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Abstract 

This paper applies the innovative idea of DLCI to PV array reconfiguration under various PSCs to capture the maxi-
mum output power of a PV generation system. DLCI is a hybrid algorithm that integrates multiple meta-heuristic algo-
rithms. Through the competition and cooperation of the search mechanisms of different metaheuristic algorithms, 
the local exploration and global development of the algorithm can be effectively improved to avoid power mismatch 
of the PV system caused by the algorithm falling into a local optimum. A series of discrete operations are performed 
on DLCI to solve the discrete optimization problem of PV array reconfiguration. Two structures (DLCI-I and DLCI-II) 
are designed to verify the effect of increasing the number of sub-optimizers on the optimized performance of DLCI 
by simulation based on 10 cases of PSCs. The simulation shows that the increase of the number of sub-optimizers 
only gives a relatively small improvement on the DLCI optimization performance. DLCI has a significant effect 
on the reduction in the number of power peaks caused by PSC. The PV array-based reconstruction system of DLCI-II 
is reduced by 4.05%, 1.88%, 1.68%, 0.99% and 3.39%, when compared to the secondary optimization algorithms.

Keywords PV array reconfiguration, Partial shading condition, Dynamic leader based collective intelligence, 
Maximum power extraction, Total-cross-tied

1 Introduction
Consumption of energy has led to the rapid depletion of 
fossil fuels such as coal, oil and natural gas, and serious 
environmental pollution. These bring huge challenges [1, 
2]. To cope with the approaching energy crisis, there is 
a need to change from fossil energy to low-carbon and 
clean renewable energy [3]. As one of the most promis-
ing renewable energies, solar energy has been widely 
promoted and applied [4]. However, photovoltaic (PV) 
systems in practical engineering application still face 

many problems that need to be solved [5]. For exam-
ple, PV systems are sensitive to changes in the external 
environment [6]. When the temperature and irradiance 
changes rapidly, a PV system will generate a large mis-
matched power loss [7]. In particular, when PV systems 
are in a partial shading condition (PSC), multiple power 
peaks can appear in the P–V characteristic curves of the 
arrays [8], resulting in a hot spot effect and causing PV 
panels to burn out because of local uneven heating [9].

In practical engineering application, PSC is a relatively 
common phenomenon [10]. At present, many methods 
with excellent performance have been applied to solve 
various problems of the systems in PSC, e.g., parallel 
bypassed diodes on the PV panels [11] and performing 
maximum power point tracking (MPPT) for the output 
power [12]. However, previous studies have shown that 
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the multi-peak nature of the PV panel itself can lead to 
power mismatch loss in the connected bypass diodes 
[10]. Also, there are huge implementation and control 
costs when MPPT technology is applied to large-scale PV 
power plants [13].

To reduce the power loss under PSC, PV reconstruc-
tion technology has become a research hotspot. The 
technology can be divided into static and dynamic recon-
struction [14]. The former changes the physical location 
of PV components instead of the electrical connection 
[15], such as Sudoku, Rubik’s cube, and column index 
technology. From this, a method of PV array reconfigu-
ration is proposed for PV systems in different PSCs [13]. 
This is considered to be the perfect method for captur-
ing the maximum power output of PV systems in dif-
ferent PSCs. As mentioned, it can be divided into static 
or dynamic reconfiguration depending on whether the 
electrical interconnect is changed [16]. Dynamic recon-
figuration shows strong optimization performance for 
various PSCs that change rapidly in practical engineer-
ing. Many topologies have been proposed and widely 
used in dynamic reconfiguration. The more common 
forms are series-parallel, bridge-link, TCT, Suduku, etc 
[17]. In addition, some meta-inspiration algorithms have 
also been applied to the PV array reconfiguration, such 
as genetic algorithms (GA) [18], particle swarm optimi-
zation (PSO) [19], and butterfly optimization algorithms 
(BOA) [20], which can capture the maximum output 
power of PV arrays under dynamic and variable PSCs 
for TCT topology. However, these meta-inspiration algo-
rithms easily fall into local optima because of the inher-
ent defects of strong randomness [21].

To extract the maximum power of PV power plants in 
various PSCs, a novel PV array reconfiguration method 
based on dynamic leader-based collective intelligence 
(DLCI) is proposed here. A 9 × 9 TCT PV array recon-
struction model is tested in various environments. The 
main innovations/contributions of the proposed method 
are:

• Compared to using a single meta-heuristic algorithm, 
DLCI with multiple sub-optimizer search mecha-
nisms can maximize the optimization performance 
of the sub-optimizer.

• Through the competition and cooperation between 
different sub-optimizers, the convergence stability 
of the DLCI can be significantly improved, thereby 
greatly reducing the power fluctuation of a PV sys-
tem during the reconstruction process.

