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Abstract 

To facilitate wind energy use and avoid low returns, or even losses in extreme cases, this paper proposes an inte-
grated risk measurement and control approach to jointly manage multiple statistical properties of the expected profit 
distribution for a wind storage system. First, a risk-averse stochastic decision-making framework and multi-type risk 
measurements, including the conditional value at Risk (CVaR), value at risk (VaR) and shortfall probability (SP), are 
described in detail. To satisfy the various needs of multi-type risk-averse decision makers, integrated risk measure-
ment and control approaches are then proposed by jointly considering the expected, boundary and probability 
values of the extreme results. These are managed using CVaR, VaR and SP, respectively. Finally, the effectiveness 
of the proposed risk control strategy is verified by conducting case studies with realistic market data, and the results 
of different risk control strategies are analyzed in depth. The impacts of the risk parameters of the decision maker, 
the energy capacity of the battery storage and the price difference between the day-ahead and real-time markets 
on the expected profits and risks are investigated in detail.
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1 Introduction
An efficient electricity market can help to ensure stable 
operation of the power system, sustainable development 
of the power industry, and the optimal allocation of large-
scale energy resources [1]. However, in the context of 
large-scale integration of intermittent renewable energy, 
such as wind power and photovoltaics, the price volatility 
of the electricity market is also increasing, which brings 
huge risks to various types of power trading entities [2].

In the process of integrating wind energy into the 
power grid, system operators and wind power producers 

face a series of challenges and risks associated with high 
penetration levels of intermittent energy resources, 
where advanced risk measurement and control methods 
are becoming more and more crucial [3]. Various energy 
storage types, such as those using battery, compressed 
air, and pumped storage, have the capability of stabilizing 
wind power fluctuation, peak load shifting, and improv-
ing power system reliability. Thus the joint participation 
of wind energy resources and energy storage in the elec-
tricity market has become an efficient strategy, and has 
received more and more attention in recent years [4, 5].

In current research, wind energy resources and various 
energy storages are coordinated to optimize the expected 
operation or planning results considering different types 
of market mechanisms, such as energy markets, reserve 
markets, bilateral transactions, gas markets, etc. In [6], 
renewable resources and energy storage systems are 
coordinated to improve the overall market revenue and 
reduce the deviation penalty caused by renewable power 
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outputs in real-time balancing energy markets. In [7], a 
bi-objective optimization model is established to gener-
ate offering strategies for a wind-thermal-storage system 
in energy and reserve markets, where both the expected 
profits and carbon emissions are minimized. Reference 
[8] proposes an optimal decision-making model for wind 
power and pumped storage to participate in the electric-
ity spot market and bilateral transactions. In [9], consid-
ering both the electricity and the natural gas markets, a 
trading model of wind power providers and power-to-gas 
equipment, gas units and gas storage devices is proposed. 
The Shapley value method is used to distribute the profits 
under a cooperative joint venture mode. In [10], the wind 
storage system can optimize the operating schedule of 
the BESS and maximize the expected profit by developing 
optimal price thresholds for the electricity trading deci-
sion at each instant of time. Reference [11] shows that 
the wind storage system can optimize dispatch strategy, 
increase the operating profit and determine the optimal 
capacity of energy storage through a ‘receding horizon’ 
approach. Reference [12] studies the risk-oriented multi-
regional economic dispatch problem in depth, while also 
considering the application of compressed air energy 
storage with a large-scale access of wind power. In [13], 
the energy storage and transmission lines are jointly 
optimized in an electricity market environment, so as to 
manage the intermittent output of wind power and maxi-
mize expected profits.

To further improve the profits of wind storage sys-
tems, cooperative operation strategies of multiple energy 
storages have also been developed to improve the over-
all benefits. Reference [14] considers that multiple wind 
farms can improve market revenue and reduce the real-
time market deviation penalty by coordinated operation 
with shared energy storage. [15] suggests that multiple 
wind storage systems can optimize their electricity trad-
ing strategies and increase overall expected profits by 
solving the two-stage stochastic problem at the upper 
level and the electricity market clearing problem at the 
lower level. Additionally, deep reinforcement learning 
approaches have also been employed by wind storage 
systems in recent years. In [16], the wind storage sys-
tem implements self-dispatch to ensure robustness and 
improve operating profitability through deep reinforce-
ment learning. Reference [17] adopts this type of learning 
to optimize the expected system operation results of the 
wind power producers, where the dual uncertainties of 
wind generation and electricity price are reduced.

