between distribution of the cause vari-
able and the “cause-effect” function mechanism to deter-
mine the causal relationship between variables and has 
been proven to be reliable in non-linear causal direction 
mining problems.

The IGCI causal determination indicators for variables 
x and y are as follows:

If Cx→y < 0 , then x is inferred to cause y;
If Cx→y > 0 , then y is inferred to cause x.
In (6), D(· || ·) is the relative entropy distance and S(·) 

is the differential entropy. The detailed expressions for 
these quantities can be found in [30].

However, the IGCI algorithm is mainly used for deter-
mining the causal direction between two variables, 
because the method itself does not have the ability to 
identify the causal graph skeleton from the data. This 
makes it difficult to apply in identification of the struc-
tural causality between high-dimensional variables. In 

(6)
Cx→y = D(pX�εX )− D(pY �εY )

= S(u)− S(v)+ S(pY )− S(pX )
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addition, if there is no possible causal candidate direction 
between variables in the first place, it is not possible to 
obtain reliable results using only the IGCI method.

The improved causal structure discovery method based 
on PC-IGCI proposed in this paper uses the IGCI method 
to extend the causal discovery on the basis of the CPDAG 
generated by the PC algorithm, determining the causal 
directions of the undirected edges, and generating a causal 
network expressed as DAG. It solves the deficiency of causal 
structure discovery methods being only based on con-
straint, and improves the conditions for the application of 
IGCI through the prior causal skeleton construction, mak-
ing the causal direction recognition results more reliable.

3.2 � Causal effect inference method based on PSM‑NNC 
method and RACE index

To solve the problem of samples matching between 
treatment and comparison groups caused by the high-
dimensional characteristics of samples in the evaluation 
of causal effect, this paper proposes a sample matching 
method based on propensity score. In addition, because 
the data-driven transient stability evaluation datasets 
have a large number of samples, the one-to-many sam-
ple matching method can make the evaluation of causal 
effect more accurate. Here the nearest-neighbour match-
ing within caliper algorithm is introduced. This is called 
the PSM-NNC method.

The propensity score is the conditional prob-
ability that sample i enters the treatment group, i.e., 
p(xi) = P(Di = 1|x = xi) . Therefore, the main steps for 
calculating ACE through the PSM-NNC are as follows:

(1)	 Select covariates xi. Include as many variables as 
possible that may affect 

(

y0i, y1i
)

 and Di.
(2)	 Estimate propensity score. Here logistic regression 

is used to establish a regression model to evaluate 
the likelihood of each sample receiving interven-
tion.

(3)	 Perform propensity score matching. The nearest-
neighbor matching within the caliper algorithm is 
introduced, i.e., finding the closest match within 
the bias γ range. This can improve the efficiency of 
sample matching and the accuracy of causal effect 
estimation.

(4)	 Calculate ACE estimated value for the matched 
samples, as:

where N is the sample size, ŷ1i and ŷ0i are the estimates of 
y1i and y0i , respectively.

(7)ACE =
1

N

N
∑

i=1

(

ŷ1i − ŷ0i
)

To reveal the impact of intervention intensity on causal 
effects, it is assumed that E(Ci|Di = 0) and E(Ci|Di = 1) 
represent the expected values of the cause variable in the 
comparison and treatment groups, respectively. The dif-
ference between them can indirectly reflect the average 
intervention strength on the cause variable, represented 
by Do(·) , i.e.:

Based on quantitative evaluation of intervention inten-
sity, RACE is proposed for calculating ACE under unit 
intervention strength. This can help to compare and ana-
lyse the causal effect under relative intervention strength 
of the different cause variables. The calculation equation 
is shown as:

The RACE index can be used to reveal the sorting of 
the influence of transient stability results when the inter-
vention of the same relative intensity is applied to differ-
ent cause variables. This provides a basis for explaining 
the influence of different causes on the evaluation results 
of transient stability from the perspective of causal effect.

3.3 � Sample set construction of power system stability 
assessment used for causality inference

Although measured data with unknown generation 
mechanisms can be directly used to construct sample 
sets for causal reference, large perturbations rarely occur 
in actual power systems and there are few examples of 
transient instability. Therefore, constructing a transient 
stability assessment data sample set based on simulation 
is an effective method to solve the shortage of measured 
data.