• DLCI has higher convergence speed and accuracy, and 
can guide other sub-optimizers at a deeper level by 
selecting the currently obtained optimal sub-optimizer 

as the dynamic leader. Therefore, the global maximum 
power point (GMPP) can be obtained with a higher 
probability by using DLCI for PV array reconfiguration 
under PSC.

• To verify the effectiveness of the proposed method, a 
hardware-in-the-loop experiment is conducted, and 
the results of MATLAB and hardware-in-the-loop 
tests are compared and analyzed.

The structure of the paper is as follows: Sect. 2 describes 
the mathematical model of PV reconfiguration, and Sect. 3 
designs the DLCI algorithm. Section 4 presents the design 
scheme of TCT array reconfiguration based on DLCI, while 
Sect. 5 conducts case analysis and research. In Sect. 6, the 
hardware-in-the-loop experiment is employed. Section  7 
provides some discussion, and Sect. 8 gives a summary and 
perspective for the whole work.

2  TCT PV array reconfiguration modelling
2.1  TCT connected PV arrays
A PV cell is composed of a light generated current source, 
a parallel diode and a series resistor. Generally, PV cells are 
combined to form PV modules, which provide the required 
output power through series and parallel combinations 
[17]. The schematic diagram of a PV cell is shown in Fig. 1 
[22]. Assuming that Ns and Np are the numbers of PV 
cells in series and in parallel, respectively, the relationship 
between the output current and voltage is given as [22]:

(1)
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Fig. 1 Schematic diagram of a PV cell
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where the description of each symbol is in the Nomencla-
ture. It can be seen that the current generated by the PV 
array depends on both solar irradiance and temperature.

TCT structure is a common PV array topology in practi-
cal engineering. In this structure, PV arrays in each row are 
connected in parallel, and then PV arrays in each column 
are connected in series. For example, an N × N TCT inter-
connected PV array is shown Fig. 2. The output voltage of 
the entire PV array and the sum of current across each col-
umn of the PV array can be described as [23]:

where Vap is the maximum voltage,and Ipq denotes the 
output current.

2.2  Performance evaluation
To evaluate the optimization performance of DLCI applied 
to PV array reconfiguration, three evaluation indicators are 
introduced, as [24]:

(4)VD =

F
∑

p=1

Vap

(5)

ID =

F
∑

q=1

(

Ipq − I(p+1)q

)

= 0, p = 1, 2, . . . , 9, A, . . . , F

(6)FF =
PPSC

VOC × ISC

where PSTC is the maximum output power in the stand-
ard condition, which is defined as a solar irradiation of 
1000 W/m2 and an operational temperature of 25 ℃. PPSC 
is the maximum output power in the PSC, VOC is the 
open-circuit voltage, ISC is the short circuit current, and 
∆PMMPL is the short circuit current, is the mismatched 
power loss.

3  Dynamic leader
3.1  Principle of DLCI
DLCI is a hybrid algorithm that integrates different 
search mechanisms of multiple meta-heuristics [22]. 
Each algorithm is defined as a sub-optimizer, and opti-
mal search is carried out through cooperation and 
competition between different sub-optimizers. Each 
sub-optimizer can independently perform the optimiza-
tion search in each iteration, and the sub-optimizer that 
obtains the optimal solution will be defined as a dynamic 
leader. In the following iteration, the leader will pass the 
obtained optimal solution and optimal fitness value to 
other sub-optimizers to guide them at a deeper level.

Generally, because of the diversity of search, a large 
number of sub-optimizers will lead to higher quality opti-
mization, though the computing time will be too long. 
To verify the effect of increasing the number of sub-opti-
mizers on the optimization performance of DLCI, two 
structures of DLCI are designed, i.e., a DLCI-I composed 
of grey wolf optimizer (GWO) [25], whale optimiza-
tion algorithm (WOA) [26], and moth-flame optimiza-
tion (MFO) [27], and a DLCI-II composed of GWO [25], 
WOA [26], MFO [27], artificial bee colony (ABC) [28], 
and PSO [19], as shown in Fig. 3.

3.1.1  Solution initialization
The initial population of DLCI can be described by:

where Xij is the ith candidate solution with dimension j, 
N is the total number of candidate solutions (population 
number), Dim denotes the dimension size of the prob-
lem and rand is a random number. LBj and UBj are the 
jth lower bound and upper bound of the given problem, 
respectively.

(7)�PMMPL = PSTC − PPSC

(8)η(%) =
PPSC

PSTC

(9)
Xij = rand ×

(

UBj − LBj

)

, i = 1, 2, . . . ,Nj = 1, 2, . . . , Dim

Fig. 2 N × N TCT connected PV array
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3.1.2  Mathematical model of DLCI‑I and DLCI‑II

(1)  Selection of sub-optimizer.