To handle the uncertainties in the electricity mar-
ket effectively, stochastic optimization and conditional 
value at risk (CVaR) have been widely adopted by wind 
storage systems, where only one risk measurement is 

usually considered to control the risks. Based on the 
CVaR and stochastic optimization method, reference 
[18] uses three-stage stochastic optimization to help 
wind power and a commercial air compression energy 
storage system participate in day-ahead, intra-day and 
real-time electricity markets, where CVaR is adopted 
for risk management. In [19], the time series and cross-
correlation of random parameters are fully consid-
ered to establish a multi-objective stochastic model of 
a micro-energy network, with the minimum life cycle 
cost and carbon emissions as the optimization objec-
tives. In [20], new energy and energy storage power 
plants are modeled as a price taker to participate in 
electricity markets, and CVaR and stochastic optimiza-
tion methods are used to generate the optimal bidding 
strategy. In [21], a two-stage stochastic programming is 
used to optimize the bidding strategy of a joint wind-
photovoltaic-storage system in the day-ahead market, 
while in [22] it shows that a risk-averse wind storage 
system can reduce the rick-in-cost and improve the 
expected operational cost by considering a scenario-
based stochastic approach, downside risk constraints 
and a price-responsive demand response program. In 
[23], stochastic optimization and linear decision rules 
are employed by the wind storage systems in electricity 
markets to generate day-ahead and real-time strategies, 
and CVaR is incorporated into the model to manage the 
risks.

As shown in the above research, the existing risk con-
trol strategies tend to only consider CVaR or boundaries 
in the optimization model, while other risk measure-
ments that decision makers may expect to optimize, such 
as value at risk (VaR) and shortfall probability (SP), have 
not been fully investigated. In [24], the definition and 
computing methods of VaR are illustrated in detail. It 
shows that the concept of VaR can be easily understood 
and the computation of a boundary value is not affected 
by extreme high tail losses. This makes it stable and more 
widely used than CVaR by the financial institutions such 
as banks and fund companies. In [25], a mathematical 
model is proposed for a transmission investment game, 
and shortfall probability is adopted to control the trans-
mission investment risk. Different from CVaR and VaR, 
SP is used to describe the probability of risk or loss. 
When the decision maker has an expected minimum 
profit or maximum loss as a benchmark value, minimiz-
ing SP can become a better choice.

Therefore, the benefits of various risk measurements 
are different for decision makers faced with uncertain-
ties. However, in the existing research on wind storage 
systems, the integrated control of multiple risk measure-
ments in decision making model has not been reported.
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To fill the above research gaps, this paper investigates the 
integrated risk measurement and control of a wind storage 
system in depth. The main contributions of this paper are:

An integrated risk measurement is proposed for a deci-
sion maker to jointly consider multi-type tail risks of the 
expected results. Using the proposed risk measurement, 
multiple statistical properties of the expected profit distri-
bution, including the expected, boundary and probability 
values of the extreme results in the worst scenarios, are 
characterized by using CVaR, VaR and SP, respectively.

A scenario-based risk-ware stochastic optimization 
model is established to realize the integrated risk control 
of a wind storage system with uncertainties in electricity 
markets. The expected profits and three types of tail risks 
related to the extreme results in worst scenarios can be 
managed flexibly by changing the integrated risk aversion 
parameters and sub-risk aversion parameters of the wind 
storage system.

The remainder of this paper is organized as follows: Sec-
tion II presents the risk-ware stochastic decision frame-
work and employed risk measurements, while Section 
III develops the integrated risk measurement and control 
approaches of the wind storage system. Section IV con-
ducts the case studies, and Section V concludes the paper 
and proposes future work.