There are many factors affecting transient stability of 
power systems. They can be classified as operating varia-
bles that change with operating conditions and structure 
variables determined by the grid structure and compo-
nent parameters. Usually, some operating variables need 
to be specified in the simulation, such as PG|0|, UG|0|, 
PL|0|, QL|0|, Tf, and Fl. PG|0| represents the set of generator 
steady-state active power variables, UG|0| is the set of ini-
tial voltages of generation nodes, PL|0| and QL|0| represent 
the active and reactive load levels before the disturbance, 
Tf represents the fault duration, and Fl represents the 
location of the fault occurrence. This can be expressed 
by continuous variables such as electrical distance, or by 
discrete coding of the fault location.

The samples of other operating variables need to be 
generated through power flow equations or calculations 

(8)Do(Ci) = E(Ci|Di = 1)− E(Ci|Di = 0)

(9)RACE =
E(Ci|Di = 0)

Do(Ci)
ACE
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based on dynamic simulation results data, such as QG|0|, 
δ|0|, V|0|, θ|0|, SI, UI, and Ssys. QG|0| represents the set 
of generator steady-state reactive output variables, δ|0| 
represents the initial generator power angle, while V|0| 
and θ|0| represent the pre-disturbance voltage amplitude 
and phase angle of load and contact nodes, respectively. 
SI and UI represent the stability margin evaluation and 
instability evaluation indices of the generator. These 
can quantitatively evaluate the transient stability mar-
gin of each generator based on the trajectory informa-
tion after the disturbance, and the calculation method is 
described in [31]. Ssys is the system stability flag, which 
takes the value of 0 or 1, where 0 represents instability, 
1 represents stability, and the maximum relative power 
angle difference can be used as a criterion.

If the impact of structure variables on transient sta-
bility assessment is not of concern, then the structural 
variables can be specified as constants, such as Xd

’, Tj, 
Zl, where Xd

’ is the d-axis transient reactance of genera-
tor, Tj is the generator inertia time constant, and Zl is 
the impedance parameters of transmission lines.

Numerous data samples are generated by perturbing 
some specified operating variables and concerned struc-
ture variables. We assume that for each variable partici-
pating in the perturbation, a Gaussian distribution with 
expectation of µ=µsp and standard deviation of σ=σ sp 
is satisfied. µsp and σ sp are the given values of expecta-
tion and standard deviation, respectively. A sample set 
is constructed by combining a total of m perturbations. 
Thereby, the original sample set matrix Xori used for tran-
sient stability causality inference can be denoted as:

where Ospec
ori  represents the samples of specified operating 

variables, Ocal
ori represents the calculated samples of oper-

ating variables, and Sspecori  represents the samples of per-
turbed structure variables.

In a causal network, a given observed variable can 
be divided into an exogenous variable set U and an 
endogenous variable set V, according to whether it can 
be determined or influenced by other variables. The 
variables in V are often the ones that need to be inter-
preted. Dividing variables into endogenous and exog-
enous endows them with explained or to be explained 
attributes. This helps to gain a profound understanding 
of the identified structural causal relationships.

4 � Case study
To comprehensively test the effectiveness of the causal-
ity exploring method proposed in this paper, this sec-
tion first takes a single machine infinite bus (SMIB) 

(10)Xori = [O
spec
ori ,Ocal

ori, S
spec
ori ]

system as an example to verify the feasibility of dis-
covering the causal structure and evaluating causal 
effect from the operational data sets. Then the case of 
WSCC-9 is used to verify the capability of discovering 
high-dimensional causal relationships.

4.1 � Causal inference of transient stability in SMIB system
4.1.1 � Case settings
The topology of the SMIB system is shown in Fig.  4. 
The system reference voltage is 230  kV, and the gen-
erator uses the classical second-order model. A three-
phase short-circuit fault at 50% of the branch from Bus 
2 to Bus 3 is applied, with simulation starting at 0 s and 
a time step of 0.01 s.

Following the sample generation method intro-
duced in Sect. 3.3, the original sample set matrix Xori 
for transient stable causal inference is constructed. It 
contains 3 specified operating variables of PG|0|, UG|0| 
and Tf, 8 calculated operating variables of QG|0|, δ|0|, 
V|0|3, θ|0|1 , θ|0|2 , SI, UI, and Ssys, and 2 concerned struc-
tural variables of Tj, X’d. The dataset consists of 5000 
samples.

