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Abstract 

Some double-circuit transmission lines are untransposed, which results in complex coupling relations 
between the parameters of the transmission lines. If the traditional modal transformation matrix is directly used 
to decouple the parameters, it can lead to large errors in the decoupled modal parameter, errors which will be 
amplified in the fault location equation. Consequently, it makes the fault location results of the untransposed 
double-circuit transmission lines less accurate. Therefore, a new modal transformation method is needed to decou-
ple the parameter matrix of untransposed double-circuit transmission lines and realize the fault location according 
to the decoupled modal parameter. By improving the basis of the Karrenbauer matrix, a modal transformation matrix 
suitable for decoupling parameters of untransposed double-circuit transmission lines is obtained. To address the dif-
ficulties in solving the fault location equation of untransposed double-circuit transmission lines, a new fault location 
method based on an improved Karrenbauer matrix and the quantum-behaved particle swarm optimization (QPSO) 
algorithm is proposed. Firstly, the line parameter matrix is decomposed into identical and inverse sequence compo-
nents using the identical-inverse sequence component transformation. The Karrenbauer matrix is then transformed 
to obtain the improved Karrenbauer matrix for untransposed double-circuit transmission lines and applied to identi-
cal and inverse sequence components to solve the decoupled modal parameter. Secondly, based on the principle 
that voltage magnitudes at both ends are equal, the fault location equation is expressed using sequence compo-
nents at each end, and the QPSO algorithm is introduced to solve the equation. Finally, the feasibility and accuracy 
of the proposed method are verified by PSCAD simulation. The simulation results fully demonstrate that the innova-
tive improvement on the basis of the traditional modal transformation matrix in this paper can realize the modal 
transformation of the complex coupling parameters of the untransposed double-circuit transmission lines. It causes 
almost no errors in the decoupling process. The QPSO algorithm can also solve the fault location equation more accu-
rately. The new fault location method can realize the accurate fault location of untransposed double-circuit transmis-
sion lines.
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1  Introduction
Double-circuit and multi-circuit transmission lines are 
widely used [1, 2]. In principle, transposition meas-
ures are adopted for high-voltage transmission lines 
to reduce the asymmetric three-phase parameters. 
However, in the actual construction of transmission 
lines, there is no condition for some lines to adopt 
complete transposition [3, 4]. The asymmetric three-
phase parameters caused by untransposition affect the 
accuracy of fault location [5]. Therefore, research on 
fault location method for untransposed double-circuit 
transmission lines is relevant to engineering practice 
[6, 7]. As an important means for eliminating param-
eter coupling between lines and phases, modal trans-
formation is the basis of fault location. For completely 
transposed double-circuit transmission lines, the six 
sequence components method [8] decomposes them 
into the identical and inverse components, eliminates 
the mutual inductances between lines, and realizes 
parameter decoupling.

For untransposed double-circuit transmission lines, the 
parameters of a single circuit line itself or between two 
circuits are no longer symmetrical, so the Fortescue’s 
transformation method and six sequence components 
method are no longer applicable. There are two methods 
for parameter decoupling of untransposed transmission 
lines, i.e., phase component and modulus component 
methods. The phase component method is intuitive and 
its physical meaning is clear, but the calculation pro-
cess is relatively complex and the amount of calculation 
is large. In [9], the phase component method is used 
for modeling, and for the parameter asymmetry caused 
by untransposition, the mutual inductance matrix ele-
ments are adjusted for balance. In [10], the phase com-
ponent model is improved and the polymorphic phase 
component method is proposed to solve the problem 
of parameter asymmetry. In [11], matrix diagonaliza-
tion transformation is used to improve the phase com-
ponent method and reduce the amount of calculation of 
the phase component method. In [12], the symmetry of 
two side conductors are used to calculate impedance and 
admittance matrices of the line in the phase domain.

The key to the module component method is to find an 
appropriate transformation matrix to realize the trans-
formation from phasor to modulus. In [13], a transfor-
mation matrix based on the Clark matrix is proposed, 
but it is only applicable to single-circuit lines without 
transposition and cannot solve the coupling problem in 
double-circuit transmission lines. In [14], the zero order 
approximation method is proposed to deal with the 
asymmetry of line parameters by obtaining the average 
approximation, whereas in [15], the existing transfor-
mation matrix is improved and a first-order disturbance 

theory is put forward, but it is also only applicable to 
untransposed single-circuit lines.

With the development of intelligent algorithms, trans-
mission line fault location equations are being more and 
more optimized by the PSO [16], ant colony [17], and 
genetic algorithms [18], and neural networks [19, 20], 
etc. However, these algorithms have problems such as too 
many iterations and find it easy to fall into local optima. 
Compared with these algorithms, the quantum-behaved 
particle swarm optimization (QPSO) has fewer param-
eters [21] and is easier to implement. In theory, it has 
global optimal convergence [22], and can converge to the 
global best and avoid the local best.

In this paper, the traditional modal transformation 
matrix is improved, so that the improved Karenbauer 
matrix can be applied to the decoupling of complex cou-
pling parameters of untransposed double-circuit trans-
mission lines. The quantum particle swarm optimization 
algorithm is introduced to propose a new fault location 
method suitable for untransposed double-circuit trans-
mission lines. The main contributions of this paper are as 
follows: first, the structural characteristics and parameter 
coupling of untransposed double-circuit transmission 
lines are analyzed, and their coupling parameter model 
is established. To solve the problem that the parameter 
coupling of untransposed double-circuit transmission 
lines is complicated and the traditional modal trans-
formation matrix is no longer applicable, the standard 
Karenbauer matrix is then transformed according to 
the coupling relation, and the line parameter matrix is 
decomposed into identical and inverse sequence com-
ponents. By combining the transformed Karenbauer 
matrix with the identical-inverse sequence component 
transformation matrix, an improved Karenbauer matrix 
suitable for modal transformation of untransposed dou-
ble-circuit transmission lines is obtained. Finally, based 
on the even transmission line equation, the fault location 
equation of untransposed double-circuit transmission 
lines is established. There is a problem in that the loca-
tion equation is a transcendental equation composed of 
hyperbolic functions with multi-dimensional complex 
variables and there is no exact analytical solution. Thus 
the quantum particle swarm optimization algorithm with 
global searching ability and higher iterative efficiency is 
introduced to optimize the equation. A new fault loca-
tion method for untransposed double-circuit transmis-
sion lines is then obtained.