2  Stochastic programming and risk control
2.1  Decision framework under risk‑aware stochastic 

optimization
In recent years, stochastic optimization methodology has 
been widely adopted for the uncertain-aware decision-
making problems considering risk management. In the 
framework of stochastic programming, the objective func-
tion of the risk-neutral decision maker is the expected 
value of its objective function, where each random param-
eter is characterized by a set of limited scenarios, with 
each scenario assigned a probability weight. This scenario 
set can be regarded as a discrete probability distribution 
of random parameters. For risk-averse decision makers, 
the objective function needs to incorporate a risk meas-
urement term into the objective function to measure and 
manage low returns or losses in extreme scenarios. Specifi-
cally, the objective function of a risk-averse decision maker 
in a stochastic optimization problem can be expressed as:

where x and ζ are the vectors of decision variables and 
random parameters, respectively. f (x, ζ) is the distribu-
tion function of expected profit, and Eζ{f (x, ζ)} is the 
total expected profit of decision makers. Rζ{f (x, ζ)} is 
the risk measure of f (x, ζ) , such as SP, VaR and CVaR. 
The weight coefficient βr of Rζ{f (x, ζ)} is the risk aversion 

(1)max
x

(1− βr)Eζ{f (x, ζ)} + βrRζ{f (x, ζ)}

parameter. For the wind storage system, both Eζ{f (x, ζ)} 
and Rζ{f (x, ζ)} are positive. When βr increases, the 
weight coefficients of expected profit and risk measure-
ment in (1) will decrease and increase, respectively, while 
the risk aversion degree of decision makers will increase. 
This makes the optimal solution of the stochastic optimi-
zation problem more conservative.

2.2  Risk control methodologies based on different risk 
measurements

2.2.1  Risk control based on SP
The value of the loss probability can be represented as 
FSP(x, ηSP) and it is the probability that the expected 
profit is less than the reference profit value ηSP . The for-
mulation of calculating FSP(x, ηSP) is expressed as:

where ζ = {ζw}
�
w=1 and ζw is the w scenario in the sce-

nario set ζ , and the total number of scenarios is �.
To reduce the potential risk and improve the profit value 

of extreme scenarios, a smaller SP is usually expected for 
the decision makers. Therefore, Rζ{f (x, ζ)} of the objec-
tive function (1) of the stochastic programming model 
will be set to −FSP(x, ηSP) , and the maximization of the 
negative value of SP is equivalent to the minimization of 
the SP. The defect of using the risk measurement SP is 
that it cannot give the statistical information of the profit 
exceeding the reference value ηSP , and thus, the SP can-
not measure the risk associated with a fat tail. In addition, 
because SP is a probability value rather than a profit value, 
it has no units and is not a consistent risk measure.

2.2.2  Risk control based on VaR
VaR is the maximum possible loss or minimum low 
income of decision makers in a certain period in the 
future at a certain confidence level. It was first proposed 
by the G30 group in 1993 in the report of Practice and 
Rules of Derivatives. Given the confidence level parame-
ter αVaR ∈ (0, 1) , VaR can be represented as FVaR(αVaR, x) 
and calculated by:

where the value of expected profit being less than ηVaR 
is not greater than 1− αVaR , and the value of VaR is 
the maximum value of ηVaR . VaR can be regarded as 
an upper bound of potential loss or low return in the 
(1− αVaR)× 100% worst case scenario, which is a quan-
tile of the expected profit distribution function.

(2)FSP(x, ηSP) = P
f (x, ζw) < ηSP

ζw ∈ ζ
w

(3)

FVaR(αVaR
, x) = max

{

ηVaR : P

(

f (x, ζw) < ηVaR

ζw ∈ ζ

)

≤ 1− αVaR

}
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Similar to SP, VaR also cannot give the profit distribu-
tion information beyond the reference value ηVaR , and it 
cannot measure the risk related to a fat tail, so it is not a 
consistent risk measure. However, VaR satisfies all other 
properties of consistent risk measures except homoge-
neous additivity. In addition, VaR is more intuitive and 
relatively simple to calculate, so it has become the most 
commonly used risk measure in the financial industry.

2.2.3  Risk control based on CVaR
CVaR is a risk measurement model developed on the 
basis of VaR. It was proposed by RockafeUar and Uryasev 
in 1997 to calculate the expected return of the trading 
strategy when the profit is lower than a given VaR value. 
Given the confidence level parameter αCVaR ∈ (0, 1) , 
CVaR can be represented as FCVaR(αCVaR, x) and calcu-
lated by:

where ηCVaR is an auxiliary variable for calculating CVaR, 
and is similar to its role in (3) and is the (1− αCVaR) 
quantile of the expected profit distribution. If the prob-
ability weights of all scenarios are equal, the value of 
FCVaR(αCVaR, x) is the expected profit of the worst sce-
nario of (1− αCVaR)% . The advantage of CVaR is that it 
is a consistent risk measure and can effectively manage 
tail risk beyond VaR. In addition, when CVaR is intro-
duced into stochastic optimization problems, no addi-
tional integer variable needs to be introduced. In recent 
years, CVaR has been widely used in various risk-aware 
decision-making problems in the field of electric energy 
systems.

