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Abstract 

This paper addresses a two-stage stochastic-robust model for the day-ahead self-scheduling problem of an aggrega-
tor considering uncertainties. The aggregator, which integrates power and capacity of small-scale prosumers and flex-
ible community-owned devices, trades electric energy in the day-ahead (DAM) and real-time energy markets (RTM), 
and trades reserve capacity and deployment in the reserve capacity (RCM) and reserve deployment markets (RDM). 
The ability of the aggregator providing reserve service is constrained by the regulations of reserve market rules, 
including minimum offer/bid size and minimum delivery duration. A combination approach of stochastic program-
ming (SP) and robust optimization (RO) is used to model different kinds of uncertainties, including those of market 
price, power/demand and reserve deployment. The risk management of the aggregator is considered through con-
ditional value at risk (CVaR) and fluctuation intervals of the uncertain parameters. Case studies numerically show 
the economic revenue and the energy-reserve schedule of the aggregator with participation in different markets, 
reserve regulations, and risk preferences.

Keywords Aggregator, Energy-reserve schedule, Energy market, Reserve market, Stochastic-robust approach, Risk 
management

1 Introduction
With the target of decarbonization, renewable genera-
tors are increasingly used to supply electricity instead of 
traditional fossil-fired generators [1, 2]. However, they 
introduce uncertainties caused by unpredictable weather 
issues [3]. Demand-side resources (DRs) can provide 
local energy and a flexibility service to compensate for 
uncertain power fluctuation and relieve the power bal-
ancing burden of the upstream grid [4].

However, it is difficult for small-scale DRs to take part 
in electricity markets directly, because their behavior 
has only a small influence on the markets. Also, large 
numbers of small-scale participants greatly enlarge the 
computational burden. To address these issues, an aggre-
gation of small participants is required. An aggregator is 
a service provider in the demand side that gathers and 
manages groups of small-scale prosumers and other dis-
tributed devices [5, 6]. It can be a physical or non-physi-
cal entity, such as a retailer, a distribution company, or an 
operator of a local energy system, including a microgrid 
[7], a community energy system [8], a combined cooling, 
heating and power system [9], or a virtual power plant 
(VPP) [10]. The aggregator can combine renewable gen-
erators with flexible DRs, thereby helping to produce sta-
ble power. The aggregator helps the prosumers and other 

*Correspondence:
Jian Wang
1 Department of Electrical Engineering, Shanghai Jiao Tong University, 
Shanghai 200240, China
2 Department of Energy, Politecnico Di Milano, 20156 Milan, Italy

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-023-00320-y&domain=pdf
http://orcid.org/0000-0002-9244-480X


Page 2 of 20Wang et al. Protection and Control of Modern Power Systems            (2023) 8:45 

small-scale DRs to participate in various kinds of elec-
tricity markets as a price taker [11] or even a price maker 
[12]. The effectiveness of the aggregator in improving 
system flexibility with high commercial benefit is evalu-
ated in [13], by formulating it as a chance constrained 
optimization model incorporated the uncertainties of 
renewables.

The aggregator makes an energy or joint energy-reserve 
schedule and participates in various markets with the 
target of maximizing commercial revenue. Reference 
[14] proposes a bidding strategy for a prosumer aggrega-
tor in day-ahead joint energy and reserve markets. The 
aggregator can manage the flexible resources of pro-
sumers to handle the uncertainties caused by renewable 
energy generation and power consumption. Reference 
[15] proposes an energy-reserve scheduling model for 
an integrated community energy system in day-ahead 
joint energy and reserve markets with the uncertainties 
resulting from market prices and renewable generation. 
In [16], a detailed energy and reserve model for an energy 
storage system is developed in the stochastic day-ahead 
unit commitment model. The energy storage system par-
ticipates in both day-ahead energy and reserve markets 
with the uncertainties of electricity load, wind power and 
PV power. A two-stage model can be used in the day-
ahead self-scheduling problem, since the uncertainty is 
usually not realized until reaching the operational time. 
The two stages are defined as “here-and-now” stage (first 
stage or day-ahead stage), and “wait-and-see” stage (sec-
ond stage or real-time stage). The energy storage agent in 
[17] makes a strategic bidding decision as a price maker 
in energy and reserve markets under wind power genera-
tion uncertainty. The energy and reserve markets clear 
jointly in the first stage, and a real-time balancing market 
is considered after the realization of the uncertainty in 
the second stage.

The delivery regulations in the reserve market are 
much stricter than in the energy market. The prom-
ised power level has to be reached within a certain time 
period, depending on the reserve type. Also, the reserve 
power has to remain at the target level for at least a cer-
tain delivery duration [18]. For example, in the Italian 
ancillary service market, according to the UVAM pro-
ject launched in 2018 [19], the tertiary spinning reserve 
should be reached within 15  min and last for at least 
120  min, while the tertiary replacement reserve should 
be reached within 120 min and last for at least 480 min. 
Primary and secondary reserve trading is still not open to 
the aggregator. The aggregator’s offer/bid size of reserve 
in the ancillary service market should be no less than 
1 MW [20].

There exist uncertainties in the self-scheduling prob-
lem of the aggregator [21]. These are usually modeled 

by different methods to avoid risk in decision making. 
In [22, 23], stochastic programming (SP) is applied by 
generating scenarios to model different realizations of 
the uncertain parameters. In [24, 25], conditional value 
at risk (CVaR) is employed in the stochastic model to 
control the risk of profit variability. In [15, 26], a robust 
optimization (RO) approach is used to handle the uncer-
tainties including those of energy price, ancillary service 
price, wind power, PV power, etc., by achieving the worst 
realization of these uncertainties. References [27, 28] use 
adaptive robust optimization to avoid the over-conserva-
tiveness of conventional RO.

Despite these comprehensive studies, there still exist 
some gaps which the present work seeks to fill:

1. Few existing papers consider both day-ahead and 
real-time market stages for energy service and 
reserve service of the aggregator in detail. This means 
that the commercial results are not sufficiently reli-
able. References [14–16] consider the energy and 
reserve markets, although only in the day-ahead 
stage while neglecting the profit/cost in the real-time 
stage from the deviation of energy schedule and the 
reserve deployment used to balance the power sys-
tem. References [11, 17] consider both day-ahead and 
real-time market stages. However, at the real-time 
stage, they do not differentiate the remunerations for 
real-time energy service and for reserve deployment. 
These have different economic benefits.

2. The regulations for reserve service provided by the 
aggregator are neglected in most existing work. 
However, as in the official documents [18–20], the 
regulations including minimum offer/bid size and 
minimum delivery duration need to be strictly fol-
lowed by all aggregators to provide a certain qual-
ity of reserve service for power system security. The 
reserve schedule of the facilities in the aggregator 
should be modeled carefully. In [14, 15], only charg-
ing and discharging power limits are considered 
for the reserve schedule of the electric energy stor-
age (SE), while the SOC limit is modeled only for 
the energy schedule. References [16, 17] neglect the 
ramping limit of the reserve schedule of the natural 
gas turbine (GT). Therefore, the reserve schedules in 
existing work can be unreasonable.

3. Few existing studies combine different methods to 
deal with different kinds of uncertainties. SP is used 
by [22–25], where the uncertainties are modeled by 
scenarios. Although SP is logically easy to under-
stand, probabilistic distributions of the uncertain 
parameters are required to generate scenarios, and 
these are not always available. Also, the increasing 
number of scenarios may result in computationally 
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complex problems. RO is used by [26, 27], where the 
uncertainties are modeled by fluctuation intervals. It 
is generally easier to obtain fluctuation intervals than 
probabilistic distributions and the computational 
burden is also lower than SP. However, the solutions 
of RO are too conservative in some cases. References 
[27, 28] use adaptive robust optimization to avoid the 
over-conservativeness of RO. However, the solution 
method is complicated.