2 � Solution of improved Karrenbauer matrix 
and parameter modal transformation

2.1 � Parameter matrix
The model of untransposed double-circuit transmis-
sion lines is shown in Fig.  1, where p and q represent 
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the sender and receiver of the system, respectively. Ėp 
and Ėq are the EMF of the power supply at the send-
ing end and the receiving end respectively, whereas Zp 
and Zq are the source impedances of the sender and the 
receiver, respectively.

Taking the line shown in Fig.  1 as an example, the 
form of impedance and admittance matrices for the 
double-circuit lines can be obtained as:

where Zii is the self-impedance of the i th line, Zij is the 
mutual impedance between the i th and j th conductors.Yii 
is the self-admittance of the i th conductor, while Yij is the 
mutual admittance between the i th and j th conductors. 
i = 1, 2, . . . , 6 and j = 1, 2, . . . , 6.

For completely transposed double-circuit transmis-
sion lines, because of their high symmetry, the imped-
ance matrix and the admittance matrix respectively 
satisfy:

The untransposition of double-circuit transmis-
sion lines is shown in Fig.  2. Theoretically, for the 

(1)Z =

Z11 Z12 Z13 Z14 Z15 Z16

Z12 Z22 Z23 Z15 Z25 Z26

Z13 Z23 Z33 Z16 Z26 Z36

Z14 Z15 Z16 Z11 Z12 Z13

Z15 Z25 Z26 Z12 Z22 Z23

Z16 Z26 Z36 Z13 Z23 Z33

(2)Y =















Y11 Y12 Y13 Y14 Y15 Y16
Y12 Y22 Y23 Y15 Y25 Y26
Y13 Y23 Y33 Y16 Y26 Y36
Y14 Y15 Y16 Y11 Y12 Y13
Y15 Y25 Y26 Y12 Y22 Y23
Y16 Y26 Y36 Y13 Y23 Y33















(3)







Z11 = Z22 = Z33

Z12 = Z13 = Z23

Z14 = Z15 = Z16 = Z25 = Z26 = Z36

(4)







Y11 = Y22 = Y33
Y12 = Y13 = Y23
Y14 = Y15 = Y16 = Y25 = Y26 = Y36

impedance and admittance matrices of untransposed 
double-circuit transmission lines, due to their high 
asymmetry, the elements in the matrices satisfy:

However, there is a certain degree of symmetry for 
the actual untransposed double-circuit transmission 
lines. Since in the relationship of conductor arrange-
ment, conductors 1 and 3 are always symmetrical about 
conductor 2, while conductors 4 and 6 are always sym-
metrical about conductor 5, and thus, the impedance 
and admittance matrices of untransposed double-cir-
cuit transmission lines satisfy:

(5)
Z11  = Z22  = Z33  = Z12  = Z13  = Z23  = Z14

 = Z15  = Z16  = Z25  = Z26  = Z36

(6)
Y11  = Y22  = Y33  = Y12  = Y13  = Y23  = Y14

 = Y15  = Y16  = Y25  = Y26  = Y36

Fig. 1  Model of untransposed double-circuit transmission lines

Fig. 2  Typical double-circuit transmission lines. a Conductor 
configuration of double-circuit lines, b, c different tower structure 
of double-circuit lines
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For the impedance and admittance matrices satisfy-
ing (7) and (8), the six sequence components method [8] 
cannot be decoupled directly. Therefore, a new method 
based on improved Karrenbauer matrix is proposed to 
satisfy the modal transformation of the impedance and 
admittance matrices of untransposed double-circuit 
transmission lines.

2.2 � Modal transformation
In this paper, two-terminal power frequency fault com-
ponents are used for fault location. The location equation 
is based on the sinusoidal steady-state solution of the 
even transmission lines shown as:

where U  is the voltage matrix, I is the current matrix, x 
is the line length, while Z and Y  are the impedance and 
admittance matrices, respectively.

The matrices in (9) need to be decoupled, i.e., a suitable 
modal transformation matrix is selected to diagonalize 
the impedance and admittance product matrix ZY  , and 
the line parameters under phase measurement are trans-
formed into a modulus. The transformation process is 
shown as:

where T  is the modal transformation matrix, � is the 
eigenvalue matrix, a diagonal matrix, and each of its 
elements corresponds to a square of the propagation 
constant.

For completely transposed single-circuit transmission 
lines, common transformation matrices include Fortes-
cue’s, Clark’s and Karrenbauer’s, all of which can be used 
as decoupling of the equation in the modal transforma-
tion matrix in (9). However, the elements of the Karren-
bauer’s transformation matrix are real constants and do 
not change with frequency, so its structure is simpler and 
it is more widely used in practical calculation.