4.1.2 � Causal structure discovery test on data sets
The causal structure discovering method described in 
Sect.  3.1 is applied to Xori, and the significance level 
α = 0.05 is set to identify the causal structure. The 
results are characterized as a structural causality graph, 
denoted as Gori. There is no undirected edge caused 
by Markov equivalence in Gori, which means that the 

Fig. 4  Single-line diagram of the SMIB system

Fig. 5  Structural causality graph of SIMB
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causal relationships in the graph are determined. The 
structural causality graph of the SIMB is shown in 
Fig. 5.

In Fig.  5, the variables in purple boxes represent 
exogenous variables, and those in red circles represent 
endogenous variables. According to the causal struc-
ture discovery results based on PC-IGCI, the speci-
fied variables are all identified as exogenous variables, 
which is consistent with the generation mechanism of 
the dataset.

The oriented edges are mainly divided into two cat-
egories. One is from exogenous variables to endog-
enous variables, which reveals the direct causal 
relationship between the specified operating param-
eters and the result of transient stability assessment, 
such as Tj → Ssys and Tf → SI, represented by the blue 
arrows. The other category of oriented edges is from 
endogenous variables to endogenous variables, which 
indicates that the implied structural causal relation-
ship among the transient stability variables can also be 
identified, such as QG|0| → V|0|2 → Ssys , represented by 
the green arrows.

To examine the influence of different operating con-
ditions on causal structure discovery, causal structures 
among the transient stability variables are evaluated 
to determine whether they are stable and widely sup-
ported in different datasets, or are sensitive to changes 
in operating conditions when the distribution charac-
teristics of variables in the operating dataset change. 
The causality support rate (CSR) index defined in (11) 
is thus put forward to quantitatively evaluate the sup-
port degree of each causal rule based on the overall 
datasets, as:

where p(i)j  represents whether the jth causal rule exists on 
graph Gi. If it exists, p(i)j  is set to 1, conversely, p(i)j  is set 
to 0. N represents the number of datasets which are gen-
erated by the same or different mechanisms.

The degree of directional asymmetry (DDA) index is 
proposed in (12). This is calculated based on CSRj. From 
the perspective of asymmetric causal directions, the sup-
port degree of causal directions based on datasets of dif-
ferent generation mechanisms is evaluated.

where CSRj+ represents the forward support rate of the 
jth causal rule, and CSRj− represents the reverse support 
rate of the jth causal rule.

It is considered that the variables affecting the operat-
ing condition of the power system include PG|0|, UG|0| and 
Tf. Each variable is perturbed respectively while the dis-
tribution of other variables is frozen. Three perturbation 
amplitudes of − 10%, 5% and 10% are considered based on 
the original scenario, so 9 extended datasets are formed 
and denoted as Xext-i, {i = 1,2,…,9}. The overall datasets 
include the original and extended datasets, denoted as 
Xall. Therefore, Xall contains 10 data subsets.

The reliability of all occurred cause → outcome ori-
ented edges generated by PC-IGCI is assessed using 
CSR and DDA, and the assessment results are shown in 
Table 1.

As shown in Table 1, a total of 28 causal relationships 
are identified based on each data subset, and they have 