The main operating mechanism of each sub-optimizer is 
described as follows.

• GWO: Gray wolves based on hunting strategy to 
update their positions, which can be described as 
[25]:

where k represents the number of iterations. 
−→
A 1 , 

−→
A 2 , −→

A 3 , 
−→
C 1 , 

−→
C 2 and 

−→
C 3 are coefficient vectors, while 

−→
X α , 

−→
X β , 

−→
X δ represent the position vectors of α wolf, 

β wolf and δ wolf, respectively. −→X  represents the loca-
tion vectors of other gray wolves.

• WOA: Humpback whales update their individual 
positions with a 50% probability by shrinking prey 
circles and spiral shaped path simultaneously, as [26]:
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where −→A  and 
−→
C  are the coefficient vectors,

−→
X

∗
(k) is 

the optimal position vector of the whale in the kth 
iteration, and 

−→
X (k) represents the position vector 

of the whale in the kth iteration. The constant b is 
used to define the shape of the spiral, l is a random 
number between [−1, 1], and p is a random number 
between [0, 1].

• MFO: The update mechanism of the moth position 
is selected as a logarithmic spiral, as [27]:

where the meanings of Nf ,N
max
f , kmax , 

⇀

Fj , and 
⇀

Xi can 
be found in the Nomenclature.

• ABC: The process of bee colony searching for opti-
mal honey bee (food source) is as follows [28]:

 First, scout bees search for the domain food source 
(domain solution) to generate a new food source 
(preferable solution), as:

(13)
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Fig. 3 Optimization framework: a Structure of DLCI-I; b Structure of DLCI-II
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where 
⇀

Xid represents the dth dimension position, 
and d is the dimension. h represents a randomly 
selected bee, and ∅id represents a uniformly distrib-
uted random number in [− 1, 1].

 Employed bees search the domain according to the 
food source information shared by scout bees, and 
select the next food source based on the informa-
tion [29, 30]. The probability of the ith bee being 
selected is calculated by:

where fj represents the fitness function of the ith bee, 
and N represents the population size.

 After the target food source is determined, 
employed bees can update their position accord-
ing to (18). The search strategy of the scout bees is 
described by:

where −−→Xmin and −−→Xmax are the minimum and maxi-
mum position vectors, respectively, where as r is a 
random number within [0, 1].

• PSO: In each iteration, each particle updates its velocity 
and position as:

where 
⇀

V i is the velocity vector, and ω represents 
the inertia weight.  c1 and c2 represent the learning 
parameters, while r1 and r2 represent the random 
numbers between [0,1]. 

⇀

Pi is the individual best posi-
tion, and 

−→
G  is the global best position of the whole 

swarm.

(B) Guiding strategy based on the dynamic leader.

The selection of dynamic leaders with the optimal solution 
is modelled as:

(18)
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)
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⇀
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⇀
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(
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⇀

Xi(k)

)

+ c2r2

(

�G(k)−
⇀
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)

(22)
⇀

Xi(k + 1) =
⇀

Xi(k)+
⇀

V i(k + 1)

where L represents the dynamic leader, f besto  is the fitness 
function of the oth sub-optimizer, and n represents the 
number of sub-optimizers.

The guiding strategy based on the dynamic leader is 
described by (21). However, executing the guiding strategy 
too frequently will reduce the efficiency and stability of the 
DLCI. Therefore, the sub-optimizer is set to execute a guid-
ing strategy after three iterations, as:

where 
−→
X

worst

o  is the poor solution obtained by the oth 
sub-optimizer in the kth iteration, 

−→
X

best

L  is the optimal 
solution obtained by the dynamic leader in the kth itera-
tion, and Z is the set of all integers.

3.2  Discrete design of DLCI‑I and DLCI‑II
DLCI was originally used to solve continuous optimi-
zation problems. For its excellent performance to be 
applied to discrete optimization problems, such as PV 
array reconfiguration, a series of discrete operations need 
to be performed as follows [31, 32].

(1) Discretization of initial population.

First, the initial population N  of TCT PV array reconfig-
uration is discretized, and can be described as:

where B is a 9 × 9 matrix and represents the prime elec-
trical connection state of the PV arrays. npop is the num-
ber in the population.