(7)



















Z11 = Z33 �= Z22

Z12 = Z23 �= Z13

Z14 �= Z15 �= Z16 �= Z25

Z14 = Z36

Z15 = Z26

(8)



















Y11 = Y33 �= Y22
Y12 = Y23 �= Y13
Y14 �= Y15 �= Y16 �= Y25
Y14 = Y36
Y15 = Y26

(9)







d
2U
dx2

= ZYU

d
2I

dx2
= YZI

(10)T−1ZYT = �

For double-circuit transmission lines, if they are trans-
posed completely, the improved symmetrical component 
method, i.e., the six sequence components method, can 
be used to transform the impedance and admittance 
product ZY  . The modal transformation matrix is shown 
as:

where D =





1 α α2

1 α2 α

1 1 1



 , P =

[

I I
I −I

]

 , I =





1 0 0
0 1 0
0 0 1



 , and 

α = ej120
◦.

The matrix D in (11) is the standard Fortescue’s trans-
formation matrix, and matrix P as the identical and 
inverse transformation matrix can decompose the six 
phases of the double-circuit transmission lines into a 
group of the identical components and a group of inverse 
components. The combination of the two matrices con-
stitutes the six sequence components transformation 
matrix. Because it is based on the Fortescue’s transforma-
tion matrix, the six sequence components transformation 
matrix is not applicable to the modal transformation of 
untransposed double-circuit transmission lines. How-
ever, the identical and inverse transformation matrix P 
can still be applied in modal transformation of untrans-
posed double-circuit transmission lines.

It should be pointed out that although P can still 
decompose the six phases of the untransposed double-
circuit transmission lines, the decomposition does not 
result in the identical and inverse components in the 
strict sense. For convenience, the identical and inverse 
transformations are still used to describe untransposed 
double-circuit transmission lines in this paper, but the 
meanings are different from those of completely trans-
posed double-circuit lines.

2.3 � Solution of improved Karrenbauer matrix
For the impedance and admittance matrices of untrans-
posed double-circuit transmission lines satisfying (7) and 
(8), the product matrix ZY  is shown as:

where x, y, z,u, v,w,m, n represent the respective ele-
ments at the corresponding positions in the product 
matrix.

(11)S = DP =

[

D D
D −D

]

(12)ZY =















x y z u v w
y m y v n v
z y x w v u
u v w x y z
v n v y m y
w v u z y x














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In order to obtain the improved Karrenbauer trans-
formation matrix, matrix P can be used to decompose 
product matrix ZY  into identical and inverse compo-
nents, and obtain matrix ZY (1) as:

Taking the standard Karrenbauer matrix applicable to 
single-circuit three-phase transmission lines in (11), it 
can be corrected to obtain matrix K ′ as:

Then, the matrix K ′ is used to transform matrix ZY (1) 
to obtain matrix ZY (2) as:

It can be seen from (15) that there is still coupling 
between components, so it is necessary to find a suit-
able matrix to diagonalize the matrix ZY (2) . First, the 
matrix ZY (2) is partitioned to obtain the matrices A and 
B of the non-zero part of the matrix ZY (2) as:

Then, the eigenvalue of matrix A is calculated as:

The following characteristic values can be obtained:

(13)

ZY (1) = P−1ZYP

=















x + u y+ v z + w 0 0 0
y+ v m+ n y+ v 0 0 0
z + w y+ v x + u 0 0 0
0 0 0 x − u y− v z − w
0 0 0 y− v m− n y− v
0 0 0 z − w y− v x − u















(14)K ′ =















1 1 1 0 0 0

1 −2 1 0 0 0

1 1 −2 0 0 0

0 0 0 1 1 1

0 0 0 1 −2 1

0 0 0 1 1 −2















(15)

ZY (2) = K ′−1
ZY (1)K ′

= K ′−1
P−1ZYPK ′

=















a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

0 0 a33 0 0 0

0 0 0 a44 a45 a46

0 0 0 a54 a55 a56

0 0 0 0 0 a66




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







(16)ZY (2) =
[

A O
O B

]

(17)
A = det

∣

∣

∣

∣

∣

∣

�− a11 −a12 −a13
−a21 �− a22 −a23
0 0 �− a33

∣

∣

∣

∣

∣

∣

= (�− a33) det

∣

∣

∣

∣

�− a11 −a12
−a21 �− a22

∣

∣

∣

∣

where �1 takes + and �2 take −.
The matrix consisting of the eigenvectors S1, S2, S3 cor-

responding to the eigenvalues �1, �2, �3 of matrix A are 
shown as:

where sij
(

i = 1, 2, 3; j = 1, 2, 3
)

 is the element of the cor-
responding position of the characteristic vector matrix S.

Then, Eq.  (20) can be obtained from the properties of 
characteristic vectors.

where i = 1, 2, 3.
According to (20), the eigenvalue �1, �2, �3 , eigenvector 

S1, S2, S3 and its matrix S corresponding to matrix A can 
be solved.

Since the structures of matrix B and matrix A are iden-
tical, the eigenvalue �4, �5, �6 , the eigenvector R1,R2,R3 
and the matrix R consisting of the eigenvector R1,R2,R3 
can be solved by the same method.

The improved Karrenbauer transformation matrix can 
be obtained by contrast (10) as:

It can be seen from (21) that the improved Karren-
bauer transformation matrix is based on the three-phase 
Karrenbauer transformation matrix, combined with the 
identical and inverse transformation matrix, and then 
multiplied by the corresponding characteristic vector 
matrix.

