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Abstract 

A coordinated scheduling model based on two-stage distributionally robust optimization (TSDRO) is proposed 
for integrated energy systems (IESs) with electricity-hydrogen hybrid energy storage. The scheduling problem 
of the IES is divided into two stages in the TSDRO-based coordinated scheduling model. The first stage addresses 
the day-ahead optimal scheduling problem of the IES under deterministic forecasting information, while the sec-
ond stage uses a distributionally robust optimization method to determine the intraday rescheduling problem 
under high-order uncertainties, building upon the results of the first stage. The scheduling model also considers col-
laboration among the electricity, thermal, and gas networks, focusing on economic operation and carbon emissions. 
The flexibility of these networks and the energy gradient utilization of hydrogen units during operation are also incor-
porated into the model. To improve computational efficiency, the nonlinear formulations in the TSDRO-based 
coordinated scheduling model are properly linearized to obtain a Mixed-Integer Linear Programming model. The 
Column-Constraint Generation (C&CG) algorithm is then employed to decompose the scheduling model into a mas-
ter problem and subproblems. Through the iterative solution of the master problem and subproblems, an efficient 
analysis of the coordinated scheduling model is achieved. Finally, the effectiveness of the proposed TSDRO-based 
coordinated scheduling model is verified through case studies. The simulation results demonstrate that the proposed 
TSDRO-based coordinated scheduling model can effectively accomplish the optimal scheduling task while consider-
ing the uncertainty and flexibility of the system. Compared with traditional methods, the proposed TSDRO-based 
coordinated scheduling model can better balance conservativeness and robustness.
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1  Introduction
As climate change gathers ever-growing attention glob-
ally, countries worldwide are actively pursuing meas-
ures to mitigate greenhouse gas emissions. Amidst this 
transition, renewable energy sources, such as wind and 
solar power, hold significant practical value, given their 
low-carbon and eco-friendly attributes. Nevertheless, 
the output of renewable energy is contingent upon natu-
ral conditions, and has inherent uncertainties [1–4]. As 
renewable energy is increasingly integrated with power 
systems, this characteristic presents significant chal-
lenges to the safe operation of power systems. Renewable 
energy sources, like wind and solar power, also possess 
strong seasonal and anti-peak regulation features. Hence, 
exploring optimal scheduling approaches for power sys-
tems that include renewable energy sources has immense 
theoretical and practical significance in tackling these 
challenges [5–7].

Currently, there are two main approaches for handling 
uncertain problems, namely Stochastic Programming 
(SP) and Robust Optimization (RO) [8]. In [9], sce-
nario sampling using the Stochastic Programming (SP) 
method was employed to address uncertainty in renew-
able energy generation so as to reduce the impact of inac-
curate renewable energy generation forecasts on system 
operations. In [10], the SP method was used to construct 
a novel stochastic-interval model for optimal scheduling 
of multi-mode photovoltaic-assisted charging stations, 
where the uncertainties from photovoltaic (PV) genera-
tion and energy price were considered in the model. In 
[11], the SP problem was transformed into a determin-
istic integer linear programming problem based on con-
straint linearization and scenario generation techniques 
to achieve optimal scheduling of multi-energy microgrid 
systems, whereas in [12], the uncertain output of wind 
power was analyzed using SP methods, and the schedul-
ing of the energy hub was successfully completed in an 
uncertain environment. Despite the simple computa-
tional procedure offered by the SP method, determining 
the probability distribution of uncertain issues in advance 
is often impractical in real-world applications. Moreover, 
such an approach may yield overly optimistic outcomes, 
as it entails computing the expectation of all the gener-
ated scenarios of uncertainty.