In the process of PV array reconstruction, each PV array 
only exchanges its row with another array in the same col-
umn. Therefore, the optimization variables should meet the 
following constraints:

where xpq is the electrical connection state of PV arrays 
at the pth row and the qth column. To satisfy the con-
straints in (25), a MATLAB function ‘randperm (n)’ is 
introduced as:

(23)L = arg max
o=1,2,...,n

f besto (k)

(24)
−→
X

worst

o (k) =

{

−→
X

best

L (k), if k
3 ∈ Z

−→
X

worst

o (k), otherwise

(25)N = {[B]1, [B]2, [B]3, . . . , [B]npop}

(26)

{

xpq ∈ {1, 2, . . . , 9}, p = 1, 2, . . . , 9; q = 1, 2, . . . , 9
⋃9

p=0 xpq = {1, 2, . . . , 9}, q = 1, 2, . . . , 9

(27)
{

Bq = randperm(9), q = 1, 2, . . . , 9
B =

[

B1,B2, . . . ,Bq , . . . ,B9

]



Page 6 of 16Wang and Yang  Protection and Control of Modern Power Systems            (2023) 8:40 

where ‘randperm (9)’ means to randomly sort 9 data in a 
column, and Bq represents the qth column of the B.

(B) Discretization for optimization process.

In order to adapt the optimization method to the recon-
figuration of the PV array, the electrical connection sta-
tus of each PV array is reallocated as:

where xq = [X1,X2, . . . ,Xi, . . . ,X9] denotes the solu-
tion vector of arrays at the qth column, and rank

(

xpq , xq
)

 
denotes the order of xpq among all solutions xq , and is set 
in ascending order.

4  Design of DLCI‑I and DLCI‑II based TCT PV array 
reconfiguration

The existence of PSC will cause a huge output power 
mismatch loss in PV power plants, resulting in greatly 
reduced output power. This will seriously affect the 
power generation and revenue of the entire PV enter-
prise. Therefore, there is an urgent need to find a method 
of reconstructing the PV system to reduce the impact of 
PSC [33]. This paper proposes a PV array reconfiguration 
(OAR) model based on electrical switches. This is used to 
reconfigure array positions to improve power generation 
output efficiency [34, 35]. The main steps are as follows: 
first, for the OAR model, the DLCI is used for discrete 
optimization to obtain the best electrical connection 

(28)spq = rank(xpq , xq)

state. Then, the positions of the PV arrays are changed 
according to the electrical signals of the switch matrix to 
meet the required electrical connection state. The model 
proposed in this paper requires many electrical switches 
to meet the requirements of different states, and there-
fore, in order to reduce the switch cost and later main-
tenance cost, an electrical switch design is proposed as 
shown in Fig. 4. The end point of the electrical switch on 
the left can exchange the position of the rows in each col-
umn of the PV array. After reconfiguration, the connec-
tion between adjacent rows can be realized through the 
right bus.

Figure  5 shows the control structure diagram of the 
TCT PV array reconfiguration based on DLCI-I and 
DLCI-II. The reconfiguration of the position of PV arrays 
based on the optimal PV array reconfiguration model 
[23] is proposed in this work. First, the best electrical 
connection state can be obtained by discrete optimiza-
tion based on the DLCI-I and DLCI-II OAR models. 
Then the physical positions of PV.

arrays are rearranged through electrical switches 
according to the obtained connection state to ensure that 
PV arrays can operate optimally in various PSCs [36, 37].

The purpose of reconfiguring PV arrays is to guarantee 
that the entire PV power plant can obtain the maximum 
output power in various PSCs. Therefore, its objective 
function can be modelled as:

(29)f = maxP(C) = max(n× ID(C)× VD(C))
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Fig. 4 Configuration of electrical switching arrangement
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where P(C) is the output power of the PV power plant 
at the Cth case of PSC, n is the number of subsystems of 
the PV power plant. Figure  6 represents the executive 
procedure of the process of PV reconstruction by the 
algorithm.

5  Case study
5.1  Operating conditions setting
Here 10 cases of PSCs are designed to verify the supe-
rior performance of PV array reconfiguration based on 
DLCI-I and DLCI-II algorithms. It is worth noting that 
the designed PSCs are simulations that comprehensively 
consider the occlusion effects caused by trees, buildings, 
bird droppings, rain, snow, and dust in practical engi-
neering application. Each irradiation intensity is rep-
resented by a different color block, as shown in Fig.  7. 
The PV power plant simulated consists of 20 identical 
PV arrays. Each PV array is connected in a 9 × 9 TCT 
configuration. Table 1 gives the electrical characteristics 
of each PV module. To verify the effectiveness of DLCI-I 
and DLCI-II for PV array reconfiguration, their perfor-
mance is compared with their respective sub-optimizers. 
Also, two algorithms (GA and BOA) are considered as 
competitive algorithms for comparison. Table  2 shows 
the parameters of all optimization algorithms. In addi-
tion, the maximum number of iterations kmax and pop-
ulation numbers npop of all algorithms are uniformly set 
to 200 and 50 to ensure fairness and reliability for per-
formance comparison. Because DLCI-I and DLCI-II and 
their respective comparison algorithms are heuristic, 

their application in practical engineering will inevitably 
be affected by their own inherent defects (randomness), 
i.e., the results obtained with each optimization are not 
always the same. To avoid this shortcoming and obtain 
the global optimal solution, 30 runs of all algorithms are 
performed on MATLAB/Simulink 2021b. The applied 
solver is ode23 with a fixed-step size of  10–3  s. A fairer 
conclusion is given by comparing the maximum value 
and average value of power based on 30 runs.