3 � Fault location equation of untransposition 
double‑circuit transmission line

The fault location equation of untransposed double-cir-
cuit transmission lines is based on the sinusoidal steady-
state solution of the even transmission lines as shown 
in (9), so the voltage and current under phase measure-
ment in (9) need to be transformed into a modulus. For 
untransposed double-circuit transmission lines, because 
of the special structure of the impedance and admittance 
matrices, the same modal transformation matrix cannot 

(18)

{

�12 = a11+a22±
√

(a11−a22)
2+4a12a21

2
�3 = a33

(19)S =[S1, S2, S3] =





s11 s12 s13
s21 s22 s23
s31 s32 s33





(20)





�i − a11 −a12 −a13
−a12 �i − a22 −a23
0 0 �i − a11









s1i
s2i
s3i



 =





0
0
0





(21)T = PK ′
[

S O
O R

]
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be used for voltage and current. The improved Karren-
bauer transformation matrix T  can be used as a trans-
formation matrix for voltage, but it is not applicable for 
current. It can be proved that if the current transforma-
tion matrix Q = T−T is taken, the modal transformation 
of current can be realized. From this, the modal transfor-
mation equations of voltage and current are given as:

Transformation matrices T  and Q can also realize the 
modal transformation of impedance and admittance 
matrices, and the transformation equation is shown as:

Then, Eq. (22) is substituted into (9) to obtain the equa-
tion of even transmission lines at the modulus as:

The above analysis is aimed at all sequence moduli. 
Since the sequence moduli are independent after decou-
pling, taking the identical α-sequence as an example, the 
fault location equation on the identical α-sequence is 
established. The solution of the differential equations in 
(24) can obtain the identical α-sequence voltage of any 
point f on the line as:

(22)































U̇m = T−1U̇

=
�

U̇mTα U̇mTβ U̇mT0 U̇mFα U̇mFβ U̇mF0

�T

İm = Q−1İ

=
�

İmTα İmTβ İmT0 İmFα İmFβ İmF0

�T

(23)



























Zm = T−1ZQ

= diag
�

ZmTα ZmTβ ZmT0 ZmFα ZmFβ ZmF0

�

Ym = Q−1YT

= diag
�

YmTα YmTβ YmT0 YmFα YmFβ YmF0

�

(24)

{

d
2U̇m

dx2
= T−1ZYTU̇m = �U̇m

d
2 İm
dx2

= Q−1YZQİm = �İm

(25)



































U̇mTα.p.f = U̇mTα.p.0 cosh (γ1x)

−γ−1
1 ZmTα İmTα.p.0 sinh (γ1x)

U̇mTα.q.f =
�

U̇mTα.q.0 cosh [γ1(l − x)]

+γ−1
1 ZmTα İmTα.q.0 sinh [γ1(l − x)]

�

ejδ

In order to eliminate the influence of load current and 
improve measurement accuracy, the fault components 
of identical α-sequence moduli can be replaced by the 
identical α-sequence fault components. The fault com-
ponents of p and q-terminal voltage and current modu-
lus of untransposed double-circuit transmission lines are 
shown as:

where U̇p.0 , İp.0 , İp.0 and İq.0 are the respective p and q 
terminal voltage and current of the line after a fault, 
while U̇p.fg.0 , İp.fg.0 , U̇q.fg.0 and İq.fg.0 are the voltage and 
current of p and q terminals of the lines before the fault 
(in non-fault state), respectively.

If the point f is set as the fault point, the identical α
-sequence fault component in (26) is brought into (25). 
By replacing the identical α-sequence modulus, the 
identical α-sequence voltage fault component of fault 
point f can be obtained as:

Then, Eqs.  (25)–(27) are all established under the 
identical α sequence component. For other sequences, 
since sequence components are independent of each 
other and the structures of sequence parameters and 
variables are similar, the same method can be used 
to obtain the identical β-sequence voltage fault com-
ponents U̇mTβ.p.f.g and U̇mTβ.q.f.g , the identical zero-
sequence voltage fault components U̇mT0.p.f.g and 
U̇mT0.q.f.g , the inverse α-sequence voltage fault compo-
nents U̇mFα.p.f.g and U̇mFα.q.f.g , the inverse β-sequence 
voltage fault components U̇mFβ.p.f.g and U̇mFβ.q.f.g , and 
the inverse zero-sequence voltage fault component 
U̇mF0.p.f.g and U̇mF0.q.f.g of the fault point f.

In addition to the load current, the influence of sam-
pling asynchronous angle and parameter asymmetry 
caused by untransposition on each sequence compo-
nent will affect location accuracy, and thus needs to 
be eliminated when establishing the location equation. 
Because the asynchronous angle δ of data sampling only 
affects the phase of each sequence voltage fault compo-
nent at fault point f without affecting the magnitude, 

(26)
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









U̇m.p.0.g = T−1
�

U̇p.0 − U̇p.fg.0

�

=
�

U̇mTα.p.0.g U̇mTβ.p.0.g U̇mT0.p.0.g U̇mFα.p.0.g U̇mFβ.p.0.g U̇mF0.p.0.g

�T

İm.p.0.g = Q−1
�

İp.0 − İp.fg.0
�

=
�

İmTα.p.0.g İmTβ.p.0.g İmT0.p.0.g İmFα.p.0.g İmFβ.p.0.g İmF0.p.0.g

�T

U̇m.q.0.g = T−1
�

U̇q.0 − U̇q.fg.0

�

=
�

U̇mTα.q.0.g U̇mTβ.q.0.g U̇mT0.q.0.g U̇mFα.q.0.g U̇mFβ.q.0.g U̇mF0.q.0.g

�T

İm.q.0.g = Q−1
�

İq.0 − İq.fg.0
�

=
�

İmTα.q.0.g İmTβ.q.0.g İmT0.q.0.g İmFα.q.0.g İmFβ.q.0.g İmF0.q.0.g

�T

(27)























U̇mTα.p.f.g = U̇mTα.p.0.g cosh (γ1x)

−γ−1
1 ZmTα İmTα.p.0.g sinh (γ1x)

U̇mTα.q.f.g =
�

U̇mTα.q.0.g cosh [γ1(l − x)]

+γ−1
1 ZmTα İmTα.q.0.g sinh [γ1(l − x)]

�

ejδ
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the equation is established by using the magnitude of 
voltage fault component. The different influence degree 
of parameter asymmetry on each sequence component 
will directly lead to a different error size of location 
with different sequence components. If only a single 
sequence component is used for location, there will be 
error fluctuation. Therefore, all six sequence compo-
nents are used to establish the location process, and 
then the results of each equation are averaged.