In [13], the RO method was used to handle the uncer-
tainty of photovoltaics, and the demand response of 
electric vehicles in the energy system was analyzed. In 
[14], a probabilistic weighted RO method was proposed 
to address the uncertainties in systems, and the optimal 
scheduling of the microgrid system was investigated 
based on this algorithm. The study showed that the pro-
posed method could significantly improve the operational 
robustness of the system. An optimal scheduling study of 

a power system integrating PV and hydropower based 
on the RO method was conducted in [15] to address the 
optimal operation problem with consideration of load 
uncertainty. The results indicated that the combination of 
the hydroelectric system and solar power could bring sig-
nificant benefits to the power system. In [16], a two-stage 
robust optimization approach was proposed to minimize 
the actual operating cost of the microgrid system while 
considering the uncertainty of renewable energy, and the 
long-term average operating cost under the service con-
straint was also minimized. While the RO method can 
address the issue of optimal operation under uncertainty 
directly, the resultant solutions may exhibit pronounced 
conservatism. Moreover, the degree of conservatism is 
heavily reliant on the selection of the set.

The studies on optimal scheduling of systems consider-
ing uncertainty mentioned earlier primarily concentrate 
on single-energy systems. Nevertheless, researchers have 
recently introduced the concept of integrated energy 
systems (IESs), which can effectively enhance the con-
sumption capacity of renewable energy. Hydrogen is 
characterized by low storage costs, clean and pollution-
free profiles, and extensive application potential [17, 18]. 
The use of hydrogen involves the coupling of electricity, 
thermal energy, and gas. This is highly compatible with 
the operating mode of IESs [19, 20]. Thus, research has 
been conducted on the optimal scheduling of IES with 
hydrogen units. In [20], a novel and practical deviation 
satisfaction optimization strategy for IES coupled with 
renewable energy power generation and hydrogen energy 
storage was proposed, and its effectiveness was verified 
by simulation. In [21], an electricity-hydrogen hybrid 
energy storage IES was proposed, and the optimal sched-
uling strategy of the system in different seasons was stud-
ied. In [22], an optimal energy-reserve scheduling model 
of a wind-PV-hydrogen IES with multi-type energy stor-
age devices was presented. The case study demonstrated 
that the proposed energy storage model could reduce the 
overall operation cost while ensuring the safe operation 
of the system. In [23], IES combining electricity, thermal 
energy and hydrogen was established, and their optimal 
scheduling was studied with actual high-altitude mete-
orological data. The results demonstrated that the hydro-
gen storage unit could efficiently meet various demands 
in the high-altitude residential area. Although the above 
studies explore the optimal scheduling of IES with hydro-
gen devices, they ignore the flexibility of IES. Account-
ing for the flexibility of an IES in optimal scheduling can 
broaden the scope of scheduling strategies, and by fully 
leveraging this flexibility, the operational performance of 
IESs can be substantially improved.

Given the above insights, this paper proposes a coor-
dinated scheduling model based on the two-stage 



Page 3 of 14Qiu et al. Protection and Control of Modern Power Systems            (2023) 8:33 	

distributionally robust optimization (TSDRO) for an IES 
with electricity-hydrogen hybrid energy storage. Com-
pared with previous research, this paper makes the fol-
lowing contributions:

(1)	 A coordinated scheduling model based on TSDRO 
is proposed to divide the scheduling problem of IES 
into two stages. The first stage solves the day-ahead 
optimal scheduling problem of an IES with deter-
ministic forecasting information, while the second 
stage builds upon the results of the first stage and 
uses a distributionally robust optimization method 
to determine the intraday rescheduling problem 
under high-order uncertainties. The uncertainties 
considered include the variability of wind and PV 
power, and electricity, thermal, and gas loads rather 
than only a single power-side or load-side uncer-
tainty. The coordinated scheduling model based on 
TSDRO aims to optimize the total objective value 
corresponding to the decisions of the two stages in 
the worst-case scenario of parameters in the second 
stage.

(2)	 The coordinated operation of electricity, thermal, 
and gas networks, as well as the flexibility of these 
networks and the energy gradient utilization of 
hydrogen units, are analyzed from the perspectives 
of economy and carbon emissions in the TSDRO-
based coordinated scheduling model.

(3)	 To improve computational efficiency, the nonlin-
ear formulations in the TSDRO-based coordinated 
scheduling model are linearized by appropriate 
methods to obtain a Mixed-Integer Linear Pro-
gramming (MILP) model. Then, the column-con-
straint generation (C&CG) algorithm is employed 
to decompose the scheduling model into a master 
problem and subproblems. Through the iterative 
solution of the master problem and subproblems, 
an efficient analysis of the coordinated scheduling 
model is achieved.