This paper addresses a two-stage stochastic-robust 
model for the day-ahead self-scheduling problem of 
aggregator trading energy and reserve services in various 
markets under reserve regulations with different kinds 
of uncertainties. The main contributions of this paper 
include:

1. A two-stage optimization model is built to support 
the aggregator of small-scale flexible prosumers and 
multiple community-owned devices to coordinately 
trade energy and reserve services in various mar-
kets including the day-ahead energy (DAM), reserve 
capacity (RCM), real-time energy (RTM) and reserve 
deployment markets (RDM). The impacts of natural 
gas price in day-ahead natural gas (DGM) and real-
time natural gas markets (RGM) are also considered.

2. Reserve regulations of the aggregator, including mini-
mum offer/bid size and minimum delivery duration, 
are modeled to provide a certain quality of reserve 
service for power system security. The reserve sched-
ules of the facilities in the aggregator are carefully 
modeled. Auxiliary continuous/binary variables and 
big M value are introduced to linearize the model 
into a mixed integer linear programming (MILP) 
problem.

3. A combination approach of SP and RO is provided to 
solve different kinds of uncertainties including mar-
ket price, power/demand and reserve deployment 
uncertainty. This uses the advantages of both SP and 
RO. The risk preference of the aggregator is managed 
by the CVaR value and the fluctuation intervals.

The remainder of the paper is organized as follows: the 
two-stage stochastic-robust model for the day-ahead self-
scheduling problem of the aggregator is built in Sect. 2; 
Section 3 analyzes the case studies and Sect. 4 draws the 
conclusions.

2  Problem description
2.1  Market framework
The market framework is developed in the market layer 
in Fig. 1. The aggregator trades electrical energy, reserve 

capacity and reserve deployment, and buys natural gas in 
six types of markets.

In DAM, the aggregator makes a day-ahead energy 
schedule and trades electrical energy under the single 
pricing mechanism with the market operator a day before 
the operational day (day D-1).

In RCM, the aggregator calculates the reserve capac-
ity based on the day-ahead energy schedule and trades it 
with the system operator. The aim of the RCM is to save 
enough reserve capacity in D-1, so that it can be called 
and deployed in the real-time stage to help the system 
operator balance the power system when a sudden power 
shortage or surplus appears.

The real-time power output of the aggregator may devi-
ate from the day-ahead energy schedule because of the 
uncertainties which are not realized until arriving at the 
operational day (day D). This deviation can be traded in 
RTM with a dual pricing mechanism, in which the energy 
buying price is always higher than, and the energy selling 
price is always lower than, the price in the DAM. It can 
also be regarded as a kind of energy imbalance penalty 
of the aggregator for not following the day-ahead energy 
schedule. DAM and RTM can be collectively referred to 
as the energy market.

In RDM, the reserve service will receive an energy pay-
ment if it is called by the system operator. The reserve 
capacity is deployed to maintain the balance of the power 
system. If the aggregator cannot supply the amount of 
the reserve it promised in the RCM, it will be penalized 
during the settlement. RCM and RDM can be collectively 
referred to as the reserve market.

In DGM, the aggregator makes its day-ahead natural 
gas schedule and buys natural gas on day D-1. In RGM, 
the aggregator trades the amount of natural gas that devi-
ates from its day-ahead schedule. The natural gas buying 
price is always higher than, and the natural gas selling 
price is always lower than, the price in DGM, and can 
also be regarded as a kind of natural gas imbalance pen-
alty of the aggregator for not following the day-ahead 
natural gas schedule. DGM and RGM can be collectively 
referred to as the natural gas market.

Here we use a general market framework. In the real 
world, although the market frameworks in different 
countries or regions can be different, the generality of 
this paper is not affected. For example, the names of the 
markets can be different, RTM can be replaced by the 
electrical energy imbalance payment in the settlement, 
and some markets can be operated and cleared jointly, 
etc.

2.2  Uncertainty modeling
Two different methods are generally used to model 
the decision-making problem under the impact of 
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uncertainty, namely, stochastic programming (SP) and 
robust optimization (RO).

In SP, uncertainties are modeled based on the genera-
tion of scenarios, which represent different realizations 
of the uncertain parameters. To generate scenarios, the 
probabilistic distributions of these uncertain parameters 
are required. However, these are not always available. 
Also, the increasing number of scenarios may, in some 
cases, result in computationally complex problems.

In RO, uncertainties are modeled using predicted fluc-
tuation intervals. The RO approach can achieve the worst 
realization among all possible uncertain outcomes, and 
therefore obtains solutions from the worst possible sce-
nario. It is generally easier to obtain fluctuation intervals 
than probabilistic distributions, as needed in SP, and the 
computational burden is also lower. However, the solu-
tions of RO can be too conservative in some cases.

To take advantage of both methods, a combination of 
SP and RO is used to model the uncertainties, including 
market price, power/demand and reserve deployment 
uncertainties. The approach is shown in Fig. 2.

The market price uncertainty consists of RTM and 
RDM price uncertainties. The uncertainties of prices 
affect only the optimality of decisions but not the feasibil-
ity of the aggregator. There also exist many methods in 

the literature to generate accurate price scenarios. There-
fore, they are modeled into a scenario-based SP problem. 
The power/demand uncertainty consists of available PV 
capacity and electricity demand uncertainties. Conserv-
ative RO is used based on the fluctuation intervals of 
uncertain factors, because these uncertainties affect not 
only the optimality but also the feasibility of the solution. 
Furthermore, available PV capacity is affected by weather 
issues and electricity demand is affected by consumer 
behavior, both of which cannot be forecasted accurately 
through scenarios. The reserve deployment uncertainty is 
the uncertainty of the system operator calling for reserve 
in the real-time stage. It is also modeled into an RO prob-
lem, because it can affect the solution feasibility and the 
requirement of the system operator is difficult to forecast 
accurately through scenarios.

Other parameters, for example, DAM, RCM, DGM and 
RGM prices, are considered as deterministic parameters 
because their predictions are always quite precise.

2.3  Decision‑making procedure of the aggregator
As in the decision-making layer in Fig.  1, the target of 
the aggregator is to minimize its overall commercial 
cost (maximize its overall commercial profit) of trading 
energy and reserve in all kinds of markets. The objective 
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function (1) includes ten terms. In the day-ahead stage, 
the first term in (1) as shown in (2) is the profit aggre-
gator earnings in DAM. The single pricing mechanism 
is assumed in DAM, which means the power selling and 
buying share the same market price, with the withdraw 
direction of electricity from the aggregator defined as 
positive. The second term in (1) as shown in (3) is the 
cost aggregator spending in DGM for natural gas pur-
chasing. The injection direction of natural gas to the 
aggregator is defined as positive. The third term in (1) 
as shown in (4) is the profit aggregator earning in RCM 
from selling upward and downward reserve capacities. 
The start-up and shut-down costs of GT are determined 
in the day-ahead stage in (5) and cannot be changed at 
the real-time stage. At the real-time stage, after realizing 
what may happen in the operational time, several scenar-
ios are set to form the stochastic analysis for the market 
prices uncertainty. The aggregator trades energy in RTM 
following (6). A dual pricing mechanism is used in RTM, 
in which the buying price is always higher and the selling 
price is always lower than the single DAM price. The cost 
aggregator spending in RGM for natural gas purchasing 
is calculated by (7). A dual pricing mechanism is also 
used in RGM, in which the buying price is always higher 
and the selling price is always lower than the DGM price. 
The reserve deployed can receive an energy payment in 
RDM according to (8). The upward reserve can receive 
profit, though the downward reserve needs to give some 
money back. When the downward reserve is deployed, 
the aggregator can save the fuel and operational costs 
from the decreased energy production, and therefore, the 
aggregator needs to give some parts of its saving back. 
The reserve unsupplied in the reserve deployment is 

penalized by (9). The satisfaction cost of the prosumers is 
calculated by (10), including the costs of demand curtail-
ment, PV output management and PV generation. The 
last term in (1) as shown in (11) is the operational cost of 
the community-owned devices, GT and SE.
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2.3.1  Day‑ahead stage constraints of the aggregator
Constraint (12) represents the power balance equation 
of the aggregator in the day-ahead stage, while constraint 
(13) limits the power output of the aggregator. Constraint 
(14) represents the natural gas balance of the aggregator 
in the day-ahead stage, and constraint (15) limits the nat-
ural gas consumption of the aggregator.