(11)CSRj =
1

N

N
∑

i=1

p
(i)
j × 100%

(12)DDAj = |CSRj+ − CSRj−|

Table 1  CSR and DDA index of causality

No Cause → outcome CSRj+/CSRj− (%) DDAj No Cause → outcome CSRj+/CSRj− (%) DDAj

1 PG|0|→ δ|0| 100/0 1 15 PG|0|→ θ|0|2 80/0 0.8

2 PG|0|→ SI 100/0 1 16 X’d → SI 80/0 0.8

3 Tf → SI 100/0 1 17 QG|0|→ V|0|2 90/10 0.8

4 δ|0|→ SI 100/0 1 18 δ|0|→ UI 80/0 0.8

5 Tf → Ssys 100/0 1 19 X’d → UI 70/0 0.7

6 UI → Ssys 100/0 1 20 V|0|3 → QG|0| 80/10 0.7

7 Tj → SI 100/0 1 21 V|0|2 → Ssys 70.0/0 0.7

8 Tj → Ssys 100/0 1 22 UG|0|→ QG|0| 80/10 0.7

9 PG|0|→ θ|0|1 90/0 0.9 23 X’d → Ssys 70/10 0.6

10 PG|0|→ Ssys 90/0 0.9 24 V|0|3 → δ|0| 70/10 0.6

11 Tf → UI 90/0 0.9 25 V|0|3 → UI 30/0 0.3

12 Tj → UI 90/0 0.9 26 V|0|3 → SI 40/10 0.3

13 SI → Ssys 90/10 0.8 27 θ|0|1 → θ|0|2 10/0 0.1

14 UG|0|→ V|0|2 80/0 0.8 28 UI → SI 40/30 0.1



Page 8 of 12Zhou et al. Protection and Control of Modern Power Systems            (2023) 8:59 

been arranged in descending order according to the 
DDA index. The asymmetry of causal directions from 
serial numbers 1 to 24 are above 0.6, which illustrates 
the high support of these causal relationships in the 
datasets, while it also indicates the relative certainty of 
causal direction among variables. In contrast, examin-
ing the causal relationship of No. 28, although the sup-
port rate of positive causality reaches 40%, the support 
rate of reverse causality is also as high as 30%, and the 
asymmetry of causal direction is 0.1. The degree of causal 
information asymmetry is low, so that this causal rela-
tionship cannot be effectively confirmed. For the causal 
relationships from No. 25 to 28, the DDA indices are all 
not more than 0.3, and such causal relationships are obvi-
ously unreliable.

There is a fundamental difference between correlation 
and causality. If the causal relationship of No. 27 is inves-
tigated, the Pearson correlation coefficient between θ|0|1 
and θ|0|2 is 0.987, showing an extremely significant corre-
lation. However, the index of causality asymmetry is only 
0.1, because the two variables have a similar data genera-
tion mechanism and distribution characteristics. Figure 5 
also shows that such causal relationships cannot be effec-
tively supported in dataset Xori.

To compare and analyze the influence of different oper-
ational modes on the discovery of causal structure, 5000 
samples are extracted from Xall in a random order each 
time, with a total of 10 data subsets generated by putting 
them back for sampling 10 times, and PC-IGCI is applied 
to each data subset. The CSR and DDA indices are used 
to reveal the identified causal structures when the data is 
mixed with multiple operational modes.

Using the above example conditions, the first 24 causal 
structures in Table  1 are effectively identified, and the 
DDA indices are greater than 0.8, while No. 25–27 causal 
rules are not identified by any data subsets. For the causal 
relationship of UI → SI, CSR+/CSR- is 30/20, and DDA 
index is retained as 0.1. In fact, it shows that even if the 
distribution of the overall dataset is the same as Xall, 
adopting different data subset partitioning rules will lead 
to different distribution characteristics of variables, thus 
affecting the results of causal structure discovery.

4.1.3 � Causal effect inference in SMIB
From the causal relationship shown in Table 1, Xall is des-
ignated as the data source of causal inference. The cause 
variables (such as Tj , Tf , PG|0| , δ|0| ) and outcome variables 
(transient stability margin index SI, stability label Ssys) of 
interest are selected to form 7 pairs of causal relationship. 
In addition, the intervention direction for the cause vari-
ables is set to increase, and the sample group division is 
shown as:

where C(j)
i  represents the jth observation data of the ith 

cause variable. D(j)
i  is the corresponding group label for 

C
(j)
i  , while D(j)

i = 1 indicates that the jth observation 
sample belongs to the treatment group and D(j)

i = 0 indi-
cates that the jth observation sample belongs to the com-
parison group.

The causal effect inference results are shown in 
Table 2. It is clear from Table 2 that the increase in Tj 
has a positive effect on the transient stability margin of 
the generator, with an overall causal effect of 1.43 in the 
entire sample set. It indicates that the average change 
in stability index SI resulting from an increase in Tj 
is 1.43 when comparing all samples with Tj > 20  s and 
Tj < 20 s. Based on the meaning of the stability index SI, 
it implies an increase in transient stability margin. The 
ACE index represents the “average intervention effect” 
of only the cause variables, under a variety of complex 
combinations of transient stability operating conditions 
and fault information, while minimizing the impact of 
other operating condition differences on the response 
variables.