The rest of this paper is organized as follows. Sec-
tion 2 provides the component modeling of the IES, while 
Sect.  3 provides a detailed introduction to the TSDRO-
based coordinated scheduling model. Section 4 outlines 
the solution methodology, and Sect.  5 carries out case 
studies and presents the corresponding test results. Con-
clusions are drawn in Sect. 6.

2 � Component modeling of the IES
2.1 � Structure of the IES
The topology structure of the IES with electricity-hydro-
gen hybrid energy storage described in this paper is 

shown in Fig.  1. This system is composed of three sub-
networks: electricity, thermal, and gas. The electric-
ity network is required to balance DN, WF, PV, ES, EL, 
PEMFC, and the electricity load. The thermal network 
is responsible for considering the energy supply and 
demand relationship among EB, GB, TR, and thermal 
load, while the gas network needs to balance the energy 
supply and demand among HS, GB, and gas load. The 
linkage between the electricity and gas networks involves 
the blending of hydrogen into the gas network. The elec-
tricity and thermal networks are coupled via EB and TR, 
while the gas and thermal networks are connected via 
GB. In addition to meeting their own energy supply and 
demand requirements, the different subsystems must 
interoperate with each other to enhance the operational 
performance of the IES.

2.2 � Flexibility component modeling
Currently, IESs have shifted from the previous mode of 
passive adaptation to load demand towards a coordinated 
operation between power generation and load. Therefore, 
this paper specifically incorporates considerations of the 
flexibilities of electricity, thermal, and gas networks in the 
optimal scheduling of IES [20, 21, 24]. As for the flexibil-
ity of the electricity network, this study mainly focuses on 
the demand response of the electricity load. The flexibil-
ity modeling of demand response units is represented in 
(1)–(3), where (1) outlines the regulation process of the 
electrical demand response load, Eq.  (2) constrains the 
magnitude of the demand response regulation, and (3) is 
designed to ensure that the total load transfer in and out 
is equal for each operating cycle.

(1)P̃t
E-DR = Pt

E-DR +�Pt
E-DR

Electricity Flow Gas Flow Thermal  Flow

DN

GN

Electricity Load

Gas Load

Thermal Load

WF PV

ES EL

TREB GB

HS PEMFC

Fig. 1  Topology structure of the IES with electricity-hydrogen hybrid 
energy storage
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Because of thermal inertia, the temperature does not 
change abruptly when the thermal energy supply is changed. 
This allows the thermal network to have a certain degree 
of flexibility, enabling the consideration of thermal loads as 
reducible loads that can be reduced during periods of peak 
demand. Equation (4) describes the flexible regulation pro-
cess of the thermal load, while (5) limits the magnitude of 
this flexibility adjustment. Equation (6) provides a constraint 
on the thermal demand response within the scheduling 
period. This is used to ensure balance between the increase 
and decrease of thermal loads during the scheduling period.

As for the flexibility of the gas network, this study 
mainly considers the flexibility of the hydrogen blending 
ratio. Research suggests that the impact of hydrogen on 
the operation of the natural gas network can be neglected 
when the hydrogen blending ratio is below 10% by vol-
ume [25, 26]. Therefore, this paper considers flexible 
adjustment of the hydrogen blending ratio between 0 and 
10% by volume. Based on the assumptions above, Eq. (7) 
provides the adjustment range of the flexibility of hydro-
gen blending in the system. As the flexibility of hydro-
gen blending also involves balance constraints of the gas 
network, Eqs.  (8)–(11) are introduced to represent the 
corresponding constraints. Specifically, Eqs.  (8) and (9) 
represent the maximum power constraints of the EL and 
PEMFC, respectively. Equation (10) imposes limits on the 
State of Hydrogen Charge (SoHC) of the HS at all times, 
while (11) provides the SoHC consistency constraint.