4 � Solution of location equation based on QPSO
After analyzing the main influencing factors of loca-
tion accuracy, using the principle that the magnitude 
of each sequence voltage fault component of fault 
point f  deduced from the p terminal is equal to that of 
each sequence voltage fault component of fault point f  
deduced from the q terminal, the distance measurement 
equation is established as:

where x1, x2, x3, x4, x5, x6 are the distances from the p-ter-
minal of the line to the fault point f under each sequence 
component, respectively.

Considering that (29) is a transcendental equation 
composed of hyperbolic functions with multi-dimen-
sional complex variables, the exact analytical solution 
cannot be obtained, and the approximate solution satis-
fying the accuracy can only be obtained by an iterative 
method. However, power system fault location requires 
a fast location speed while satisfying the location accu-
racy, otherwise it can affect the action and effect of relay 
protection devices. Therefore, the relevant iterative algo-
rithms should have short iteration time and fast iteration 
speed while meeting the requirements of high accuracy. 
For the improved iterative algorithms such as gradient 
descent method and quasi Newton method commonly 
used in power system analysis, although the accuracy of 
the final solution is improved, the number and speed of 
iterations are also affected. For ant colony, genetic, par-
ticle swarm optimization (PSO) and other algorithms, 
there are problems such as too many iterations and that it 
is easy for them to fall into local optima.

(28)































f1(x1) =
�

�

�

�U̇mTα.p.f.g(x1)
�

�−
�

�U̇mTα.q.f.g(x1)
�

�

�

�

f2(x2) =
�

�

�

�U̇mTβ.p.f.g(x2)
�

�−
�

�U̇mTβ.q.f.g(x2)
�

�

�

�

f3(x3) =
�

�

�

�U̇mT0.p.f.g(x3)
�

�−
�

�U̇mT0.q.f.g(x3)
�

�

�

�

f4(x4) =
�

�

�

�U̇mFα.p.f.g(x4)
�

�−
�

�U̇mFα.q.f.g(x4)
�

�

�

�

f5(x5) =
�

�

�

�U̇mFβ.p.f.g(x5)
�

�−
�

�U̇mFβ.q.f.g(x5)
�

�

�

�

f6(x6) =
�

�

�

�U̇mF0.p.f.g(x6)
�

�−
�

�U̇mF0.q.f.g(x6)
�

�

�

�

(29)F(x1, x2, x3, x4, x5, x6) =
6

∑

i=1

fi(xi) = 0

Compared with traditional PSO algorithm, QPSO 
algorithm introduces quantum theory as its basis, which 
means that the QPSO algorithm retains the advantages 
of PSO algorithm but offers further improvement. Its 
advantages are mainly: first, the QPSO algorithm only 
has a displacement model, so only the particle positions 
need to be updated in the iteration process, while the 
PSO algorithm has speed and displacement models, so 
the positions and speeds of particles need to be updated 
simultaneously in the iteration process. Therefore, the 
QPSO algorithm has higher iteration efficiency. Secondly, 
for the QPSO algorithm, the particles in the quantum 
system do not move with the determined trajectory and 
their positions are distributed at any point in the solu-
tion space with a certain probability. Therefore, they have 
the ability of global search and can effectively avoid fall-
ing into the problem of local optima. Finally, the QPSO 
algorithm has fewer control parameters than genetic and 
PSO algorithms. This, is convenient for its application in 
practical problems.

4.1 � Mathematical model of QPSO
For the PSO algorithm, if every particle can converge to a 
local attraction, then PSO may converge. Each dimension 
of the local attraction is given as:

where t is the current time of iterations, D is the particle 
dimension, and ϕd(t) is a random number evenly distrib-
uted on (0, 1) . Pi(t) is the individual optimum position 
of the i th particle, and Pg (t) is the best position for the 
group.

In quantum space, the particle state is determined by 
the wave function ψ and the probability density func-
tion of the particle position is |ψ |2 . For non-rotating 
particles, the state depends on the wave function and 
is position dependent only. Assuming that the parti-
cle is in a potential well and the center of the poten-
tial well is a local attraction, the potential well of the 
particle in dimension d is pid(t) . In a potential well, 
the further the particle is from the center of the poten-
tial well, the closer the wave function ψ approaches 0, 
i.e., the probability of particle occurrence is small. The 
closer the particle is to the potential well, the closer its 
kinetic energy E approaches 0, making it impossible 
for the particle to escape. Therefore, the wave func-
tion of the i th particle can be obtained at the (t + 1) th 
iteration as:

(30)pid(t) = ϕd(t)Pid(t)+ [1− ϕd(t)]Pgd(t)

(31)ψ[xid(t + 1)] =
exp

[

−|xid(t+1)−pid(t)|
Lid(t)

]

√
Lid(t)
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where Lid(t) is the standard deviation of the biexponen-
tial distribution, representing the potential well length, 
and xid(t + 1) is the particle position at the (t + 1) th 
iteration.

The probability density function Q and probability dis-
tribution function T  of particles can be obtained respec-
tively as:

Based on the particle wave function ψ , probability den-
sity function Q and probability distribution function T  , 
the particle position update obtained by the Monte Carlo 
method is given as:

where uid(t) is a random number evenly distributed over 
(0, 1).

The value of Lid(t) can be determined by:

where α is the control parameter, called compression-
expansion factor. mbest(t) is the average of the individual 
optimum position of each dimension of the particle at the 
t th iteration. This is called the average optimum position.