Constraint (16) shows that the upward reserve capacity 
that the aggregator can provide is the sum of the upward 
reserve capacities of electricity producing devices, 
including PV, GT, SE, and the downward reserve capaci-
ties of electricity consuming devices, including electricity 
demand (DE). Constraint (17) shows that the downward 
reserve capacity that the aggregator can provide is the 
sum of the downward reserve capacities of PV, GT and 
SE. Only demand curtailment is considered in this paper, 
and thus demand management can only provide down-
ward reserve which contributes to the upward reserve of 
the aggregator.

(10)CO
saf
t,w =

�

i∈I
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�DRT
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The aggregator of the demand-side small-scale 
resources needs to follow some regulations when partici-
pating in the reserve market to ensure the reserve qual-
ity for system balancing. The main regulations include 
the minimum offer/bid size and the minimum delivery 
duration. Constraints (18)–(19) define the maximum 
and minimum offer/bid sizes of upward and downward 
reserve that the aggregator can provide according to the 
regulations. Binaries Iuag ,t and Idag ,t are used to set the on/
off states of the reserve service. Constraints (20)–(21) 
find the start and end times of the upward and downward 
reserve services. Constraints (22)–(23) control the mini-
mum delivery duration ( � ) of the upward and downward 
reserve services. These durations, for example, should be 
at least 120 min for the tertiary spinning reserve accord-
ing to the regulations. Constraints (24)–(25) keep the pro-
vided reserve service stable during at least the minimum 
delivery duration. Because the size of the reserve capac-
ity should always follow the size in the last time interval 
unless there exists a start or end signal of reserve services.
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Iu,suag ,t ≥ 0 , according to (26b)–(26c) yu,suag ,t ≥ Iu,suag ,t  and 
according to (26d)–(26e) yu,suag ,t ≤ Iu,suag ,t  . Thus, yu,suag ,t = Iu,suag ,t  . 
When Iu,suag ,t ≤ 0 , according to (26b)–(26c) yu,suag ,t ≥ −Iu,suag ,t  
and according to (26d)–(26e) yu,suag ,t ≤ −Iu,suag ,t  . Thus, 
yu,suag ,t = −Iu,suag ,t  . Equation  (27) follows the same rule as 
(26) to represent 

∣∣∣Id,suag ,t

∣∣∣ by yd,suag ,t .

2.3.2  Real‑time stage constraints of the aggregator
Constraint (28) is the power balance equation at the real-
time stage after the reserve deployment, while constraint 
(29) limits the power output of the aggregator before the 
reserve deployment. Constraints (30)–(31) indicate that 
the reserve can be deployed in the real time should be 
positive and no more than the reserve being called by the 
system operator. The reserve being called by the system 
operator is defined by the uncertain percentage of the 
reserve capacity offer/bid in RCM, which are ρ̃RC ,u
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ρ̃
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ag ,t  in (30) and (31), respectively. Constraint (32) rep-

resents the natural gas balance and constraint (33) limits 
the natural gas consumption after the reserve deploy-
ment. The binary variable IRTag ,t,w is used to constrain 
that the upward reserve and downward reserve cannot 
be deployed simultaneously. Constraint (34) calculates 
the energy trading in the RTM, using pRT+

ag ,t,w and pRT−
ag ,t,w 

to distinguish the selling direction and buying direc-
tion. Constraints (35)–(36) set that the energy trading 
in both directions is positive. Constraint (37) calculates 
the natural gas trading in RGM, using gRT+
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− yd,suag ,t ·M ≤


ARC ,d

ag ,t −

ARC ,d
ag ,t−1


 ≤ yd,suag ,t ·M

yd,suag ,t ≥ Id,suag ,t

yd,suag ,t ≥ −Id,suag ,t

yd,suag ,t ≤ Id,suag ,t +

�
1− Id,su,1ag ,t

�
·M

yd,suag ,t ≤ −Id,suag ,t + Id,su,1ag ,t ·M

to distinguish the buying direction and selling direction. 
Constraints (38)–(39) set that the natural gas transac-
tions in both directions are positive.

Constraints (30)–(31) are non-linear constraints 
because of the multipliers of binary variable IRTag ,t,w and 
continuous variable ARC ,u

ag ,t,w . They can be linearized by 
constraints (40)–(41) respectively, with the help of two 
auxiliary variables αRD,u

ag ,t,w and aRD,dag ,t,w . M is a sufficiently 
big parameter. In (40), α

RD,u
ag ,t,w can represent 

IRTag ,t,w · ρ̃
RC ,u
ag ,t · ARC ,u

ag ,t,w for the following reasons. The 
binary variable IRTag ,t,w can be 0 or 1. When IRTag ,t,w is 0, 
aRD,uag ,t,w ≤ 0 according to (40b) and aRD,uag ,t,w ≥ 0 according 
to (40a), and thus, aRD,uag ,t,w equals 0. When IRTag ,t,w is 1, 
aRD,uag ,t,w ≤ ρ̃

RC ,u
ag ,t · ARC ,u

ag ,t,w according to (40c) and 

(28)

(
pRTag ,t,w+

ARD,u
ag ,t,w − ARD,d

ag ,t,w

)
=

∑

i∈I

(
pRTi,pv,t,w − dRTi,t,w

)

+ pRTgt,t,w +

(
pRT ,dch
se,t,w −

pRT ,ch
se,t,w

)

(29)−PRT ,c
ag ≤ pRTag ,t,w ≤ P

RT ,p
ag

(30)0 ≤ ARD,u
ag ,t,w ≤ IRTag ,t,w · ρ̃

RC ,u
ag ,t · ARC ,u

ag ,t,w

(31)0 ≤ ARD,d
ag ,t,w ≤

(
1− IRTag ,t,w

)
· ρ̃

RC ,d
ag ,t · ARC ,d

ag ,t,w

(32)gRTag ,t,w = gRTgt,t,w

(33)0 ≤ gRTag ,t,w ≤ GRT
ag

(34)pRT+
ag ,t,w − pRT−

ag ,t,w = pRTag ,t,w − pDAag ,t,w

(35)pRT+
ag ,t,w ≥ 0

(36)pRT−
ag ,t,w ≥ 0

(37)gRT+
ag ,t,w − gRT−

ag ,t,w = gRTag ,t,w − gDAag ,t,w

(38)gRT+
ag ,t,w ≥ 0

(39)gRT−
ag ,t,w ≥ 0
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aRD,uag ,t,w ≥ ρ̃
RC ,u
ag ,t · ARC ,u

ag ,t,w according to (40d), and thus, 
aRD,uag ,t,w = ρ̃

RC ,u
ag ,t · ARC ,u

ag ,t,w . Equation  (41) follows the same 
rule as (40) to represent 

(
1− IRTag ,t,w

)
· ρ̃

RC ,d
ag ,t · ARC ,d

ag ,t,w by 
aRD,dag ,t,w.

Constraints (42)–(43) calculate the upward and down-
ward reserve unsupplied considering reserve deployment 
uncertainty. IRTag ,t,w is used to limit that only the direction of 
the aggregator choice in the RDM will be penalized.