Figure 8 presents the P–V and I–V curves of the 9 × 9 
PV arrays in 10 cases of PSCs. It can be seen that the 
P–V curve of the PV array in the 10th case of PSC has 
the largest number of peaks. There is no doubt that the 
PV array is prone to power oscillation in the 10th case of 
PSC, resulting in large power mismatch loss. Therefore, 
the next simulation study will focus on this PSC to verify 
the PV array reconfiguration performance of DLCI-I and 
DLCI-II for the 10th case of PSC.

5.2  Result analysis of DLCI‑I for PV array reconfiguration
Table  3 presents the optimization results obtained by 
DLCI-I, its sub-optimizer algorithm, and competitive 
algorithms applied for PV array reconfiguration in 10 
cases of PSCs to extract maximum output power. Pmax 
and Pmean represent the maximum and mean values of 
output power obtained by the optimization algorithm 
in 30 independent runs. It can be seen from Table 3 that 
the PV array reconstruction based on DLCI-I obtains the 
optimal Pmax and Pmean (in bold). To further evaluate the 
optimization performance of DLCI-I, three evaluation 

Fig. 5 The control structure diagram of DLCI-I and DLCI-II based TCT PV array reconfiguration
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indicators are introduced, namely, FF, ∆PMMPL and η. The 
calculation of the three indicators depends on the total 
Pmean of 10 cases of PSCs. It can be clearly seen that the 
FF and η obtained by DLCI-I are the largest and ∆PMMPL 
is the smallest compared to its sub-optimizer algorithm. 
The FF obtained by DLCI-I are 2.42%, 0.29%, 0.24%, 
7.43%, 8.00% higher than those from GWO, WOA, MFO, 

GA, and BOA, respectively. For ∆PMMPL, it is 5.13%, 
1.21%, 1.01%, 0.24% and 1.18% lower than those from 
GWO, WOA, MFO, GA, and BOA, respectively.

Figure  9 gives the optimal reconfiguration solution 
for 9 × 9 PV arrays based on DLCI-I. It can be seen that 
the concentrated shading of all PV arrays presented 
in Fig.  9 is redistributed to different rows. Figure  10 

Fig. 6 Overall execution procedure of DLCI for PV array reconfiguration
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Fig. 7 The irradiation distribution of the 9 × 9 PV arrays in 10 cases of PSCs

Table 1 Electrical characteristics of each PV module

Parameter Value

Number of cells 60

Open circuit voltage 36.24 V

Current of maximum power point 7.44 A

Short-circuit current 8.04 A

Maximum output power 224.98 W

Voltage of maximum power point 30.24 V

Table 2 Parameters of all optimization algorithms

Sub‑optimizer Parameters Value

GWO [25] Linearly decreased coefficient a 2 − 1*(2/kmax)

Coefficient vector A 2*a*rand(0,1) − a

Coefficient vector C 2*rand(0,1)

WOA [26] Log-helix shape constant b 1

Coefficient vector A 2*a*rand(0,1) − a

Coefficient vector C 2*rand(0,1)

MFO [27] Log-helix shape constant b 1

ABC [28] Maximum number of honey source for single preservation n 1

Honey source search range expansion coefficient a 1

PSO [19] Cognitive constant c1 0.5

Social constant c2 0.7

Inertia weight ∞ 0.96–k/kmax

GA [18] Probability of crossover Pc 0.8

Probability of mutation Pm 0.05

BOA [20] Probability switch p 0.6

Initial sensory modality c0 0.01

Initial power exponent ɑ0 0.1
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presents the P–V and I–V curves of the 9 × 9 PV arrays 
reconfigured by DLCI-I in the 10th case of PSC. Com-
pared with without optimization, the output power of 
the PV arrays obtained based on DLCI-I is improved 
by 16.86%. Furthermore, the number of power peaks in 
the P–V curve of the PV arrays obtained by DLCI-I is 
significantly reduced.

5.3  Analysis of DLCI‑II for PV array reconfiguration
Table  4 provides the optimization results acquired by 
DLCI-II, its 5 sub-optimizer algorithms, and competi-
tive algorithms for PV array reconfiguration in 10 cases 
of PSCs in 30 runs. One can see clearly from Table 4 that 
DLCI-II still has the optimal Pmax and Pmean compared to 
other contrasting algorithms. Also, the FF and η acquired 
by DLCI-II are also the largest, while ∆PMMPL generated 
by DLCI-II is the smallest.Particularly, the FF obtained by 
DLCI-II is 2.72%, 0.84%, 0.74%, 0.43%, 1.54%, 7.59% and 
8.16% higher than those of GWO, WOA, MFO, ABC, 
PSO, GA, and BOA, respectively, while ∆PMMPL is 94.2%, 
98.12%, 98.32%, 99.00%, 96.61%, 99.07% and 98.15% of 
those from GWO, WOA, MFO, ABC, PSO, GA, and 
BOA, respectively.