The value of mbest(t) can be determined by:

where N  is the number of particles.
The updating equations of particle positions obtained 

from (35) and (36) are shown as:

The updating method of the individual optimum posi-
tion Pi(t) and the group optimum position Pg (t) of the 
particles is identical to that of the PSO algorithm, and the 
updating equations are shown as:

(32)

Q[xid(t + 1)] = |ψ[xid(t + 1)]|2

=
1

Lid(t)
exp

[

−
2|xid(t + 1)− pid(t)|

Lid(t)

]

(33)T [xid(t + 1)] = exp

[

−
2|xid(t + 1)− pid(t)|

Lid(t)

]

(34)xid(t + 1) = pid(t)±
Lid(t)

2
ln

[

1

uid(t)

]

(35)Lid(t) = 2α|mbest(t)− xid(t)|

(36)mbest(t) =
1

N

N
∑

i=1

Pi(t)

(37)

xid(t + 1) = pid(t)± α|mbest(t)− xid(t)| ln
[

1

uid(t)

]

(38)

Pi(t + 1) =
{

xi(t + 1)
Pi(t)

, f [xi(t + 1)] < f [Pi(t)]
, f [xi(t + 1)] ≥ f [Pi(t)]

where f () is the fitness function.
It should be noted that, as the only control parameter 

α , except the number of particles, particle dimension and 
iteration time, it can be set with fixed value, linear reduc-
tion, or other strategies. In [22], the characteristics and 
performance of these three strategies are compared and 
combined with the simulation results of standard test 
functions, and a practical and instructive control param-
eter selection method is given. This selection method 
points out that the fixed value strategy has a large stand-
ard deviation and poor robustness, while compared with 
the nonlinear reduction strategy, the linear reduction 
strategy can get better results in most cases. Therefore, 
in this paper, the linear reduction strategy is adopted, and 
its setting equation is shown as:

where tmax is the maximum number of iterations.

4.2 � Optimum solution of location equation
Assuming the total length of untransposed double-circuit 
transmission lines is l , the fitness function of the algo-
rithm is the fault location equation shown in (29). The 
flow chart of the QPSO algorithm is shown in Fig. 3 and 

(39)Pg (t + 1) = arg min
1≤i≤N

{

f [Pi(t)]
}

(40)α = 1−
1

2

t

tmax

Fig. 3  Flow chart of the QPSO algorithm
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the algorithm steps for optimizing the distance measure-
ment equation are:

1.	 Initialize particle position in each six-dimensional 
space with a one-dimensional range [0, l].

2.	 According to the initial position of the particle, the 
fitness function corresponding to the initial position 
of the particle is calculated to initialize the individual 
optimum position Pi and the group optimum posi-
tion Pg of the particle.

3.	 Update the average optimum position of particles 
according to (36) and update the position of particles 
according to (37).

4.	 Calculate the current fitness function value accord-
ing to the current position of the particle and com-
pare it with the fitness function value of the previous 
iteration. If the current fitness function value is less 
than the fitness function value corresponding to the 
individual optimum position in the previous itera-
tion (i.e., f [xi(t + 1)] < f [Pi(t)] ), the particle posi-
tion is updated to the individual optimum position 
( Pi(t + 1) = xi(t + 1)).

5.	 Update the group optimum position Pg (t + 1) 
according to (38), compare the fitness function value 
corresponding to the current group optimum posi-
tion with the fitness function value corresponding 
to the group optimum position at the previous itera-
tion. Update it to the group optimum position if the 

fitness function value corresponding to the current 
group optimum position is small.

6.	 Repeat steps 3 to 5 until the number of iterations 
reaches the set maximum number of iterations.

At the end of the iteration, the optimal group position 
Pg is the result of the optimization of the location func-
tion, and each dimension value of Pg is the obtained 
fault distance. In order to reduce error fluctuation, the 
final fault distance is obtained by averaging the six-
dimensional results.

5 � Results and discussion
In PSCAD, the model of untransposed double-circuit 
transmission lines shown in Fig.  1 is established, and 
relevant programs are programmed in MATLAB to 
realize modal transformation of parameters and fault 
location based on the QPSO algorithm. In the model, 
the voltage level of the double-circuit lines is 220 kV, the 
positive impedance of the power supply at both ends is 
ZM1 = 3.39+ j49.34� , the zero-sequence impedance is 
ZM0 = 2.52+ j46.03� , and the phase of the power sup-
ply at the sending end is 15 degrees ahead of the receiv-
ing end. A Frequency-Dependent (Phase) model is used 
for the overhead lines, while untransposition mode is 
selected for all the overhead lines. The length of the 
lines is 200 km, and the specific parameters are shown in 
Table 1.

Table 1  Overhead line parameters

Type Parameter Value

Tower parameters Ground height of the lowest conductor (m) 24

Horizontal distance between inner conductors (m) 5.5

Horizontal distance between inner and outer conductors of single circuit line (m) 6

Vertical distance between upper and lower conductors of single circuit line (m) 7.5

Vertical distance between ground wire and the lowest conductor (m) 9.5

Distance between two ground wires (m) 14

Wire parameters Outer radius of conductor (m) 0.01341

Radius of single strand (m) 0.0032

Number of strands in total 55

Conductor DC Resistance ( � km
−1) 0.07389

Wire splitting number 2

Wire split spacing (m) 0.4

Table 2  Decoupled parameters of each sequence impedance and admittance

Line parameters Identical α 
sequence 
components (Ω)

Identical β 
sequence 
components (Ω)

Identical 0 
sequence 
components (Ω)

Inverse α 
sequence 
components (Ω)

Inverse β 
sequence 
components (Ω)

Inverse 0 
sequence 
components (Ω)

Impedance ( 10−2) 0.2665 + j2.5809 9.6843 + j30.599 0.4118 + 3.2193j − 0.7019 + 1.4024j − 1.8141 + 3.7724j 0.4123 + 2.9974j

Admittance ( 10−5) 0.0177 + j4.4509 0.0117 + j1.0028 0.0090 + 3.4694j 4.0357 + 6.1075j 1.6139 + 2.4050j 0.0090 + 3.7764j
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5.1 � Simulation verification of modal conversion
In order to fully verify the accuracy and reliability of this 
method, the modal transformation between impedance 
matrix Z and admittance matrix Y  of the untransposed 
double-circuit transmission lines obtained by PSCAD 
simulation is carried out by the improved Karrenbauer 
matrix. The decoupled impedance and admittance 
parameters are shown in Table  2. Then the eigenvalues 
obtained by decoupling the impedance and the admit-
tance product matrix ZY  with the improved Karrenbauer 
matrix are compared with the precise results calculated 
by the MATLAB mathematical toolkit, and the compari-
son of results is shown in Table 3.