Similarly, the ACE index on Tj → Ssys is 0.36, indicat-
ing that an increase in the inertia leads to an average 
increase of 36% in the probability of the system remain-
ing stable. Conversely, the causal effect of an increase 
in the fault duration Tf on stability margin is − 0.18. It 
can be inferred from the dataset as a general conclusion 
that an increase in fault duration is detrimental to tran-
sient stability of power systems.

Taking the initial generation PG|0| as an example, the 
expectation value of the samples that receive inter-
vention is 2.27 pu, and that of the samples that do not 
receive intervention is 1.74 pu. Thus the average inter-
vention strength is 0.53 pu, and the causal effect on the 
stability index SI is − 2.47. As a result, the probability 

(13)

{

D
(j)
i = 1C

(j)
i > u

sp
i

D
(j)
i = 0C

(j)
i < u

sp
i

Table 2  Causal effect inference results

Cause → outcome E(Ci|Di = 0) E(Ci|Di = 1) ACE RACE

Tf → SI 0.18 (s) 0.24 (s)  − 1.80  − 30

Tf → Ssys 0.18 (s) 0.24 (s)  − 0.40  − 6.667

PG|0|→ SI 1.74 (pu) 2.27 (pu)  − 2.47  − 4.67

PG|0|→ Ssys 1.74 (pu) 2.27 (pu)  − 0.72  − 1.358

Tj → SI 15.27 (s) 24.71 (s) 1.43 0.152

δ|0|→ SI 31.52 (deg) 41.15 (deg)  − 1.43  − 0.148

Tj → Ssys 15.27 (s) 24.71 (s) 0.36 0.038
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of power system maintaining transient stability after 
intervention will decrease by 72%.

From the perspective of effect, the strength of inter-
ventions can be directly compared. Based on data from 
the treatment and comparison groups, the interven-
tion of applying a 0.53 pu on PG|0|, when compared to 
the intervention of applying a 0.06  s on fault duration 
Tf, has a greater causal effect on the transient stability 
margin of the power system. It can also be seen that the 
intervention strength of the former is greater than that 
of the latter, and this is more detrimental to transient 
stability of the power system, although the two have 
different dimensions.

To compare the causal effects of applying the same rel-
ative intervention intensity to different cause variables, 
Table 2 has arranged the causal relationships in descend-
ing order according to the |RACE|. For the causal rela-
tionship related to SI, the RACE of Tf, PG|0|, Tj, and δ|0| 
are − 30, − 4.67, 0.152, and − 0.148, respectively. This indi-
cates that when the same relative intervention intensity 
is applied to the above four cause variables, Tf has the 
strongest causal effect, and is much higher than the other 
three.

4.1.4 � Causal effect reliability test
This paper conducts two refutation experiments to test 
the causal relationships, i.e., by adding random con-
founding factors and placebo interventions respectively. 
This is because causal relationships identified based on 
observational datasets are difficult to prove true, but 
their falsity can be revealed by the abnormal behavior of 
the model in refutation tests. If the causal relationships 
are correctly identified, the causal effects after adding 
random confounding factors should be very close to the 
original results, while placebo interventions replace the 
identified cause variables with independent random vari-
ables and recalculate the causal effects. For the results, if 
the causal effects greatly decrease or even approach 0, it 
indicates that the causal relationship is relatively reliable. 

Table 3 shows some refutation test results of causalities, 
and indicates that all the causal relationships represented 
in Fig. 5 have passed the refutation test.

4.1.5 � The influence of changing intervention strength 
on transient stability

The application of interventions is further examined 
with different strengths on the cause variables that 
affect power system transient stability. By observing the 
changes in “causal effects”, it can demonstrate a feasible 
approach for revealing the physical mechanisms of tran-
sient stability based on power system operating datasets.