2.3  Risk control using integrated risk measurement
By simultaneously considering the above risk meas-
urements provided in Sections II-B for the expected 
profit distribution, an integrated risk measurement 
F IRM(x, ηSP,αVaR,αCVaR) can be obtained, expressed as:

where the three risk parameters ηSP , αVaR and αCVaR are 
determined by the decision maker to control the tail 

(4)CVaR(αCVaR
, x) = max

{

ηVaR −
1

1− αCVaR
Eζ

[

max

(

ηVaR − f (x, ζ), 0
)]

}

∀αCVaR ∈ (0, 1)

(5)

F
IRM

(

x, ηSP,αVaR
,αCVaR

)

= βSP
F
SP
(

x, ηSP
)

+ βVaR
F
VaR

(

αVaR
, x

)

+ βCVaR
F
CVaR

(

αCVaR
, x

)

risks of the expected profit distribution according to its 
specific risk preference. As shown in Fig.  1, CVaR, VaR 
and SP can be used to manage the expected, bound-
ary and probability values of the extreme profits in 
the worst scenarios, and the objective function can be 
adjusted by revising the risk parameters of different risk 

measurements.

3  Proposed integrated risk measurement 
and control methodologies for a wind storage 
system

3.1  Market framework and random parameter 
characterization

The basic framework of a typical two-settlement electric-
ity market is depicted in Fig. 2, and is mainly composed of 
the day-ahead market and the real-time market. On the day 
before the power system operating day, the wind storage 

Fig. 1 Structure of proposed integrated risk measurement

Fig. 2 The basic framework of typical two-settlement electricity 
market
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system generates a day-ahead trading strategy before the 
submission closure time of the day-ahead market, and 
the cleared energy is settled at the day-ahead electricity 
price. On the power system operating day, the power sys-
tem must guarantee the real-time power balance through 
the real-time market, and the deviations caused by the 
day-ahead submissions of the wind storage system will be 

VaR and CVaR, respectively. The value range of these risk 
averse degree parameters is [0,1] and they need to satisfy 
the following equation, as:

Based on (8) and the framework of stochastic optimiza-
tion, the objective function of the proposed risk control 
problem can be established as:

where � is the set of all the decision variables of the pro-
posed risk-aware stochastic optimization problem. prw 
and πWS

w  are the probability and expected profit of the 
scenario w, respectively, and πSC is the scale parameter 
of SP. θSP , πVaR and πCVaR are the SP, VaR and CVaR of 
the wind storage system, respectively, while the sub-risk 
aversion degree parameters of the wind storage system 
are βSP , βVaR and βCVaR.

The expected profit πWS
w  for the stochastic energy 

trading of the wind storage system in the electricity 
market is calculated as:

where �DAt,w  and �RTt,w are the day-ahead and real-time elec-
tricity prices in the electricity market in the period t of 
scenario w , respectively. PDA

t  and PRT
t  are the energy sold 

by the wind storage system in the day-ahead and real-time 
markets, respectively, where negative values mean the 
wind storage system is buying energy from the markets. 
PBS,ch
t,w  and PBS,dis

t,w  are the respective charging and discharg-
ing energy of the battery storage in the period t of sce-
nario w , while PRT +

t,w  and PRT -
t,w  are the positive and negative 

power deviations in RT markets, respectively. FDEV + and 
FDEV - are the respective positive and negative deviation 
penalty costs for real-time power of the wind storage sys-
tem, while FBS,ch and FBS,dis are the charging and discharg-
ing operation costs of the battery storage, respectively.

3.2.2  Constraints of the risk measurements
In the stochastic optimization problem, the constraints 
used to calculate SP include:

(8)βSP + βVaR + βCVaR = βr

(9)max
�

{

(

1− βSP − βVaR − βCVaR
)

∑W

w=1
prwπ

WS
w + βSP

(

−πSCθSP
)

+ βVaRπVaR + βCVaRπCVaR

}

(10)

πWS
w =

T
�

t=1















�
DA
t,wP

DA
t + �

RT
t,wP

RT
t

−(FDEV +
P
RT +
t,w + F

DEV -
P
RT -
t,w )

−(FBS,dis
P
BS,dis
t,w + F

BS,ch
P
BS,ch
t,w )















(11)θSP =

W
∑

w=1

prwz
SP
w

settled by the real-time electricity price considering devia-
tion penalty costs.