From Tables 2 and 3, it can be seen that the improved 
Karrenbauer matrix proposed in this paper can effec-
tively and accurately transform impedance matrix Z and 
admittance matrix Y  . Compared with the accurate results 
calculated by MATLAB mathematical toolkit, the error is 
very small.

It should be noted that, although the mathematical 
meaning of � in (10) is the eigenvalue matrix, from the 
perspective of modal transformation, � in (24) is the 
product of sequence impedance and admittance under 
the decoupled modal parameter. It has similar meaning 
to the product of positive, negative and zero sequence 
impedance admittance in Fortescue’s transformation 
method, but also has essential differences. It can be seen 
from Table  2 that, as the product of sequence imped-
ance and admittance under the decoupled modal param-
eter, the product modal (sequence) components of each 
sequence impedance and admittance in � are not equal to 
each other, which is completely different from Fortescue’s 
transformation method. The impedance and admittance 
of the positive sequence and negative sequence after 
decoupling are equal to each other in Fortescue’s method. 
Therefore, the six sequence components method or other 
modal transformation method based on Fortescue’s 
method is not applicable for the untransposed double-
circuit transmission lines.

It should also be noted that the real component of 
inverse α-sequence and β-sequence impedances in 
Table  2 are negative. Although matrix P can decom-
pose the six phases of the untransposition double-circuit 
transmission lines, because of the asymmetry caused by 
the untransposition, the decomposition results are no 
longer the identical and inverse vectors in the component 

sense. Therefore, the inverse α-sequence and β-sequence 
impedances with negative real components are not of 
practical physical significance, but only participate in the 
establishment of fault location equation as an intermedi-
ate process.

5.2 � Fault location simulation verification
In order to verify the practical effect of the improved Kar-
renbauer matrix and QPSO algorithm in fault location of 
untransposed double-circuit transmission lines, different 
fault distances and types of faults with different grounding 
resistances are simulated and verified. Although its prob-
ability of occurrence is low, a cross-line fault is still a unique 
fault type of the double-circuit lines, and has important 
research value because of the electromagnetic coupling and 
power injection between the double-circuit transmission 
lines. Therefore, this paper carries out simulation verifica-
tion for single-circuit line faults and double-circuit cross-
line faults. The definition of relative fault location error ξ is:

Table 3  Comparison results of eigenvalues

Computing method �1 �2 �3 �4 �5 �6

Matlab ( 10−12) − 1.1483 + 0.1232j − 3.0574 + 1.0070j − 1.1165 + 0.1457j − 1.1398 + 0.1372j − 1.2000 + 0.1725j − 1.1316 + 0.1584j

Paper method ( 10−12) − 1.1483 + 0.1232j − 3.0574 + 1.0070j − 1.1165 + 0.1457j − 1.1398 + 0.1372j − 1.2000 + 0.1725j − 1.1316 + 0.1584j

Fig. 4  Fault location results of different types of single-circuit line 
faults when the transition resistance is 0.01 Ω

Fig. 5  Fault location results of different types of cross-line faults 
when the transition resistance is 0.01 Ω
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where lca is the calculated fault distance, and lre is the 
actual fault distance.

Figures 4 and 5 give the location results for different 
types of single-circuit faults and double-circuit cross-
line faults, respectively, at different fault distances 
when the ground resistance (0.01 Ω) is small. From the 
location errors, it can be seen that the location errors 
meet the engineering requirements for single-circuit 
and double-circuit cross-line faults.

Figures  6 and 7 give the respective results of fault 
location for different types of single-circuit and double-
circuit cross-line faults at different fault distances when 
the ground resistance is 50 Ω. By comparing the results 
with those in Figs. 4 and 5, it can be seen that the loca-
tion errors are also small and do not change with the 
change of ground resistance.

Figures  8 and 9 give the location results for differ-
ent types of single-circuit and double-circuit cross-line 
faults, respectively, at different fault distances when the 
ground resistance (100 Ω) is high. It can be seen that 
when there is high resistance grounding, the results of 
fault location also meet the requirements and are not 
affected by the fault types and fault distances.

Figures 4, 5, 6, 7, 8 and 9 show that the results of fault 
location are not affected by ground resistance, and 
regardless of the ground resistance value, the location 
results can always reach a high accuracy.

5.3 � Comparison with other ranging methods
In order to verify the superior performance and high 
accuracy of the proposed fault location method based 
on the improved Karenbauer matrix and QPSO algo-
rithm, the simulation results are compared with the 
results of other fault location methods. Reference [23] 
aims at the coupling parameter matrix of untransposed 
double-circuit transmission lines, and by constructing 
the perturbation of the impedance matrix of untrans-
posed double-circuit transmission lines, the eigenvalues 
and eigenvectors of the impedance matrix of the line 
are separately expanded by the perturbation method, 
and the modal transformation matrix of different preci-
sion is obtained through the equations satisfying differ-
ent orders. The obtained transformation matrix is then 
applied to fault location based on modulus component 
theory. The results obtained by the fault location method 
in [23] are compared with those obtained by the pro-
posed method, as shown in Table 4.