(2)�Pmin
E-DR ≤ �Pt

E-DR ≤ �Pmax
E-DR

(3)
NT∑

t=1

�Pt
E-DR = 0

(4)P̃t
T-DR = Pt

T-DR +�Pt
T-DR

(5)�Pmin
T-DR ≤ �Pt

T-DR ≤ �Pmax
T-DR

(6)
NT

t=1

�Pt
T-DR = 0

(7)







0 ≤ Pt
P2G ≤ κPt

G-Load

κ =
VH2EH2

VH2EH2+(1−VH2)ENG

(8)0 ≤ Pt
EL ≤ Pmax

EL

(9)0 ≤ Pt
PEMFC ≤ Pmax

PEMFC

2.3 � Energy gradient utilization modeling
The working process of PEMFC mainly involves the 
breaking of H–H and O–O bonds and the formation of 
H–O bonds. About 60% of the energy released from these 
reactions is converted into electrical energy, while the rest 
is dissipated in the form of heat [27]. This study considers 
using TR for energy gradient utilization for the energy dis-
sipated as heat. The output power constraint of TR during 
operation and the power calculation method for PEMFC 
participating in energy gradient utilization are given as:

3 � TSDRO‑based coordinated scheduling model
To achieve optimal scheduling for the IES with electric-
ity-hydrogen hybrid storage, a coordinated scheduling 
model based on TSDRO is proposed. The objective func-
tion and corresponding constraints of the scheduling 
model are presented in the following sub-sections.

3.1 � Objective function
The objective function of the coordinated scheduling 
model based on TSDRO in this study is calculated as:

(10)


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where

As seen, the objective function takes into account the 
carbon trading cost in (15) and (18), operational cost in 
(16), maintenance cost in (17), and rescheduling cost in 
(19) of the IES. Specifically, for day-ahead scheduling, the 
operational and maintenance costs of the IES are based 
on deterministic data of PV/WF/electricity load/ther-
mal load/gas load. Because of the uncertainty, this study 
employs DRO to calculate the intraday rescheduling and 
carbon trading costs for intraday scheduling [28, 29].

For (16), the calculation of the scheduling cost for the 
electricity demand response component involves solving 
for an absolute value and contains nonlinear factors. In 
order to facilitate subsequent calculations, we introduce 
auxiliary variables to rewrite this component, as:

Similarly, the thermal demand response can be expressed 
as:

Unlike RO, which constructs the ambitious set directly 
based on the samples, DRO constructs the ambitious set 

(15)Ct
C = αC(�DNP

t
DN + �GNP

t
GN)�t

(16)

Ct
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




ρt
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t
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�
�
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�
�
�

+ρGNP
t
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�
�
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�
�
�




�t

(17)

Ct
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[
αELP

t
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t
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t
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+αESP
t
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]
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[
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t
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(20)Ct
E-DR = βE-DR(P

t
E-DR1 + Pt

E-DR2)�t

(21)Pt
E-DR − P̃t

E-DR+Pt
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(24)Pt
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(25)Pt
T-DR1 ≥ 0, Pt

T-DR2 ≥ 0.

based on the possible distribution of the samples. Since 
the actual distribution of the variables is not likely to devi-
ate significantly from the distribution of the samples, the 
actual distribution can be considered to be included as long 
as the constraints of the distribution information are rea-
sonable. Thus, only the worst possible distribution situa-
tion needs to be found to ensure the result is a lower bound 
for the performance under the actual sample distribution. 
By incorporating the distribution information of the sam-
ples, the redundant space of the ambitious set can be effec-
tively reduced, thereby decreasing the conservativeness of 
the RO. The ambitious set of DRO is formulated as:

3.2 � Constraints
In order to ensure the proper operation of the IES, some 
constraints need to be satisfied within and among the sub-
networks [30–32]. The constraints of the electricity net-
work were presented in (1)–(3) and are further presented 
as:

Equation (27) is the limit for the IES to purchase elec-
tricity from DN. Equation (28) gives the charge/discharge 

(26)
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power limit of ES, while (29) restricts the state of charge 
(SOC) of ES to satisfy the constraint at all times. Equa-
tion (30) ensures the consistency of the first and last SOC 
of ES, which is a constraint added for continuous sched-
uling, while (31) guarantees the supply and demand bal-
ance of the electricity network.