The optimal reconfiguration solution of the 9 × 9 PV 
arrays reconfigured gained by DLCI-II is provided in 
Fig. 11. It can be clearly seen that the concentrated shad-
ing of all PV arrays shown in Fig.  11 is redistributed to 
different rows. This dramatically increases the output 
power of the PV plant. Figure 12 shows that in the 10th 
case of PSC, the maximum output power of PV arrays 
acquired by DLCI-II is 17.52% higher than that with-
out optimization. Also, it can be clearly seen that the 
P–V curve produced by DLCI-II applied to the PV array 
reconfiguration has only a single power peak.

5.4  Result statistics
The mismatch power loss (∆PMMPL is an extremely 
important indicator to measure the optimization per-
formance of the proposed algorithm applied to PV array 
reconfiguration. Figure  13 presents the total ∆PMMPL 
obtained by DLCI-I, DLCI-II and their sub-optimizer 
algorithms for OAR in 10 cases of PSCs in 30 independ-
ent runs. It can be clearly seen that the total ∆PMMPL 
acquired by DLCI-I and DLCI-II are significantly smaller 
than those from the single meta-heuristic algorithm. In 
addition, it can be found that the increase of the num-
ber of sub-optimizers has a certain effect on the improve-
ment of DLCI optimization performance, but the effect is 
not significant. The total ∆PMMPL acquired by DLCI-II is 
only 0.67% lower than that of DLCI-I.

6  Hardware‑in‑the‑loop test
To further test the real-time output characteristics of the 
PV array at different irradiances and temperature, hard-
ware-in-the-loop experiments are carried out based on 
the RTLAB platform. At a standard temperature of 25 ℃, 
the output characteristics of the PV array on the MAT-
LAB and RTLAB platforms at different irradiances are 
shown in Fig.  14.The simulation experiments based on 
the MATLAB platform are conducted on Intel (R) Core 
(TM) i10-8401 CPU@4.20  GHz and 16  GB RAM. The 
solver of the MATLAB platform is selected as ode23 with 
a  10–3  s fixed-step size. From the output characteristic 
curves of the PV arrays on the two platforms in Figs. 15 
and 16, it is clear that the experimental results based on 
the RTLAB platform are very similar to those based on 
the MATLAB platform, and thus subsequent cases can 
be conducted based on the MATLAB platform.

7  Discussion
It is worth noting that different meta-heuristic algorithms 
might be suitable for different optimization tasks because 
of their inherent property of high randomness. Hence 
this work tested 10 meta-heuristic algorithms, include 
GA, GWO, WOA, MFO, ABC, PSO, BOA, jellyfish 

Fig. 8 Output results of the 9 × 9 PV arrays in 10 cases of PSCs. a P–V 
curves, and b I–V curves
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Table 3 Optimization results of OAR in 10 cases of PSCs in 30 runs of six algorithms

Case GWO WOA MFO

Pmax (kW) Pmean (kW) Pmax (kW) Pmean (kW) Pmax (kW) Pmean (kW)

1 492.043 492.043 492.043 492.043 492.043 492.043

2 382.700 372.778 382.700 378.853 382.700 382.093

3 406.999 400.114 413.074 409.428 413.074 412.871

4 340.178 330.944 346.253 341.595 346.253 340.016

5 376.626 375.829 382.700 378.313 376.626 376.626

6 437.372 428.867 443.446 438.181 443.446 437.169

7 340.178 325.707 340.178 336.533 340.178 334.913

8 346.253 338.220 358.402 346.860 346.252 346.252

9 267.283 264.853 267.283 267.283 267.283 267.283

10 394.850 386.682 400.924 396.402 400.924 399.641

FF (Total) 52.48% 53.46% 53.51%

∆PMMPL (Total) (kW) 1750.97 1681.52 1678.10

η 67.97% 69.24% 69.30%

Case GA BOA DLCI‑I

Pmax (kW) Pmean (kW) Pmax (kW) Pmean (kW) Pmax (kW) Pmean (kW)