Constraints (42)–(43) are non-linear constraints 
because of the multipliers of binary and continuous vari-
ables. Two auxiliary variables aRP,uag ,t,w and aRP,dag ,t,w are used 
to form the linearized constraints (44)–(45). M is a  
sufficiently big parameter. aRP,uag ,t,w can represent 
IRTag ,t,w ·

(
ρ̃
RC ,u
ag ,t · ARC ,u

ag ,t,w − ARD,u
ag ,t,w

)
 and aRP,dag ,t,w can repre-

sent 
(
1− IRTag ,t,w

)
·

(
ρ̃
RC ,d
ag ,t · ARC ,d

ag ,t,w − ARD,d
ag ,t,w

)
 , which fol-

lows the same rule as constraints (40)–(41) and therefore, 
is not repeated.

(40)





0 ≤ ARD,u
ag ,t,w ≤ α

RD,u
ag ,t,w (a)

aRD,uag ,t,w ≤ IRTag ,t,w ·M (b)

aRD,uag ,t,w ≤ �ρRC ,u
ag ,t · ARC ,u

ag ,t,w (c)

aRD,uag ,t,w ≥ �ρRC ,u
ag ,t · ARC ,u

ag ,t,w −

�
1−

IRTag ,t,w

�
·M (d)

(41)





0 ≤ ARD,d
ag ,t,w ≤ aRD,dag ,t,w

aRD,dag ,t,w ≤

�
1− IRTag ,t,w

�
·M

aRD,dag ,t,w ≤ �ρRC ,d
ag ,t · ARC ,d

ag ,t,w

aRD,dag ,t,w ≥ �ρRC ,d
ag ,t · ARC ,d

ag ,t,w − IRTag ,t,w ·M

(42)ARP,u
ag ,t,w ≥ IRTag ,t,w ·

(
ρ̃
RC ,u
ag ,t · ARC ,u

ag ,t,w−

ARD,u
ag ,t,w

)

(43)ARP,d
ag ,t,w ≥

�
1− IRTag ,t,w

�
·


 �ρRC ,d

ag ,t · ARC ,d
ag ,t,w−

ARD,d
ag ,t,w




(44)





ARP,u
ag ,t,w ≥ aRP,uag ,t,w

aRP,uag ,t,w ≤ IRTag ,t,w ·M

aRP,uag ,t,w ≥ 0

aRP,uag ,t,w ≤ �ρRC ,u
ag ,t · ARC ,u

ag ,t,w − ARD,u
ag ,t,w

aRP,uag ,t,w ≥

�
�ρRC ,u
ag ,t · ARC ,u

ag ,t,w−

ARD,u
ag ,t,w

�
−

�
1−

IRTag ,t,w

�
·M

2.4  Structure of the aggregator
The demand-side aggregator can aggregate prosumers 
with community-owned devices, the structure of which is 
shown in the physical layer in Fig. 1. Prosumers own roof-
top PV panels and can manage their PV outputs and elec-
tricity demand. The community-owned devices include GT 
and SE.

2.4.1  Community‑owned devices
In the day-ahead stage, the energy conversion efficiency of 
GT is limited by (46), whereas the upper bound and lower 
bound of the power output of GT are limited by (47). The 
binary variable IDAgt,t is used for the on/off state of GT, while 
the start-up and shut-down states of GT are calculated by 
(48). Constraints (49)–(50) limit the ramping ability of 
GT. During the time when GT starts up and shuts down, 
the impact of the minimum power output should be con-
sidered. Constraints (51)–(52) limit the charging and dis-
charging power of SE, in which the binary variable IDAse,t  is 
introduced to characterize the charging and discharging 
states. Equation (53) presents the electrical energy stored 
in the SE at the end of each time interval, while (54) 
imposes the limitation of the state of charge (SOC) of the 
SE. In (55), the SOC of the SE should go back to the ini-
tial value to avoid the impact of the usage on the following 
day.

(45)





ARP,d
ag ,t,w ≥ aRP,dag ,t,w

aRP,dag ,t,w ≤

�
1− IRTag ,t,w

�
·M

aRP,dag ,t,w ≥ 0

aRP,dag ,t,w ≤ �ρRC ,d
ag ,t · ARC ,d

ag ,t,w − ARD,d
ag ,t,w

aRP,dag ,t,w ≥


 �ρRC ,d

ag ,t · ARC ,d
ag ,t,w−

ARD,d
ag ,t,w


− IRTag ,t,w ·M

(46)pDAgt,t = ηgt · g
DA
gt,t

(47)IDAgt,t · Pgt ≤ pDAgt,t ≤ IDAgt,t · Pgt

(48)IDA,sugt,t − IDA,sdgt,t = IDAgt,t − IDAgt,t−1

(49)pDAgt,t − pDAgt,t−1 ≤




�
1− IDA,sugt,t

�
· Ru

gt+

IDA,sugt,t · Pgt
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Community-owned devices can provide reserve capac-
ity according to their capacity margins after knowing the 
day-ahead energy schedule. Constraints (56)–(57) limit the 
upward and downward reserve capacities provided by GT, 
while (58)–(59) are the ramping limitations of GT. For the 
SE, Eqs.  (60)–(61) set the upward and downward reserve 
capacities according to the charging and discharging power 
limitation. The constraints of SOC are considered by (62)–
(65). Theoretically, at the end of the day, the SOC of the stor-
age needs to go back to the initial state in order to start a new 
round of work on the following day. Therefore, to ensure that 
the reserve of SE can be deployed in the real-time stage with-
out affecting its usage for the following day no matter how 
much reserve will be called by the system operator, Eq. (66) 
guarantees that the upward and downward reserve capaci-
ties supplied by the SE cannot exist simultaneously, and (67) 
forces the sum of the upward and downward reserve capaci-
ties provided throughout a day to be equal, considering the 
discharging and charging efficiencies.

(50)pDAgt,t − pDAgt,t−1 ≥



−

�
1− IDA,sdgt,t

�
· Rd

gt−

IDA,sdgt,t · Pgt




(51)0 ≤ pDA,chse,t ≤ IDAse,t · P
ch
se

(52)0 ≤ pDA,dchse,t ≤ (1− IDAse,t ) · P
dch
se

(53)EDA
se,t = EDA

se,t−1 +

(
pDA,chse,t · ηchse−

pDA,dchse,t /ηdchse

)
·�t

(54)SOC ≤ EDA
se,t

/
Sse ≤ SOC

(55)SOCDA
96 = SOCDA

0

(56)0 ≤ ARC ,u
gt,t ≤ IDAgt,t · Pgt − pDAgt,t

(57)0 ≤ ARC ,d
gt,t ≤ pDAgt,t − IDAgt,t · Pgt

(58)




�
pDAgt,t + ARC ,u

gt,t

�
−

�
pDAgt,t−1 − ARC ,d

gt,t−1

�


 ≤




�
1− IDA,sugt,t

�
· Ru

gt+

IDA,sugt,t · Pgt




(59)




�
pDAgt,t − ARC ,d

gt,t

�
−

�
pDAgt,t−1 + ARC ,u

gt,t−1

�


 ≥



−

�
1− IDA,sdgt,t

�
· Rd

gt−

IDA,sdgt,t · Pgt




At the real-time stage, the community-owned devices 
follow almost the same power constraints as in the day-
ahead stage, except that they need to consider the scenar-
ios of uncertain parameters represented by the subscript 
w. The on/off state of GT is determined in the day-ahead 
stage and cannot be changed in the real-time stage.