The constraints of the thermal network were presented 
in (4)–(6) and (12)–(13), and are further given as:

Equation (32) represents the operating constraint of the 
EB. The output power limit of GB is denoted in (33), and 
(34) limits the equilibrium constraint of the thermal net-
work in terms of energy supply and energy consumption.

The gas network is jointly constrained by (7)–(11) and 
(35, 36), where (35) gives the limit of IES purchases from 
GN and (36) is used to constrain the supply and demand 
balance of the gas network.

4 � Solution methodology
In order to solve the optimization problem mentioned 
above, the C&CG algorithm is used to decompose the 
problem into a master-subproblem framework. Specifi-
cally, a day-ahead scheduling scheme for the IES is deter-
mined in the master problem. In the subproblem, the 
rescheduling strategy is made to modify the day-ahead 
scheduling strategy according to the actual situation of 
generation and load. The optimal scheduling of the IES 
can be solved in an iterative process [33, 34]. The descrip-
tions of the master and subproblem are introduced below.

First, the master problem aims to find the optimal 
day-ahead scheduling strategy for the IES based on a 
known worst-case scenario probability distribution, 
and the master problem can be expressed as:

Secondly, the subproblem aims to find the worst-case 
probability distribution situation based on the deci-
sion variable x determined by the master problem. 
The found worst-case probability distribution will be 

(32)0 ≤ Pt
EB ≤ Pmax

EB

(33)0 ≤ Pt
GB ≤ Pmax

GB

(34)Pt
GB + Pt

EB + Pt
TR = Pt

T-Load + P̃t
T-DR.

(35)0 ≤ Pt
GN ≤ Pmax

GN

(36)Pt
GN + Pt

P2G=Pt
G-Load + Pt

GB

/
ηGB

(37)







min aTx + bTy0 +W

W ≥
K�

k=1

p
(m)

k (bTy
(m)

k ), ∀m = 1, 2, . . . , n

returned to the master problem, which will then deter-
mine the optimal scheduling strategy according to the 
returned worst-case probability distribution to proceed 
to the next iteration. The specific calculation process of 
the subproblem is shown as:

Based on the descriptions of the above objective 
functions of the master problem and subproblem, the 
specific solution process of the above TSDRO-based 
coordinated scheduling model based on the C&CG 
algorithm is as follows:

Step 1 Initialize the parameters by randomly giving 
an initial worst-case of the probability distribution, 
and setting the upper bound of the scheduling cost 
UB =  + ∞ and the lower bound LB = -∞. Meanwhile, 
the iterations counter k is set as 1;

Step 2 Solve the master problem based on the worst 
probability distribution and obtain the optimal solu-
tion xk of the master problem. Update the lower bound 
LB with the calculated objective value of the master 
problem;

Step 3 Solve the subproblem based on xk, and search 
for the worst probability distribution within all the 
constraints mentioned above. Obtain the objective 
function value of the subproblem fk(xk), and update 
UB = min(UB, fk(xk));

Step 4 If UB− LB ≤ ε , where ε is a given gap toler-
ance of C&CG, return the optimal scheduling strategy 
(xk, yk), and then terminate. Otherwise, create variables 
yk+1, add corresponding constraints in the master prob-
lem, update k = k + 1 and go to Step2 until the conver-
gence condition of the algorithm is reached.

5 � Case study
To verify the effectiveness of the TSDRO-based coor-
dinated scheduling model, it is applied to an IES with a 
structure similar to that depicted in Fig. 1. The forecasted 
data associated with the WF and PV, electricity demand 
response and thermal demand response, as well as elec-
tricity, natural gas, and thermal loads, are presented in 
Fig.  2. These data are predicted based on historical data 
from a city located in southwestern China. To achieve this 
objective, the scheduling model for the IES with electric-
ity-hydrogen hybrid energy storage is established using 
Matlab 2021a on a PC equipped with an Intel(R) Core(TM) 
i7-1165G7 @ 2.80 GHz. Subsequently, the corresponding 
scheduling model is analyzed using the Gurobi 10.0 com-
mercial solver [35]. The specific parameters involved in the 
IES are shown in Table 1 [21, 32, 36–42].