1 492.043 492.043 492.043 492.043 492.043 492.043

2 382.701 381.391 388.775 387.965 388.775 382.498

3 419.148 414.734 413.074 412.264 419.148 413.276

4 352.327 352.327 346.253 343.013 346.253 342.000

5 400.924 386.089 382.701 382.309 400.924 379.163

6 449.521 442.029 443.447 443.244 443.446 439.396

7 340.178 340.178 340.178 338.963 340.178 338.963

8 358.402 355.567 358.402 354.757 358.402 350.100

9 267.283 267.283 267.283 267.283 267.283 267.283

10 405.379 400.708 396.875 369.689 400.924 400.789

FF (Total) 46.32% 45.75% 53.75%

∆PMMPL (Total) (kW) 1665.12 1680.94 1661.09

η 61.09% 60.35% 69.62%

Fig. 9 The optimal solution of the 9 × 9 PV arrays reconfigured by DLCI-I with 10 cases of PSCs
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search algorithm (JSA) [38], ant colony algorithm (ACO) 
[39], and simulated annealing (SA) [40], as possible can-
didates to synthesize DLCI. After trial-and-error, the best 
five algorithms are chosen, i.e., GWO, WOA, MFO, ABC, 
and PSO. The novelty of this work can be summarized as 
follows:

• Various meta-heuristic algorithms have been 
employed as sub-optimizers to dynamically seek the 
global optimum of PV system reconfiguration. This 
shows that DLCI significantly outperforms the indi-
vidual sub-optimizers while the increase of number 
of sub-optimizers has a relatively small impact on 
overall DLCI optimization performance.

• Generally speaking, PV system reconstruction is a 
discrete optimization associated with a limited num-
ber of solutions. These can be efficiently resolved 
by conventional meta-heuristic algorithms. Meta-
heuristic algorithms usually own high randomness 
in solving a given problem, e.g., some algorithms 
perform well for some problems but not for others, 
and they also vary as to their improvement/modifica-

tion. Hence, the improvement of meta-heuristic algo-
rithms cannot guarantee an improvement of optimi-
zation performance or may even degrade it.

• PV reconfiguration requires real-time data collection 
and online reconfiguration. These require an efficient 
computation speed. In this work, 10 different algo-
rithms have been tested and the best have been cho-
sen to incorporate DLCI. Such a framework already 
increases the overall algorithm structure complex-
ity and possible further improvement of them may 
noticeably increase the overall computation burden.

• Finally, a hardware-in-the-loop experiment has been 
carried out to validate the hardware implementation 
feasibility of the proposed DLCI.

8  Conclusions
This paper proposes a novel PV array reconfiguration 
method by means of a dynamic leader-based collec-
tive intelligence for maximum power extraction of PV 
systems in various PSCs, and the main innovations and 
value are:

(1) First, a series of discrete operation improvements 
are made to the DLCI, so that DLCI with continu-
ous optimization performance has stronger univer-
sality. This can be used to solve not only continuous 
optimization problems but also any discrete optimi-
zation problems.

(2) The idea of the DLCI is innovatively used to solve the 
problem of PV array reconfiguration in various PSCs, 
and two structures of DLCI (DLCI-I and DLCI-II) 
are designed to verify the influence of the number 
of sub-optimizers on its optimization performance. 
The results show that the increase of the number of 
sub-optimizers has a certain but limited effect on the 
improvement of optimization performance.

(3) Taking into account the effects of shadows from 
clouds, trees, buildings and dust accumulation, bird 
droppings, snow, etc., 10 cases of discrete PSCs are 
designed. The study shows that the DLCI with mul-
tiple sub-optimizer search mechanisms can achieve 
a deeper local search and a wider global search with 
minimal ∆PMMPL.

However, the reconstruction method proposed in this 
paper still has some limitations:

(1) Strong randomness is a common problem of heu-
ristic algorithms. For PV power stations of different 
sizes, it is necessary to set the number of popula-
tions and iterations of the sub-optimizers to weigh 

Fig. 10 Comparison result of PV arrays acquired 
without optimization and DLCI-I in the 10th case of PSC. a P–V curves, 
and b I–V curves
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Table 4 Optimization results of OAR in 10 cases of PSCs in 30 runs of eight algorithms

Case GWO WOA MFO ABC

Pmax (kW) Pmean (kW) Pmax (kW) Pmean (kW) Pmax (kW) Pmean (kW) Pmax (MW) Pmean (MW)