(60)0 ≤ ARC ,u
se,t ≤ Pdch

se − pDA,dchse,t + pDA,chse,t

(61)0 ≤ ARC ,d
se,t ≤ Pch

se + pDA,dchse,t − pDA,chse,t

(62)
EDA,RC ,u
se,t = EDA,RC ,u

se,t−1 + EDA
se,t−

EDA
se,t−1 −

(
ARC ,u
se,t /ηdchse

)
·�t

(63)
EDA,RC ,d
se,t = EDA,RC ,d

se,t−1 + EDA
se,t−

EDA
se,t−1 + ARC ,d

se,t · ηchse ·�t

(64)SOC ≤ EDA,RC ,u
se,t

/
Sse ≤ SOC

(65)SOC ≤ EDA,RC ,d
se,t

/
Sse ≤ SOC

(66)ARC ,u
se,t · ARC ,d

se,t = 0

(67)
∑

t∈T

ARC ,u
se,t /ηdchse ·�t =

∑

t∈T

ARC ,d
se,t · ηchse ·�t

(68)

pRTgt,t,w = ηgt · g
RT
gt,t,w

IDAgt,t · Pgt ≤ pRTgt,t,w ≤ IDAgt,t · Pgt

pRTgt,t,w − pRTgt,t−1,w ≤




�
1− IDA,sugt,t

�
· Ru

gt+

IDA,sugt,t · Pgt




pRTgt,t,w − pRTgt,t−1,w ≥



−

�
1− IDA,sdgt,t

�
· Rd

gt−

IDA,sdgt,t · Pgt




0 ≤ pRT ,ch
se,t,w ≤ IRTse,t,w · Pch

se

0 ≤ pRT ,dch
se,t,w ≤ (1− IRTse,t,w) · P

dch
se

ERT
se,t,w = ERT

se,t−1,w +

�
pRT ,ch
se,t,w · ηchk −

pRT ,dch
se,t,w /ηdchk

�
·�t

SOC ≤ ERT
se,t,w

�
Sse ≤ SOC

SOCRT
96,w = SOCRT

0,w
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2.4.2  Prosumers
Prosumers can also provide reserve capacity through PV 
output and demand management when they can receive a 
satisfactory compensation fee. In the day-ahead stage, con-
straint (69) limits that the PV output should be lower than 
its available capacity and higher than the minimum value 
that can be achieved through PV management. Constraints 
(70)–(71) set the upward and downward reserve capacities 
that the PV generator can provide. Constraint (72) shows 
that the reserve capacity of DE is provided by demand cur-
tailment, while deferrable demand is not considered in this 
paper. In the real-time stage, constraint (73) limits that the 
PV output after PV output management should be lower 
than its available capacity, which is an uncertain factor, 
and higher than the minimum value that can be achieved 
through PV output management. Constraint (74) lim-
its that the electricity demand after demand curtailment 
should be lower than the forecasted electricity demand 
in real time, which is an uncertain factor, and higher than 
the minimum value that can be achieved through demand 
curtailment.

2.5  Time scale
Variables in the day-ahead stage are hourly variables, 
because of the hourly clearing of DAM and RCM. Vari-
ables in the real-time stage are 15-min variables. Therefore, 
index t represents a 15-min time interval, and all the day-
ahead stage variables represented by xDA and xRC need to 
follow (75)–(76), which means that for an hourly variable, 
during the quarters belonging to the same hour, its values 
should be same.

(69)PDA
i,pv,t ≤ pDAi,pv,t ≤ PDA,ca

i,pv,t

(70)0 ≤ ARC ,u
i,pv,t ≤ PDA,ca

i,pv,t − pDAi,pv,t

(71)0 ≤ ARC ,d
i,pv,t ≤ PDA

i,pv,t − PDA
i,pv,t

(72)0 ≤ ARC ,d
i,de,t ≤ Dc

i,t

(73)PRT
i,pv,t ≤ pRTi,pv,t,w ≤ P̃RT ,ca

i,pv,t

(74)DRT
i,t ≤ dRTi,t,w ≤ D̃RT

i,t

(75)xDAt = xDAt ′ , t ′ ∈ Ht

(76)xRCt = xRCt ′ , t ′ ∈ Ht

2.6  Risk management of the aggregator
In the real-time stage, the uncertain available PV capac-
ity, electricity demand and reserve deployment can be 
modeled as (77)–(80). RO is used to find the worst reali-
zation of these parameters, the specific method of which 
can be found in [15, 26]. PRT ,ca

pv,t  , DRT
i,t  , ρRC ,u

ag ,t  , and ρRC ,d
ag ,t  are 

the mean values of the upper and lower bounds of the 
corresponding fluctuation intervals, whereas P̂RT ,ca

pv,t  , D̂RT
i,t  , 

ρ̂
RC ,u
ag ,t  , and ρ̂RC ,d

ag ,t  are half of the corresponding fluctuation 
intervals. The risk management of the uncertain param-
eters can be realized by adjusting the fluctuation inter-
vals through γ pv

i,t  , γ de
i,t  , γ RC ,u

ag ,t  , and γ RC ,d
ag ,t  ranging from 0 to 

1. The risk-averse aggregator chooses larger fluctuation 
intervals to avoid commercial risk. On the other hand, 
the risk-neutral aggregator chooses smaller fluctuation 
intervals to obtain higher profit (lower cost).

The uncertain RTM price and RDM price are described 
by generating scenarios. All scenarios are included in set 
W, and the CVaR value is introduced to measure the risk 
caused by uncertain parameters [24, 25]. The two-stage 
self-scheduling problem after taking the CVaR value into 
account is transformed into the following:

(77)−γ
pv
i,t ≤

P̃RT ,ca
i,pv,t − PRT ,ca

i,pv,t

P̂RT ,ca
i,pv,t

≤ γ
pv
i,t

(78)−γ de
i,t ≤

D̃RT
i,t − DRT

i,t

D̂RT
i,t

≤ γ de
i,t

(79)−γ
RC ,u
ag ,t ≤

ρ̃
RC ,u
ag ,t − ρ

RC ,u
ag ,t

ρ̂
RC ,u
ag ,t

≤ γ
RC ,u
ag ,t

(80)−γ
RC ,d
ag ,t ≤

ρ̃
RC ,d
ag ,t − ρ

RC ,d
ag ,t

ρ̂
RC ,d
ag ,t

≤ γ
RC ,d
ag ,t

(81)min (1− β) · FAG + β · CVaR

(82)

s.t. FAG =
�

t∈T




−FDA
t − FRC

t + COsud
t +

�

w∈W

πw

�
−FRT

t,w − FRD
t,w + CORP

t,w

+CO
saf
t,w + CO

op
t,w

�



(83)CVaR = κ +
1

1− α

∑

w

πwξw

(84)FAG
w − κ ≤ ξw
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FAG is the total cost of the aggregator in (1). A weight 
factor β taking values from 0 to 1 models the trade-off 
between the aggregator profit and the risk of profit vari-
ability corresponding to a specific probability level α . 
When the aggregator is risk-averse, it desires higher 
importance of the risk term, which leads to a more con-
servative behavior in marketplaces. Therefore, a higher 
value of β means that the aggregator is more risk-averse, 
while a lower value of β means that the aggregator is 
more risk-neutral. κ is the auxiliary variable representing 
value-at-risk (VaR), and the non-negative variable ξw is 
the excess cost over κ in scenario w.

3  Case study
The proposed model after linearization is a MILP. To 
evaluate the performance of the model, case studies are 
analyzed by GUROBI 9.1.1 on MATLAB R2020a with the 
YALMIP toolbox. The experiments are performed on a 
laptop equipped with an i7-9750H CPU and 16 GB RAM. 
The computational time of all the cases is within 3000 s 
with a gap of 0.01. This is adaptable for the day-ahead 
self-scheduling problem and can be extended to prob-
lems of larger scale.

3.1  Basic data
The community-owned devices of the aggregator includ-
ing a GT and an SE. There are 20 prosumers owning 
roof-top PV panels and flexible electricity demands that 
can provide and consume electricity at the same time. 
There are also 20 flexible electricity consumers that can 
curtail their demand when the receiving profit is higher 
than their satisfaction losing cost. The maximum PV out-
put management is 40% of its available capacity, while 
the maximum demand curtailment is 15% of the demand 
value. The technical parameters of the community-
owned devices are given in Table 1 [29–31]. A typical day 

(85)ξw ≥ 0

(86)(2)−(23), (26)−(29), (32)−(41), (44)−(80)

in July 2021 in northern Italy is considered in the case 
studies in order to fully analyze the operation of PV pan-
els. The deterministic electricity demand and available 
PV capacity of the prosumers/consumers are set as the 
average values of all the days in July 2021 from the Italian 
transmission system operator (TSO)–Terna, which are 
given by the black curves in Fig. 3 [32]. In the real-time 
stage, the electricity demand and available PV capacity 
of the prosumers/consumers are uncertain parameters 
described by the predicted fluctuation intervals, which 
are shown by the gray shadows in Fig. 3a and b, respec-
tively [32]. The reserve deployment is also set by the pre-
dicted fluctuation intervals, ranging from 40 to 100%. 
Tertiary spinning reserve is considered in this case study. 
The minimum delivery duration is 120 min, and the min-
imum offer/bid size is 1 MW.