(38)max
{pk }∈�

K∑

k=1

pk min
yk∈Y (x∗, ξk )

(bTyk).
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In this study, the trading price of the IES with GN 
is set to a constant of 0.1361$/kWh [36, 37]. The step 
tariff is chosen as the trading price of the DN. The 
detailed price information of the IES with DN is shown 
in Fig. 3 [33].

5.1 � Convergence results of the C&CG algorithm
When analyzing the TSDRO-based coordinated sched-
uling model using the C&CG algorithm, an important 

criterion for determining the success of the solution is 
whether the upper and lower bounds converge within the 
specified threshold during the iterative process. To verify 
the effectiveness of the C&CG algorithm, the iterative 
process of the upper and lower bounds is analyzed and 
the results are shown in Fig. 4.

From Fig.  4, it can be observed that in the iterative 
solving process of the C&CG algorithm, the upper 
bound of the problem gradually decreases while the 
lower bound gradually increases. After 20 iterations, 
the difference between the upper and lower bounds 
becomes less than 10−6, indicating the completion of 
the scheduling model based on the C&CG algorithm. 
This result demonstrates the effectiveness of the C&CG 
algorithm in analyzing the TSDRO-based coordinated 
scheduling model.
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Fig. 2  The forecast output of wind/PV and the forecast load 
of electricity/gas/thermal/demand response

Table 1  The operation parameters of the IES

Devices Parameters Value

DN P
max
DN_buy/kW 1200

ES P
max
ES_ch/kW 200

P
max
ES_dis/kW 200

C
0
ES/kWh 500

C
min
ES /kWh 100

C
max
ES /kWh 900

ηES 0.98

EL P
max
EL /kW 1000

ηEL 0.8

HS C
0
HS/kWh 5000

C
min
HS /kWh 1000

C
max
HS /kWh 9000

ηHS 0.95

PEMFC P
max
PEMFC/kW 300

ηElePEMFC
0.5

ηTherPEMFC
0.35

GN P
max
GN_buy/kW 1200

GB P
max
GB /kW 800

ηGB 0.96

EB P
max
EB /kW 1000

ηEB 0.938
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Fig. 3  Price information of the IES with DN

Fig. 4  Iterative process of the C&CG algorithm
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5.2 � Day‑ahead scheduling results
In order to explore the operation of the IES based on the 
TSDRO-based coordinated scheduling model, the elec-
tricity, thermal and gas networks are analyzed from the 
perspective of energy supply and demand balance using 
day-ahead scheduling as an example. The operations of 
the three networks are shown in Fig. 5.

From Fig. 5a, it can be seen that based on the TSDRO-
based coordinated scheduling model, the electricity 
network achieves a supply–demand balance at all sched-
uling moments. The operational schedule of EL primar-
ily focuses on periods of surplus PV, while FC is mainly 
operational during high electricity price periods to 
reduce the purchasing cost of the electricity network. The 
energy storage of ES is primarily concentrated during low 

electricity price periods and periods of surplus renewable 
energy generation, while the discharge process is mainly 
focused on high electricity price periods.

As illustrated in Fig. 5b, the energy supply and demand 
of the thermal network have also reached equilibrium. 
Specifically, the provision of thermal energy mainly relies 
on GB and EB. Because of the step tariff, the provision of 
thermal energy in the thermal network primarily depends 
on EB during low electricity price periods. Moreover, 
when there is abundant PV during the midday period, 
there is also a clear tendency to rely on EB for thermal 
energy provision. TR provides thermal energy during 
the two high electricity price periods. This is because FC 
tends to provide electricity during these periods, so TR 
can only recover waste heat from PEMFC.

From Fig. 5c, it can be seen that the overall supply and 
demand balance of the gas network within the IES has 
also been achieved. The energy supply of the gas network 
is mainly dependent on GN, whereas the proportion of 
blending hydrogen is only a small fraction. Moreover, 
hydrogen blending mainly occurs during periods of high 
electricity prices.