First, the samples in datasets are divided into 5 groups 
based on different range values of the cause variables. 
The first group is the comparison group, and the other 
4 groups are divided into different treatment groups 
according to the intervention strength from low to high. 
The variable interval division is shown in Table 4, and the 
causal effects on Tj → SI , Tj → Ssys , Tf → SI , Tf → Ssys , 

Table 3  Refutation test results

Cause → Outcome Estimated ACE ACE under 
confounding 
factors

ACE under 
placebos

PG|0|→ SI  − 2.47  − 2.47  − 0.003

Tf → SI  − 1.80  − 1.80 0.005

Tj → SI 1.43 1.43  − 0.007

δ|0|→ SI  − 1.43  − 1.43 0.003

PG|0|→ Ssys  − 0.72  − 0.72 0.001

Tf → Ssys  − 0.40  − 0.40 0.0006

Tj → Ssys 0.36 0.36  − 0.001

Table 4  Sample grouping with different intervention strengths

Group Tj (s) Tf (s) PG|0| 
(pu)

Comparison group (9,11) (0.09,0.11) (0.9,1.1)

Intervention group 1 (11,13) (0.11,0.13) (1.1,1.3)

Intervention group 2 (13,15) (0.13,0.15) (1.3,1.5)

Intervention group 3 (15,17) (0.15,0.17) (1.5,1.7)

Intervention group 4 (17,19) (0.17,0.19) (1.7,1.9)

Fig. 6  Causal effect changes with different intervention strengths
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PG|0| → SI , and PG|0| → Ssys under different intervention 
strengths are shown in Fig. 6.

As can be seen from Fig.  6a and b, when different 
strengths of intervention are applied to Tj, i.e., when 
Do(Tj) takes values of 2 s, 4 s, 5.9 s, and 7.9 s, the causal 
effect on the transient stability of the power system grad-
ually increases. On the one hand, it intuitively shows 
that an increase in Tj has a positive causal effect on tran-
sient stability, while on the other hand, it shows that as 
the intensity of intervention on variable Tj increases, the 

causal effect will also change monotonically. Similarly, as 
shown in Fig. 6c and d, the causal effect of PG|0| on SI and 
Ssys varies monotonically with the intervention intensity, 
but in contrast to Tj, positive intervention on PG|0| has a 
negative causal effect. This implies that the average causal 
effect based on counterfactual inference can correctly 
reflect the effect strength of “cause” on “outcome”.

Figure  6e and f show the changes in causal effect of 
power system transient stability with different strengths 
of intervention applied to Tf. It can be seen that as Do(Tf) 
increases from 0.02  s to 0.08  s, the causal effect on SI 
decreases from − 0.117 to − 3.375, and the causal effect 
on Ssys decreases from − 0.032 to − 0.683. Additionally, 
there is a significant non-linear change in the relationship 
between the intervention strength on Tf and the causal 
effect. It can be interpreted such that in the process of 
Do(Tf) increasing from 0.04 to 0.06, a large number of 
samples originally considered to be transiently stable by 
the datasets are inferred to be in a critical unstable state, 
and thus the probability of instability increases signifi-
cantly. The stability margin of unstable samples becomes 
0 and no longer changes with further increases in inter-
vention strength. Therefore, when Do(Tf) increases from 
0.06 to 0.08, the causal effect barely changes.

Fig. 7  Single-diagram of WSCC 3-machine 9-bus system

Fig. 8  Transient stability structure causality of WSCC 9-bus system
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4.2 � Causal inference of transient stability 
for multi‑machine systems

To verify the effectiveness of the proposed method in 
solving the high-dimensional and complex problem of 
transient stability in power systems, further analysis 
is conducted based on the WSCC 9-bus standard test 
case, as shown in Fig.  7. The same data perturbation 
method as described in Sect.  3.3 is used to construct 
the observation datasets, with a sample size of S = 104 . 
In this case, variables are perturbed with a standard 
deviation taken as 10% to 15% of the expected value. 
The fault set contains three faults, which are three-
phase short circuits at Bus 5, Bus 7, and Bus 9 at 0 s.

The PC-IGCI method is applied to discover the 
causal structure of the WSCC 9-bus system, as shown 
in Fig. 8. The causal graph contains a total of 58 causal 
relationships, and the causalities show significant 
multi-machine coupling characteristics compared with 
the SMIB system, revealing a complex causal mecha-
nism of a transient stability problem in multi-machine 
power systems.