The market data are collected from the Italian power 
exchange–GME [33]. Some prices in practice are 
adjusted to be consistent with the model, since the Ital-
ian market has its special rules which are not considered 
in this paper. The DAM price is set as the average DAM 
price of the 31 days in July 2021. This is shown in Fig. 4a. 
The RCM price is set as 0.2 of the DAM price. The natu-
ral gas price is a daily price. The DGM price is set as the 
average DGM price of the 31 days in July 2021, which is 
35.631 €/MWh. A stable natural gas market is consid-
ered where RGM prices are the same as the DGM price. 
The prices with uncertainties are described by scenarios. 
For the RTM price, since the Italian TSO calculates it as 
an energy imbalance penalty in the settlement based on 
the DAM price level and the real-time situation, five sce-
narios consisting of five pairs of buying and selling prices 
are generated from the DAM price data of 31 days in July 
2021 through K-means clustering, as shown in Fig.  4b. 
For the RDM price, the marginal prices of the balanc-
ing market of 31 days in July 2021 are collected. Five sce-
narios consisting of five pairs of upward and downward 
reserve prices are generated through K-means cluster-
ing, as shown in Fig. 4c. Therefore, the uncertain market 
prices are represented by 25 scenarios. The possibilities 

Table 1 Main parameters

Parameter Value Unit Parameter Value Unit Parameter Value Unit Parameter Value Unit Parameter Value Unit

cosai,de 100 €/MWh cosugt , co
sd
gt

50 €/MWh A
RC ,d
ag

4 MW Rugt 2 MW SOC 0.1 p.u

cosai,pv 80 P
DA,s
ag  , PRT ,sag

2 MW ARC ,dag
1 Pchse,t

1 SOCDA
0  , SOCRT

0
0.5

coi,pv 14 P
DA,b
ag  , PRT ,bag

4 Pgt 4 Pdchse,t
1 ηgt 0.4

cogt 14 A
RC ,u
ag

4 Pgt 1 Sse 2 ηdchse
0.95

cose 4 ARC ,uag
1 Rdgt 2 SOC 0.9 p.u ηchse 0.95
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of all the scenarios are the same, which is 4%. Other 
parameters are given in Table 1 [29–31]. Three cases for 
analysis are set in Table 2, with case 2.a set as the base 
case.

3.2  Results and discussion
3.2.1  Effects of market participation
In cases 1 and 2, the uncertainties of all parameters 
are initially ignored. All market prices in these two 
cases are set as the average values of 31 days in July. All 
electricity demands, PV outputs and reserve deploy-
ments are set as the mean values of the upper and 
lower bounds of the corresponding fluctuation inter-
vals. Comparing case 2.a (case 2 scenario a) with case 
1, as shown by the red and black curves in Fig. 5, day-
ahead energy schedule changes when the aggrega-
tor can sell reserve in the RCM and RDM. From 8:15 
am to 16:00  pm (quarter 33–64) and from 18:15  pm 
to 22:00 pm (quarter 73–88), the aggregator decreases 
its power output in order to provide more upward 
reserve capacity, because in these periods, the revenue 
of selling upward reserve is much higher than selling 
energy. From 6:15 am to 8:00 am (quarter 25–32) and 
from 17:15 pm to 18:00 pm (quarter 69–72), the aggre-
gator increases its power output in order to provide 
more downward reserve capacity, because the profit 
earned from selling downward reserve capacity and 
deployment is higher than the cost from increasing the 
power production. As is shown in Table  3, although 

the day-ahead energy cost in DAM, satisfaction cost of 
prosumers and operational cost of community-owned 
devices are all higher in case 2.a than in case 1, the 
total cost of the aggregator decreases from 9082.017 € 
in case 1 to 5107.061 € in case 2.a, thanks to the rev-
enue from the reserve market. To give more specificity, 
the energy-reserve schedules of all community-owned 
devices and prosumers inside the aggregator are shown 
in Fig. 6.

In Fig.  6a, as is shown by the blue bars, during 6:15 
am–8:00 am (quarter 25–32) and 16:15  pm–18:00  pm 
(quarter 65–72), GT provides downward reserve. Dur-
ing other periods, GT provides upward reserve. In 
order to provide spinning reserve, during 0:15 am–6:00 
am (quarter 1–24), GT is turned on and maintains the 

(a) Uncertain electricity demand

(b) Uncertain available PV capacity
Fig. 3 DE and available PV capacity of a prosumer/consumer

Fig. 4 Market prices
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minimum power output when it decides to participate 
in the reserve market. During 7:15 am–8:00 am (quar-
ter 29–32) and 16:15  pm–18:00  pm (quarter 65–72), 
GT does not increase the power output when provid-
ing downward reserve capacity, because it has enough 
downward margin. As is shown in Fig. 6b, for most of 
the time, SE is used to react to the price fluctuations, 
though it can only provide limited reserve service 
directly. The requirements of the SE participating in the 

reserve market are quite strict to ensure that the SE can 
provide the reserve deployment at the real-time stage 
without affecting its usage for the next day.

For prosumers, the total power output of PVs is 
shown in Fig.  6c. With the help of PV output manage-
ment, during 5:15 am–6:00 am (quarter 21–24) and 8:15 
am–16:00  pm (quarter 33–64), PVs lower the power 
output to provide upward reserve capacity. During 6:15 
am–8:00 am (quarter 25–32), PVs increase the power 
output to provide downward reserve capacity. Dur-
ing 16:15  pm–18:00  pm (quarter 65–72), PVs produce 
downward reserve without increasing the power output, 
because they have enough downward margin. For DEs, 
the total forecasted demands in the day-ahead stage need 
to be supplied regardless of whether DEs provide reserve 
(in case 2.a) or not (in case 1). The demand curtailment 
can only provide downward reserve service, and this 
contributes to the upward reserve of the aggregator. As 
shown in Fig.  6d, DEs provide reserve only when they 
can receive enough satisfaction compensation fee for the 
demand curtailment.

Table 2 Description of cases

Case Scenario Energy 
market

Reserve 
market

Uncertainty Scenario description

1 – ✓ ✗ ✗
2 (base case) a ✓ ✓ ✗

b ✓ ✓ ✗ Compared to case 2.a, reserve service is limited to only upward direction or downward 
direction

c ✓ ✓ ✗ Compared to case 2.a, reserve regulation of minimum offer/bid size increases 
or decreases

d ✓ ✓ ✗ Compared to case 2.a, reserve regulation of minimum delivery duration increases 
or decreases

e ✓ ✓ ✗ Compared to case 2.a, the impacts of RGM prices are considered

3 a ✓ ✓ ✓ Based on case 2.a, RO method and risk management through fluctuation intervals are 
considered

b ✓ ✓ ✓ Based on case 3.a, SP method and risk management through CVaR are further considered

Fig. 5 Energy-reserve schedule of the aggregator in case 2.a 

Table 3 Cost and profit of the aggregator in case 1 and case 2.a 

Case 1 Case 2.a

Day-ahead energy cost (€) 3171.368 5297.005

Reserve capacity profit (€) 0 1482.188

Real-time energy cost (€) 0 0

Reserve deployment profit (€) 0 6518.583

Unsupplied reserve penalty cost (€) 0 0

Satisfaction cost (€) 1654.948 2176.828

Natural gas and operational and start-up/shut-down cost (€) 4255.700 5633.999

Total cost of the aggregator (€) 9082.017 5107.061
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3.2.2  Effects of reserve regulations
In case 2.b–case 2.d, the effects of reserve regulations are 
analyzed. In case 2.b, only one side of the reserve service 
is needed by the system operator for the whole day. When 
only upward reserve is needed, the cost of the aggregator 
increases to 5399.726 €, different from case 2.a. As shown 

in Fig.  7a, the power output of the day-ahead schedule 
in case 2.b is always lower than that in case 1 to pro-
vide enough upward reserve capacity, except during 0:15 
am–6:00 am (quarter 1–24) and during 22:15 pm–24:00 
am (quarter 89–96), during which GT needs to keep at 
least its minimum power output to provide upward spin-
ning reserve. When only downward reserve is needed by 
the system operator, the cost increases to 6441.654 € dif-
ferent from case 2.a. The power output of the aggregator 
is always higher or equal to the power output in case 1, 
as is shown in Fig. 7b, so as to provide enough downward 
reserve capacity.