1 492.043 492.043 492.043 492.043 492.043 492.043 492.043 492.043

2 382.700 372.778 382.700 378.853 382.700 382.093 382.700 381.485

3 406.999 400.114 413.074 409.428 413.074 412.871 413.074 411.048

4 340.178 330.944 346.253 341.595 346.253 340.016 346.253 343.215

5 376.626 375.829 382.700 378.313 376.626 376.626 382.700 379.352

6 437.372 428.867 443.446 438.181 443.446 437.169 443.446 439.599

7 340.178 325.707 340.178 336.533 340.178 334.913 340.178 340.178

8 346.253 338.220 358.402 346.860 346.252 346.252 358.402 347.467

9 267.283 264.853 267.283 267.283 267.283 267.283 267.283 267.283

10 394.850 386.682 400.924 396.402 400.924 399.641 400.924 398.899

FF (Total) 52.48% 53.46% 53.51% 53.68%

∆PMMPL (Total) (kW) 1750.97 1681.52 1678.10 1666.45

η 67.97% 69.24% 69.30% 69.52%

Case PSO GA BOA DLCI‑II

Pmax (MW) Pmean (MW) Pmax (kW) Pmean (kW) Pmax (kW) Pmean (kW) Pmax (MW) Pmean (MW)

1 492.043 492.043 492.043 492.043 492.043 492.043 492.043 492.043

2 388.775 374.438 382.701 381.391 388.775 387.965 388.775 383.712

3 413.074 405.662 419.148 414.734 413.074 412.264 419.148 414.490

4 346.253 337.167 352.327 352.327 346.253 343.013 352.327 344.632

5 382.7 375.842 400.924 386.089 382.701 382.309 400.924 381.634

6 443.446 436.359 449.521 442.029 443.447 443.244 449.521 439.801

7 340.178 330.863 340.178 340.178 340.178 338.963 340.178 340.178

8 346.253 344.241 358.402 355.567 358.402 354.757 358.402 352.357

9 267.283 266.675 267.283 267.283 267.283 267.283 267.283 267.283

10 400.924 395.862 405.379 400.708 396.875 369.689 402.544 400.951

FF (Total) 53.09% 46.32% 45.75% 53.91%

∆PMMPL (Total) (kW) 1707.86 1665.12 1680.94 1649.93

η 68.76% 61.09% 60.35% 69.82%

Fig. 11 The optimal solution of the 9 × 9 PV arrays reconfigured by DLCI-II with 10 cases of PSCs
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the quality of the algorithm. The DLCI has complex 
parameter adjustment that needs to be improved.

(2) The reconstruction technology of a PV array is 
mainly designed for a change of environment. In 
the reconstruction scheme proposed in this paper, 
the influence of the shelter on the PV system is 
mainly considered.

Future research will focus on the following aspects:

(1) Hardware experiments of AOA-based MPPT for 
centralized TEG systems under DTG to further ver-
ify the practical feasibility of the technique.

(2) AOA applied to other energy conversion optimiza-
tion problems, such as PV system MPPT in a PSC.

(3) In the follow-up work, the reconstruction effect in 
different conditions needs to be further considered.

(4) PV reconstruction technology is an important part 
of renewable energy power generation technology, 
which has certain guidance and reference value for 

Fig. 12 Comparison result of PV arrays acquired 
by without optimization and DLCI-II in the 10th case of PSC. a P–V 
curves, and b I–V curves

Fig. 13 Total mismatched power loss (∆PMMPL) of OAR acquired by six 
algorithms in 10 cases of PSCs in 30 runs

Fig. 14 Physical picture of hardware-in-the-loop test

Fig. 15 Output characteristics of each photovoltaic array at 25 ℃. a 
I–V curves and b P–V curves
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the reconstruction of other power generation tech-
nologies. Therefore, the reconstruction technology 
of thermoelectric power generation will be exam-
ined in subsequent work.

List of symbols

Variables
Vap  Maximum voltage at the pth row
Ipq  Output current of PV arrays
VD  Output voltage of PV array system
ID  Sum of current across each column of PV array
−→
X α  Position vectors of α wolf
−→
X β  Position vectors of β wolf
−→
X δ  Position vectors of δ wolf
Nf  The number of flames
⇀

F j  Position vector the flame
pi  Probability of the ith bee being selected
⇀

V i  Velocity vector of the ith particle
⇀

Pi  Best position of the particle
−→
G   The global best position
L  Dynamic leader
f besto

  The fitness function of the oth sub-optimizer
−→
X

worst

o
  The poor solution obtained by the oth suboptimizer

−→
X

best

L
  The optimal solution obtained by the dynamic leader

xpq  The electrical connection state

spq  The sequence of solutions
xq  The solution vector of arrays

Abbreviations
ABC  Artificial bees colony
DLCI  Dynamic leader-based collective intelligence
GMPP  Global maximum power point
GWO  Grey wolf optimizer
MPPT  Maximum power point tracking
MFO  Moth-flame optimization
OAR  Photovoltaic array reconfiguration
PV  Photovoltaic
PSC  Partial shading condition
PSO  Particle swarm optimization
TCT   Total-cross-tied
WOA  Whale optimization algorithm

DLCI parameters
kmax  Maximum iteration number
n  Number of sub-optimizers
npop  Population size

Performance evaluation
FF  Fill factor
∆PMMPL  Mismatched power loss
η  Efficiency
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