Based on the above market framework, the random 
parameters faced by the wind storage system in electric-
ity markets include wind power production, day-ahead 
and real-time electricity prices. In this paper, the sce-
narios of random parameters are generated using the 
Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model. Taking the random parameter day-
ahead electricity price �DAt,w  as an example, its mathemati-
cal formula based on the SARIMA model is expressed as:

where S is the seasonal order, φ1, φ2, · · · , φG denote 
G autoregressive parameters, θ1, θ2, · · · , θH denote 
H moving average parameters, �1, �2, · · · , �P 
denote P seasonal autoregressive parameters, and 
�1, �2, · · · , �Q denote Q seasonal moving average 
parameters. εDAt,w  denotes the error term of scenario w , 
which follows the independent normal probability distri-
bution for the SARIMA model. B is the backward shift 
operator, and its function can be defined by:

where d is the difference order of the SARIMA model.

3.2  Trading strategy based on integrated risk 
measurement and control

3.2.1  Objective function
The objective function of the wind storage system is the 
weighted sum of the total expected profit and all the risk 
measurements. The weight coefficients βSP , βVaR , and 
βCVaR are defined as the sub-risk aversion degree of SP, 

(6)



1−

G
�

g=1

φgB
g





�

1−

P
�

i=1

�iB
iS

�

(1− B)d(1− BS)D�DAt,w

=

�

1−

H
�

h=1

θhB
h

�



1−

Q
�

j=1

�jB
jSεDAt,w





(7)Bd
�
DA
t,w = �

DA
t−d,w
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where ηSP represents the reference profit of the short-
fall probability, zSPw  is the binary auxiliary variable, 
which is 1 when πWS

w ≤ ηSP and is 0 otherwise, while M 
is a sufficiently large constant.

The constraints used for calculating the VaR include:

where αVaR is the confidence level parameter of the 
VaR, zVaRw  is the binary auxiliary variable used to calcu-
late it, and equals 1 when πWS

w ≤ πVaR and 0 otherwise.
The constraints used for calculating the CVaR include:

where αCVaR is the confidence level parameter, while gw 
and ζ are the auxiliary variables used to calculate the 
CVaR. The detailed derivation and proof process of this 
calculation method are shown in detail in [26].

3.2.3  Constraints of energy balance and energy trading
The energy balance constraint of the wind storage system 
participating in the electricity market is expressed as:

where PRES
t,w  is the wind power production in the period t 

of scenario w . The total energy sold by the wind storage 
system in the day-ahead and real-time markets is equal to 
the sum of wind power production, and battery discharg-
ing energy minus charging energy.

The trading volume of the wind storage system in the 
day-ahead market is constrained by the installed capacity 
of the energy storage and wind farm. This capacity can be 
expressed as (21). Specifically, the maximum day-ahead 
purchasing energy of the wind- storage system should 

(12)ηSP − πWS
w ≤ MzSPw

(13)zSPw ∈ {0, 1}

(14)
W
∑

w=1

prwz
VaR
w ≤ 1− αVaR

(15)πVaR − πWS
w ≤ MzVaRw

(16)zVaRw ∈ {0, 1}

(17)πCVaR = ζ −
1

1− αCVaR

∑

w
prwgw

(18)gw ≥ 0 ∀w

(19)ζ − gw ≤ πWS
w ∀w

(20)PDA
t + PRT

t,w = PBS,dis
t,w + PRES

t,w − PBS,ch
t,w ∀t,w

not be higher than the maximum power capacity of the 
energy storage device, and the maximum day-ahead 
selling power shall not be higher than the sum of the 
installed capacity of the wind power plant and the power 
capacity of the energy storage device, i.e.:

The positive and negative deviations of the wind stor-
age system in the real-time electricity market are calcu-
lated by:

3.2.4  Constraints of battery storage
The operating cost of battery storage is related to the 
charging and discharging power, expressed as:

The energy levels of battery storage in different peri-
ods are calculated by:

where EBS
t,w is the real-time energy level of the battery in 

the period t of scenario w , and EBS,0 is the initial energy 
level of battery storage. ηBS,ch and ηBS,dis are the charg-
ing and discharging efficiencies of the battery storage, 
respectively.