It can be seen from Table 4 that the proposed method 
of fault location for untransposed double-circuit trans-
mission lines based on the improved Karenbauer matrix 

(41)ξ =
∣

∣

∣

∣

lca − lre

l

∣

∣

∣

∣

× 100%

Fig. 6  Fault location results of different types of single-circuit line 
faults when the transition resistance is 50 Ω

Fig. 7  Fault location results of different types of cross-line faults 
when the transition resistance is 50 Ω

Fig. 8  Fault location results of different types of single circuit line 
fault when transition resistance is 100 Ω

Fig. 9  Fault location results of different types of cross line fault 
when transition resistance is 100 Ω
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and QPSO algorithm has superior performance and 
higher accuracy than those from [23], and thus it can be 
well applied to engineering practice.

5.4 � Discussion
From the analysis of Figs. 4, 5, 6, 7, 8 and 9, it can be seen 
that the methods proposed in this paper are not affected 
by the common influencing factors of location accuracy, 
such as fault type, fault distance and ground resistance. 
With different fault types, fault distances and ground 
resistances, this method can achieve high accuracy fault 
location for untransposed double-circuit transmission 
lines.

For the faults with different ground resistances and dif-
ferent fault types with fault distance of 100 km, the error 
is significantly smaller and the relative error is close to 
zero compared with the faults with other fault distances 
under the same conditions. There are two reasons for 
this. First, the fault point is located at the middle of the 
line and the voltage and current measured at both ends 
of the line are relatively symmetrical, which reduces the 
error caused by the decomposition of the identical and 
inverse transformation matrix P . On the other hand, the 
QPSO algorithm used in this paper has high performance 
and can get high accuracy results with fewer iterations 
and higher iteration speed.

The QPSO technique will produce different results if 
the same model is run a number of times, which influ-
ences the accuracy of the location results. However, 
because of the high performance of QPSO, the difference 
between the results of each calculation is very small, and 
the impact on the accuracy of fault location results can 
thus be ignored.

It should also be pointed out that, because of the good 
performance of the QPSO algorithm, the fault location 
equations of all fault types have converged at the 100th 
iteration when the QPSO algorithm is used to optimize 
the solution. Therefore, the maximum number of itera-
tions in the QPSO algorithm is set to 100, and it can be 
seen from the simulation results that the obtained fault 

location error meets the accuracy requirements. As for 
location speed, because of the excellent search perfor-
mance and the simplification of the iterative model of the 
QPSO algorithm, the iterative process takes little time 
and has little impact on location speed. Taking the single-
phase ground fault location with transition resistance of 
0.01 Ω and fault distance of 50 km as an example, it can 
be concluded through multiple simulations that when the 
maximum iteration number is set to 100, the time of run-
ning the iteration process is between 0.0787 and 0.0938 s 
due to the randomness of particle occurrence position. 
Therefore, the time spent in the iterative process has little 
impact on the speed of fault location.

6 � Conclusion
In this paper, a new method for fault location of untrans-
posed double-circuit transmission lines based on an 
improved Karrenbauer matrix and QPSO algorithm 
is proposed. The three-phase Karrenbauer matrix is 
improved and the identical and inverse component trans-
formation is introduced to obtain a matrix suitable for 
modal transformation of untransposed double-circuit 
transmission lines. According to the characteristics of 
six-sequence parameters after decoupling, a fault loca-
tion equation based on two-terminal electrical quanti-
ties is established, and the QPSO algorithm is introduced 
to optimize the solution of the equation and carry out 
simulation verification. Through the analysis of relevant 
results and errors, the conclusions are:

1.	 For untransposed double-circuit transmission lines, 
when single-circuit and double-circuit cross-line 
faults of different fault types occur at any point of 
the lines, regardless of the ground resistance, the 
modal transformation and the location equation 
and its algorithm proposed in this paper can be used 
for fault location. Furthermore, since the fault loca-
tion equation in this paper is based on a sinusoidal 
steady fault component, the fault inception angle has 
no influence on the accuracy of fault location. The 
results of fault location have high accuracy and can 
well meet the requirements of engineering practice.

2.	 For untransposed double-circuit transmission lines, 
because of the asymmetry of impedance and admit-
tance parameters and mutual inductance between 
lines, the impedance and admittance components of 
positive and negative sequence after decoupling are 
no longer equal. If the traditional Fortescue’s trans-
formation method or other modal transformation 
method based on complete transposition assump-
tion were to be used, large errors would occur, which 
could affect the accuracy of location.

Table 4  Comparison of two location methods

Fault type Fault location error 
with the proposed 
method (%)

Fault location error 
with the method in 
[22] (In the case of the 
zero order) (%)

Single phase ground 
fault (A-g)

0.6596 1.7527

Two-phase ground 
fault (AB-g)

0.1123 1.1441

Three phase ground 
fault (ABC-g)

0.2005 4.0004
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3.	 As an important tool for modal transformation, the 
Karrenbauer matrix is widely used in relay protection 
devices because of its simple structure. The method 
proposed in this paper is based on a three-phase Kar-
renbauer matrix. Therefore, in practical application, 
the basic principle of relevant relay protection devices 
need not be changed, while only the corresponding 
improvements are needed according to line param-
eters, so the proposed method has good applicability.

The method proposed in this paper has high location 
accuracy and is applicable to fault location of all types of 
faults of untransposed double-circuit transmission lines. 
It has good engineering application value. The location 
principle and the method of the relay protection device 
for untransposition double-circuit transmission lines can 
be adjusted according to this method to ensure that the 
relay protection device can accurately realize fault loca-
tion in the event of various types of faults.
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