In case 2.c, the effects of minimum offer/bid size regu-
lation of reserve capacity are analyzed. The cost of aggre-
gator increases to 6528.916 € more than in case 2.a, when 
the minimum offer/bid size increases from 1 to 3  MW. 
As is shown in Fig.  8a, from the aspect of power value, 
the aggregator provides more reserve capacity, especially 
downward reserve capacity than in case 2.a. However, 
the time of upward reserve service decreases a lot dur-
ing the early morning and the late night. This is because 
the larger scale limitation of reserve capacity decreases 
the profit of selling upward reserve during these periods 
when the reserve capacity price and deployment price 
are quite low and highly fluctuating. When the mini-
mum offer/bid size decreases from 1 to 0 MW, the cost 

(b) Schedule of SE

(c) Schedule of PVs

(d) Schedule of DEs

(a) Schedule of GT

Fig. 6 Energy-reserve schedule of all community-owned devices 
and prosumers in case 2.a 

(a) Schedule when only upward reserve is 
needed

(b) Schedule when only downward reserve is 
needed

Fig. 7 Energy-reserve schedule of the aggregator in case 2.b 
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of the aggregator decreases to 5091.198 € different from 
case 2.a, because the aggregator can provide an extra 
small amount of downward reserve capacity during 9:15 
am–13:00 pm (quarter 37–52) comparing to case 2.a, as 
is shown in Fig. 8b.

In case 2.d, the effects of the minimum delivery dura-
tion regulation are analyzed. The cost increases to 
5229.855 € more than in case 2.a, when the minimum 
delivery duration increases from 120 to 180  min. The 
downward reserve service remains longer than case 2.a, 
as is shown in Fig.  9a. However, the power of down-
ward reserve capacity decreases during 5:15 am–8:00 
am (quarter 21–32) compared to 6:15 am–8:00 am 
(quarter 25–32) in Fig.  5. Because providing downward 
reserve during this period is not sufficiently profit-
able, and thus, when the minimum delivery duration is 
forced to increase, the aggregator lowers the power of the 
reserve capacity. The cost decreases to 4834.184 € differ-
ent from case 2.a, when the minimum delivery duration 
decreases from 120 to 60 min. As shown in Fig. 9b, the 
aggregator provides upward reserve during the whole 
day to maximize the commercial revenue. The reserve 
capacity values change in every hour, except during 9:15 
am–16:00 pm (quarter 37–64), when the reserve capacity 
provided reaches the upper limit.

3.2.3  Effects of natural gas market
Case 2.e is set to analyze how RGM prices can affect the 
schedule of the aggregator. In case 2.a (base case), a sta-
ble natural gas market is considered where RGM price 
is equal to the DGM price. Considering the increas-
ingly fluctuating market environment, the effects of the 
dual price mechanism of RGM need to be considered. 
In case 2.e, when �RGM+

t  is set as 1.25 · �DGMt  and �RGM−
t  

as 0.75 · �DGMt  , the sub-scenario is represented by case 
2.e-(1.25, 0.75) as in Table  4. Compared with case 2.a, 
the day-ahead energy schedule, upward and down-
ward reserve capacities, upward and downward reserve 
deployments and day-ahead natural gas schedule are 
largely not affected. However, in the real-time stage, the 
aggregator starts buying electricity from RTM to replace 
producing electricity from the natural gas bought from 
RGM because the price of RGM now is not sufficiently 
profitable. The total cost of the aggregator increases by 
about 12% from 5107.061 to 5711.371 €. When �RGM+

t  
is set as 1.5 · �DGMt  and �RGM−

t  as 0.5 · �DGMt  , the sce-
nario is represented by case 2.e-(1.5, 0.5) as in Table 4. 
The aggregator increases its day-ahead power output 
and buys less electricity from DAM, through which it 
can provide more downward reserve capacity but less 
upward reserve capacity. In the real-time stage, both 

(b) Schedule when minimum offer/bid size 

(a) Schedule when minimum offer/bid size 
increases to 3 MW

decreases to 0 MW
Fig. 8 Energy-reserve schedule of the aggregator in case 2.c 

(a) Schedule when minimum delivery duration 
increases to 180 mins

(b) Schedule when minimum delivery duration 
decreases to 60 mins

Fig. 9 Energy-reserve schedule of the aggregator in case 2.d 
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upward reserve deployment and downward reserve 
deployment decrease, because reserve deployment 
needs the support of natural gas from RGM, which is 
now, however, less profitable. The total cost increases by 
about 17% from 5107.061 to 5956.472 €. In order to pro-
vide more reserve service and save economic costs, the 
aggregator can equip itself with natural gas storage to 
compensate for the deviations in the real-time natural 
gas schedule. However, it is not the focus of this paper 
and thus is not explored further.

3.2.4  Effects of uncertainties and risk management
In case 3.a, the power/demand uncertainty and reserve 
deployment uncertainty are considered using RO with 
data given in Fig.  3 and fluctuation intervals given in 
Sect. 3.1. For simplicity, the control parameters of power/
demand uncertainty are represented by parameter 
γ1 = γ de

i,t = γ
pv
i,t  , and the control parameters of reserve 

deployment uncertainty are represented by parameter 
γ2 = γ

RC ,u
ag ,t = γ

RC ,d
ag ,t  . Twelve sub-scenarios with differ-

ent risk preferences are generated as in Tables 5 and 6. In 

Table 4 Schedule of the aggregator in case 2.a and case 2.e 

Case 2.a Case 2.e‑(1.25, 0.75) Case 2.e‑(1.5, 0.5)

Day-ahead electric energy consumption (MWh) 53.178 53.667 48.544

Real-time electric energy consumption (MWh) 0 2.328 5.713

Upward reserve capacity (MWh) 63.528 63.525 58.903

Downward reserve capacity (MWh) 9.897 9.897 12.744

Upward reserve deployment (MWh) 44.469 44.467 40.474

Downward reserve deployment (MWh) 6.928 6.928 1.576

Upward reserve unsupplied (MWh) 0 0 0

Downward reserve unsupplied (MWh) 0 0 0

Day-ahead natural gas consumption (MWh) 111.190 111.706 129.635

Real-time natural gas consumption (MWh) 24.239 22.425 7.522

Table 5 Results of risk management through γ1 (γ2 = 0)

γ1 = 1 γ1 = 0.8 γ1 = 0.6 γ1 = 0.4 γ1 = 0.2 γ1 = 0

Day-ahead energy cost (€) 5330.613 5330.613 5330.613 5330.613 5317.760 5297.005

Reserve capacity profit (€) 1482.188 1482.188 1482.188 1482.188 1482.188 1482.188

Real-time energy cost (€) 0 0 0 0 0 0

Reserve deployment profit (€) 6518.583 6518.583 6518.583 6518.583 6518.583 6518.583