The energy level and charge–discharge power con-
straints of the battery are given as:

(21)−PBS,max ≤ PDA
t ≤ PRES,max + PBS,max ∀t

(22)PRT
t,w = PRT +

t,w − PRT -
t,w

(23)0 ≤ PRT +
t,w ,PRT -

t,w

(24)CBS
w =

T
∑

t=1

(

gBS,disPBS,dis
t,w + gBS,chPBS,ch

t,w

)

∀w

(25)

EBS
t,w = EBS,0 −

PBS,dis
t,w

ηBS,dis
+ ηBS,chPBS,ch

t,w t = 1, ∀w

(26)

EBS
t,w = EBS

t−1,w −
PBS,dis
t,w

ηBS,dis
+ ηBS,chPBS,ch

t,w ∀t ≥ 2,w

(27)EBS,min ≤ EBS
t,w ≤ EBS,max ∀t,w

(28)0 ≤ PBS,dis
t,w ≤ PBS,maxzBS,dist,w ∀t,w

(29)0 ≤ PBS,ch
t,w ≤ PBS,maxzBS,cht,w ∀t,w

(30)zBS,dist,w +zBS,cht,w ≤ 1 ∀t,w
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where zBS,cht,w  is a binary variable representing the charg-
ing state, which is 1 when the battery is charged and 0 
otherwise, while zBS,dist,w  is a binary variable represent-
ing the discharging state, which is 1 when the battery is 
discharged and 0 otherwise. EBS,max and EBS,min are the 
highest and lowest energy levels of the battery, respec-
tively. PBS,max determines the maximum charging and 
discharging power of the battery.

3.3  Energy trading strategies based on different risk 
control methodologies

By simplifying the proposed stochastic optimization 
model based on integrated risk control methodology, the 
stochastic optimization models of a risk-neutral energy 
trading strategy and three other risk-averse trading strat-
egies can be obtained.

When βSP = βVaR = βCVaR = 0 , only the total 
expected profit is considered in the objective function of 
the stochastic optimization model. This strategy can be 
called risk neutral strategy, and its optimization model 
includes (9)–(10), and (20)-(31).

When βSP > 0 , βVaR = 0 , and βCVaR = 0 , the total 
expected profit and risk measurement SP will be consid-
ered in the objective function of the stochastic optimi-
zation model. This strategy can be called SP risk control 
strategy, and its optimization model includes (8)–(13), 
and (20)–(31).

When βSP = 0 , βVaR > 0 , and βCVaR = 0 , the objective 
function of the stochastic optimization model will con-
sider the total expected profit and the risk measurement 
VaR. This strategy can be called VaR risk control strategy, 
and its corresponding optimization models include (9)–
(10), (14)–(16), and (20)–(31).

When βSP = 0 , βVaR = 0 , and βCVaR > 0 , the total 
expected profit and risk measurement CVaR will be con-
sidered in the objective function of the stochastic opti-
mization model. This strategy can be called the CVaR 
risk control strategy, and its corresponding optimization 
model includes (8)-(10), and (17)-(31).

When βSP > 0 , βVaR > 0 , and βCVaR > 0 , the total 
expected profit and three different risk measures of SP, 
VaR, and CVaR will be considered in the objective func-
tion of the stochastic optimization model, and this strat-
egy is the integrated risk control strategy proposed in 
this paper, and its corresponding optimization model 
includes (9)–(31). These have been explained in Section 
III-B in detail.

(31)zBS,dist,w , zBS,cht,w ∈ {0, 1} ∀t,w
4  Case studies
4.1  Simulation set‑up
To verify the effectiveness of the proposed integrated 
risk measurement and control methodologies, a wind 
power plant with an installed capacity of 16 MW, and a 
battery storage device with 6 MWh energy capacity and 
3 MW power capacity are analyzed. The historical wind 
power data are obtained from the website of the National 
Renewable Energy Laboratory [27], and the charging 
and discharging operational costs of the battery storage 
is 0.015 $/MWh. The historical day-ahead and real-time 
electricity price data are obtained from IMO, which is the 
trading hub node of the Pennsylvania-Jersey-Maryland 
electricity market in the United States [28]. The penalty 
cost of real-time power deviation is 1 $/MWh. The num-
ber of scenarios for each random parameter is 50, and 
the probability weight of each scenario is 0.02. All the 
optimization models in this paper are solved by YALMIP 
toolbox and commercial solver Gurobi 6.52 in the envi-
ronment of MATLAB 2019b [29].