Taking the transient stability margin SI2 of genera-
tor 2 for further analysis, the sample set is first screened 
according to the location of the fault, and only those 
samples with faults occurring at Bus 7 are retained. The 
causal effects of the fault duration Tf , the inertial time 
constants Tj1 , Tj2 , Tj3 , and the d-axis transient reactance 

X ′
d1 , X

′
d2 , X

′
d3 on SI2 are examined. The causal effects 

ACE and the causal effects under per unit intervention 
strength RACE are shown in Table  5, and have been 
arranged in descending order of |RACE|. As is seen from 
Table 5, the causal effect of Tj2 on SI2 is the largest and 
the causal effect of X ′

d3 on SI2 is the smallest under the 
applied unit intervention.

A time-domain simulation model of the standard 
WSCC 9-bus system is also set up. The fault location is 
set at Bus 7, and the 7 cause variables listed in Table 5 are 
positively perturbed to 1.1 times the values in the stand-
ard case. The stability margin change indicator �SI2 of 
generator 2 is shown in Table 6.

Table 6 shows that the ranking of the �SI2 index is the 
same as that of RACE, indicating that the RACE index 
has the ability to evaluate the causal effect of counterfac-
tual inference on different dimensional variables. It can 
provide method support for further revealing the physi-
cal mechanisms of power system transient stability.

5 � Conclusion
The current data-driven transient stability assessment 
methods mainly focus on constructing correlation rela-
tionships between variables. Because they neglect the 
causal relationships between variables, they face poor 
robustness and difficulty in interpretation. This restricts 
engineering application. Combined with the new 
advances in causal theory, this paper takes the power 
system transient stability problem as the object, and pro-
poses improved methods for discovering causal structure 
and inferring causal effects based on operational data-
sets. The main conclusions are:

(1)	 An improved causal structure discovery method 
based on the PC-IGCI algorithm for datasets of 
power system transient stability assessment is pro-
posed. This addresses the shortcomings of Markov 
equivalence and massive variables. It proves the fea-
sibility of discovering the causal structure based on 
operational datasets.

(2)	 The RACE index is proposed to quantitatively eval-
uate the causal effect under unit intervention. It has 
the ability to evaluate the causal effect of counter-
factual inference on different dimensional variables. 
RACE can be used to reveal the sorting of the causal 
effects, and to provide an approach for explaining 
the influence of different causes on the evaluation 
results of transient stability.

(3)	 Exploring the causal relationship between vari-
ables of transient stability assessment based on data 
expands the capabilities of data-driven methods 
and helps to understand the deeper mechanisms in 
the power system transient stability problem.

Table 5  Order of unit causal effects

No Cause → Outcome E(Ci|Di = 0) E(Ci|Di = 1) ACE RACE

1 Tj2 → SI2 12.80 (s) 13.81 (s) 6.470 82

2 Tf → SI2 0.25 (s) 0.272 (s)  − 6.25  − 71

3 X’d2 → SI2 0.117 (pu) 0.132 (pu)  − 5.9  − 46

4 Tj1 → SI2 47.28 (s) 52 (s)  − 4.1  − 41

5 Tj3 → SI2 6.02 (s) 6.62 (s)  − 1.8  − 18

6 X’d1 → SI2 0.061 (pu) 0.067 (pu)  − 0.82  − 8.3

7 X’d3 → SI2 0.181 (pu) 0.2 (pu)  − 0.472  − 4.5

Table 6  Comparison of causal effects and model intervention 
experiments

No Cause → Outcome RACE ΔSI2

1 Tj2 → SI2 82 0.53

2 Tf → SI2  − 71  − 0.47

3 X’d2 → SI2  − 46  − 0.295

4 Tj1 → SI2  − 41  − 0.262

5 Tj3 → SI2  − 18  − 0.05

6 X’d1 → SI2  − 8  − 0.039

7 X’d3 → SI2  − 3  − 0.026
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In future research, there exists the potential to develop 
a stable learning model for transient stability assessment 
that uses causal relationships. This approach would miti-
gate the incorporation of irrelevant local features from 
the data, facilitate the integration of identified causal 
relationships as constraints during the data-driven model 
learning phase, and effectively eliminate spurious corre-
lations among variables. As a result, this strategy could 
effectively curtail overfitting tendencies and bolster the 
overall robustness of the model.
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