Unsupplied reserve penalty cost (€) 0 0 0 0 0 0

Satisfaction cost (€) 3590.233 3307.823 3025.412 2743.002 2460.591 2176.828

Natural gas and operational and start-up/
shut-down cost (€)

6141.080 6032.660 5924.240 5815.820 5720.259 5633.999

Total cost of the aggregator (€) 7061.156 6670.325 6279.494 5888.664 5497.840 5107.061

Table 6 Results of risk management through γ2 (γ1 = 1)

γ2 = 1 γ2 = 0.8 γ2 = 0.6 γ2 = 0.4 γ2 = 0.2 γ2 = 0

Day-ahead energy cost (€) 5295.160 5330.289 4950.167 5330.613 5330.613 5330.613

Reserve capacity profit (€) 1482.188 1482.188 1473.680 1482.188 1482.188 1482.188

Real-time energy cost (€) 0 0 0 0 0 0

Reserve deployment profit (€) 3724.905 4283.640 4713.420 5401.112 5959.847 6518.583

Unsupplied reserve penalty cost (€) 0 0 0 0 0 0

Satisfaction cost (€) 3642.447 3644.935 3644.935 3636.287 3615.820 3590.233

Natural gas and operational and start-up/
shut-down cost (€)

4464.362 4758.307 5342.663 5430.251 5783.026 6141.080

Total cost of the aggregator (€) 8194.877 7967.702 7750.665 7513.851 7287.424 7061.156
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Table 5, the control parameter γ2 is set as 0 and γ1 is set 
as 0 (same as case 2.a), 0.2, 0.4, 0.6, 0.8, and 1. In Table 6, 
the control parameter γ1 is set as 1 and γ2 is set as 0, 0.2, 
0.4, 0.6, 0.8, and 1.

From the results shown in Tables 5 and 6, it can be seen 
that the total cost of aggregator declines when γ1 or γ2 
decreases. This is because when the aggregator is more 
risk-neutral, its strategy is less conservative so it can save 
more cost (earn more profit) while taking more commer-
cial risk. The satisfaction cost of prosumers (and consum-
ers) goes down when γ1 decreases, as is shown in Table 5. 
Because γ1 controls the power/demand uncertainty 
which is the uncertainty of prosumers, prosumers are less 
conservative and save more cost when γ1 is smaller. The 
reserve deployment profit increases when γ2 decreases as 
is shown in Table 6. This is because the reserve deploy-
ment uncertainty causes the profit loss, which is lower 
when γ2 is smaller.

In case 3.b, the market price uncertainty is further 
considered using the SP with the price scenarios given 
in Fig.  3. γ1 and γ2 are fixed as 1. The risk management 
through the CVaR value is introduced and analyzed 
through six sub-scenarios in Table  7, by setting the 
weight factor β as 0, 0.2, 0.4, 0.6, 0.8, and 1.

It can be seen that when β decreases (the aggregator 
is more risk-neutral), the CVaR value increases, which 
means that aggregator takes more commercial risk. For 
most of the time, there is a trade-off between the CVaR 
value and the total cost of the aggregator. When the 
CVaR value is higher, the total cost of the aggregator is 
lower, except when β ≈ 1 . This means that a mutual bet-
ter performance of commercial profit and commercial 
risk may happen in some extreme cases. However, in the 
average sense, commercial profit and commercial risk 
are in an antagonistic relationship, i.e., one at the cost 
of the other. Moreover, when β decreases, day-ahead 
energy cost increases and reserve deployment profit also 
increases. This means that when the aggregator is more 

risk-neutral, it tends to produce more upward reserve by 
decreasing the power output in the day-ahead stage. Oth-
erwise, when the aggregator is more risk-averse, it tends 
to increase the power output in the day-ahead stage and 
sell more energy in the DAM.

In case 3.a, RO is used for power/demand uncertainty 
and reserve deployment uncertainty. From Tables 5 and 
6, the total cost of the aggregator goes up sharply with 
the increase of γ1 and γ2 . Therefore, if the control param-
eters are not chosen carefully, the problem can easily 
receive over-conservative results. However, no matter 
what are the values of γ1 and γ2 , the computational time 
is always under 20 s, which is close to the deterministic 
problem (when γ1 and γ2 are set as 0). In Table 7, when 
SP is further used for the market price uncertainty, the 
computational time increases significantly to about 
3000  s. However, the total cost of the aggregator fluc-
tuates slightly with different β. It means that although 
the SP increases the computational complexity, it does 
not increase the conservativeness of the results. There-
fore, this paper categorizes the uncertainties following 
Sect. 2.2 and uses a combination approach of RO and SP 
to avoid the over-conservative results and over-complex 
computation of RO and SP, respectively.

It can also be seen from Tables  3, 4, 5, 6 and 7 that 
the aggregator avoids unsupplied reserve because of the 
heavy penalty price. Moreover, trading energy in the 
RTM is unprofitable compared to in the DAM, because 
of the dual price mechanism, which makes the aggregator 
always try its best to follow its day-ahead energy schedule 
and trades only a small energy deviation in the RTM.

4  Conclusion
In this study, a two-stage stochastic-robust model is 
built to solve the day-ahead self-scheduling problem of 
the aggregator. It can trade electrical energy and reserve 
in the DAM, RCM, RTM and RDM under uncertain-
ties including those of market price, power/demand and 

Table 7 Results of risk management through β 

β ≈ 1 β = 0.8 β = 0.6 β = 0.4 β = 0.2 β ≈ 0

Day-ahead energy cost (€) 2322.823 2319.852 2484.096 2622.025 2818.022 3120.235

Reserve capacity profit (€) 1496.427 1491.253 1474.033 1473.633 1474.767 1476.107

Real-time energy cost (€) 0 0 -0.014 0 0 0

Reserve deployment profit (€) 743.828 752.403 960.627 1123.300 1296.313 1408.466

Unsupplied reserve penalty cost (€) 0 0 0 0 0 0

Satisfaction cost (€) 2707.274 2707.235 2704.339 2704.697 2705.330 2708.482

Natural gas and operational and start-up/
shut-down cost (€)

4872.183 4880.705 4903.795 4915.511 4887.604 4687.957

Total cost of the aggregator (€) 7662.072 7664.136 7657.556 7645.300 7639.876 7632.102

CVaR value (€) 7850.523 7853.732 7865.221 7877.090 7890.798 7925.282



Page 18 of 20Wang et al. Protection and Control of Modern Power Systems            (2023) 8:45 

reserve deployment. The reserve regulations from reserve 
market rules are modeled to limit the minimum offer/
bid size and minimum delivery duration in the reserve 
market. The uncertainties are modeled by a combination 
method of SP and RO. The risk management through 
CVaR value and fluctuation intervals is considered to 
reflect the risk preference of the aggregator.

The developed model can help the aggregator earn 
more profit by participating in the energy market and 
reserve market jointly, compared to only participating in 
the energy market. The commercial profit and the com-
mercial risk are trade-off problems of the aggregator 
under uncertainties. By selecting the appropriate weight 
factor of CVaR and fluctuation intervals in the model, the 
aggregator can make corresponding optimal strategies 
under its risk preference. The model can also improve the 
coordination of the energy and reserve services provided 
by the aggregator by optimizing the energy and reserve 
schedules coordinately under a holistic market frame-
work. From the perspective of the TSO, this model can 
ensure the quality of reserve service through the reserve 
regulations. This can help the aggregator provide a reli-
able balancing service in the real-time operation of the 
power system.

In future studies, we will focus on how the aggregator 
simultaneously trades multiple types of reserve or even 
other kinds of ancillary service. This can further optimize 
the self-scheduling decision. How to activate the potential 
of the SE to provide more reserve service directly consid-
ering its complex technical limitations is another point to 
be discussed in the future. Future study can further extend 
to the market operation mechanism, as how to achieve the 
incentive-compatibility between the aggregator and the 
market operator is also an interesting topic to be analyzed.
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