4.2  Compare risk‑neutral and risk‑averse strategies
This part first compares the risk neutral strategy with the 
integrated risk control strategy, with the risk parameters 
βSP = βVaR = βCVaR = 0.2 . The expected values of wind 
power generation, day-ahead and real-time electricity 
prices on one day are shown in Fig. 3. It can be seen that 
the fluctuations of real-time electricity price are more 
obvious than those of wind power production and day-
ahead electricity price.

The trading results of the risk neutral strategy and the 
integrated risk control strategy in the day-ahead mar-
ket and the real-time market are shown in Fig.  4, and 

Fig. 3 The expected values of day-ahead and real-time electricity 
prices and wind power productions
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the energy level of the battery storage device is shown 
in Fig. 5. The results show that the wind storage system 
is more inclined to sell energy to the trading floors dur-
ing the periods with high electricity prices. The expected 
day-ahead prices during 11:00–14:00 are significantly 
higher than the real-time prices, and thus the wind stor-
age system chooses to sell energy in the day-ahead mar-
ket and buy them back in the real-time market for both 
strategies. The energy storage device tends to discharge 
when the electricity price is high. For instance, since the 
electricity price is high at 15:00–17:00, the energy stor-
age device chooses to discharge quickly to earn income, 
resulting in a rapid decline in its energy level.

As shown in Figs.  3, 4, 5, it is also found that the 
impact of risk management on the trading strategy of 
the wind storage system is closely related to the dif-
ference between day-ahead and real-time electricity 
prices. For instance, that difference during 11:00–14:00 
is large, and the trading strategy of the wind stor-
age system is relatively stable, and almost unaffected 
by the risk control methodologies. By contrast, when 
the difference between the day-ahead and the real-
time electricity prices during 4:00–6:00 is close to 0 
the uncertainties faced by the wind storage system are 
severe, resulting in significantly different trading results 
between its risk-neutral strategy and integrated risk 
control strategy.

To further investigate the effectiveness and compare 
the characteristics of different risk control strategies, 
Table  1 compares and analyzes the results of five dif-
ferent risk control strategies described in Section III-C. 
βSP of SP risk control strategy, βVaR of VaR risk control 
strategy, and βCVaR of CVaR risk control strategy are all 
set to 0.6. From the statistical results of the expected 
profits, it can be seen that these four risk control strat-
egies can effectively help the wind storage system to 
avoid the tail risks of extreme scenarios. The minimum 
profits obtained by using the CVaR, VaR, SP and inte-
grated risk strategies are respectively 74.96%, 74.78%, 
71.20% and 75.67% higher than that obtained by solving 
the risk-neutral strategy. In contrast, the total expected 

Fig. 4 The expected power trading results of wind storage system 
with risk-neutral and integrated risk control strategies

Fig. 5 The expected energy levels of storage device 
under risk-neutral and integrated risk control strategies

Table 1 Expected profit distribution results based on different risk control models

Strategy CVaR/$ VaR/$ SP (%) Minimum profit/$ Expected 
profit/$

Risk-neutral strategy 727 1056 18 559 3734

CVaR risk control strategy 1170 1289 18 978 3673

VaR risk control strategy 1147 1455 16 977 3677

SP risk control strategy 1116 1400 12 957 3683

Integrated risk control strategy 1146 1427 12 982 3675



Page 9 of 11Xiao et al. Protection and Control of Modern Power Systems            (2023) 8:60  

profits obtained by using the CVaR, VaR, SP and inte-
grated risk strategies are respectively only 1.6%, 1.53%, 
1.37% and 1.58% lower than that obtained by solving 
the risk-neutral strategy.

The integrated risk control strategy proposed here 
can simultaneously reduce the SP by 33.33%, and 
increase VaR and CVaR by 57.63% and 35.13%, respec-
tively. Thus the proposed integrated risk control 
method can effectively manage multi-type statistical 
properties of the expected profit distribution simulta-
neously. This increases the flexibility of the risk-aware 
energy trading process. Additionally, the SP, VaR and 
CVaR obtained from the respective SP, VaR and CVaR 
risk control strategies are optimal. Thus, the different 
types of risk control strategies can well meet the risk 
management needs of multiple decision makers who 
may prefer different risk measurement indicators.

4.3  Sensitivity analysis of risk parameter
The value of integrated risk parameter βr is gradually 
increased from 0 to 0.6, and the values of each sub-risk 
coefficient are equal to βr/3 . The risk measurement 
results and the expected profits of the relevant risk 

measures are shown in Figs. 6 and 7, respectively. These 
results show that as the risk coefficient increases, CVaR 
and VaR are also increased, while SP is decreased, and 
the total expected profit is gradually decreased.

When the integrated risk coefficient increases 
from 0 to 0.4, the expected profit and risk measures 
change more obviously, e.g., VaR and CVaR increase 
by 33.43% and 55.9%, respectively, while SP and the 
total expected profit decrease by 33.3% and 1.5%, 
respectively. When the integrated risk coefficient 
increases from 0.4 to 0.6, its impacts on the expected 
profit and risk measurements are not significant, e.g., 
VaR and CVaR are only increased by 0.42% and 0.35%, 
respectively, and the total expected profit is decreased 
by 0.08%, while the SP does not change. As a result, 
if the decision maker is concerned about CVaR and 
VaR, choosing an integrated risk parameter lower than 
0.3 is a good choice, since it can decrease CVaR and 
VaR significantly without noticeably decreasing the 
expected profit. However, if the decision maker needs 
to decrease SP, setting the integrated risk parameter to 
be 0.3 or 0.4 is better.

Fig. 6 The risk measurement results of wind storage system 
with different integrated risk parameters

Fig. 7 The expected profits of wind storage system with different 
integrated risk parameters

Fig. 8 The risk measurement results of a wind storage system 
with different storage energy capacities

Fig. 9 The expected profits of a wind storage system with different 
storage energy capacities
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4.4  Sensitivity analysis of battery capacity
The energy capacity of the battery storage is gradually 
increased from 4 to 10 MWh, and the expected profit 
results and the risk measurements are shown in Figs. 8 
and 9, respectively. The results indicate that as the 
energy capacity of the energy storage device increases, 
CVaR and VaR and total expected profit are all signifi-
cantly increased, while SP is decreased. Additionally, 
the growth trend of CVaR and the total expected profit 
are relatively stable, while the variations of SP and VaR 
have a certain randomness. For example, when the 
energy capacity of battery storage is increased from 5 
to 6 MWh, SP and VaR are decreased and increased by 
25% and 0.42%, respectively. In comparison, when the 
energy capacity of battery storage is increased from 6 
to 7 MWh, SP is not changed while VaR is increased by 
2.1%.

5  Conclusion
This paper has proposed integrated risk measurement 
and control methodologies for the stochastic energy 
trading strategy of a wind storage system, where three 
types of risk measurements, i.e., SP, VaR and CVaR, are 
incorporated into the stochastic optimization model. 
The proposed strategy fully considers the uncertainties 
of day-ahead electricity price, real-time electricity price 
and wind power production, and can satisfy various 
risk preferences of decision makers. By conducting the 
simulation analysis based on realistic data, the follow-
ing conclusions can be obtained:

The proposed integrated risk control strategy can 
simultaneously optimize the three risk measurements, 
including SP, VaR and CVaR, which can flexibly and 
effectively control the statistical properties of the 
expected profit distribution and reduce multi-type tail 
risks faced by decision makers.

The impacts of risk control on a wind storage sys-
tem are closely related to the difference between the 
expected day-ahead and real-time electricity prices. If 
the expected price difference is small, the uncertainties 
and risks of the expected profit of the wind storage sys-
tem will be severe. Consequently, stochastic electricity 
trading strategy is more likely to be affected by the risk 
preference of the decision maker.

The values of risk aversion parameters are closely 
related to the risk preference of the decision maker. 
Larger risk aversion parameters can improve the capa-
bility of managing the tail risks of expected profit dis-
tribution for the wind storage system, while at the same 
time reducing the total expected profit.

Increasing the energy capacity of battery storage 
increases the arbitrage capability of a wind storage sys-
tem during different periods in two-settlement electricity 

markets. This can improve the total expected profit and 
risk management performance simultaneously.

In future research, the value of other flexible 
resources, such as electric vehicles [30], gas fired units 
[31], etc., will be further investigated for the wind 
energy system with an integrated risk control strategy. 
Additionally, other market mechanisms, such as long-
term power trading and ancillary service markets [32], 
may also affect multi-type risk measurements and prof-
its, and can be considered by the wind storage system 
in electricity markets.
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