5.3 � Analysis of the role of flexibility
This section presents a detailed analysis of the flexible 
components within the IES to investigate the impact of 
flexibility on the operational results. A comparison is 
then made with the IES where flexibility is not consid-
ered, so as to emphasize the importance of flexibility in 
the operation. The scheduling results of the electricity 
and thermal demand responses are shown in Fig. 6.

From Fig. 6a, it can be seen that the electricity demand 
response during peak price periods is appropriately 
reduced after optimization by the TSDRO-based coor-
dinated scheduling model. During valley price periods 
and in the midday when PV is abundant, the electric-
ity demand response is increased to some extent. Such 
scheduling results can contribute to reducing operational 
costs. The results indicate that the electricity demand 
response, as an important manifestation of flexibility in 
the IES electricity network, can achieve the goal of reduc-
ing IES operating costs by changing the distribution of its 
own power load.

The findings depicted in Fig. 6b illustrate that the ther-
mal demand response undergoes a scheduling process 
similar to that of the electricity demand response because 
of the stepped electricity price. During the two peak price 
periods of stepped electricity price, the thermal demand 
response is curtailed. During valley price periods and 
the midday period with ample PV, it is appropriately 
increased to ensure the overall level of thermal demand 
response remains constant within the scheduling period. 

(a) Power balance condition

(b) Thermal balance condition

(c) Gas balance condition

Fig. 5  Energy balance conditions for the IES 
with electricity-hydrogen hybrid energy storage: a electricity network; 
b thermal network; c gas network
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These outcomes demonstrate that the thermal demand 
response, as a critical flexibility component of the ther-
mal network, can also reduce IES operating costs by 
changing the distribution of its own thermal load under 
the TSDRO-based coordinated scheduling model.

As for the flexibility of the hydrogen blending ratio, the 
hydrogen blending process and the operation of hydro-
gen units are investigated, and the specific results are 
shown in Fig. 7.

From Fig. 7a, it can be seen that when the flexibility of 
the hydrogen blending ratio is considered, hydrogen is 
not blended into the gas network in the maximum ratio at 
any time. The hydrogen blending process mainly occurs 
during peak price periods of the day and is blended at 
the highest proportion. Because of the step tariff, the IES 
reduces the use of electricity during peak price periods 
and consumes gas to provide energy for the power load. 
When the output power of GN reaches the power limit, 
the IES increases the blending of hydrogen to continue 
supplying energy to the power grid, thus reducing oper-
ating costs.

For the operational situation of the hydrogen unit con-
sidering hydrogen blending flexibility, as demonstrated 
in Fig. 7b, it can be seen that EL primarily operates dur-
ing the midday period when renewable energy output is 

abundant and during valley price periods throughout the 
day. PEMFC operates during peak price periods, while 
hydrogen blending also occurs during this time frame. 
Notably, the SoHC consistently remains within the pre-
scribed constraint range, and returns to the initial state at 
the end of the daily scheduling.

To further analyze the role of flexibility, optimal sched-
uling research on the IES is conducted in five different 
scenarios:

•	 Scenario 1: IES without considering flexibility;
•	 Scenario 2: IES considering the flexibility of the elec-

tricity, thermal, and gas networks;
•	 Scenario 3, IES considering only the flexibility of the 

electricity network;
•	 Scenario 4, IES considering only the flexibility of the 

thermal network;
•	 Scenario 5, IES considering only the flexibility of 

hydrogen blending.

The specific results are presented in Table 2, with the 
following main observations:

•	 When the flexibility of the electricity, thermal, and 
gas networks is not considered, the carbon trading 
cost, operational cost, and maintenance cost of the 
IES are $806.36, $4,068.70, and $599.97, respectively, 
with a total cost of $5,475.03.

(a) Electricity demand response

(b) Thermal demand response

Fig. 6  Scheduling results for demand response as flexible 
components: a Electricity demand response; b Thermal demand 
response

(a) Hydrogen blending
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•	 When the flexibility of these networks is consid-
ered, the corresponding costs become $802.58, 
$4,062.94, and $597.33, respectively, with a total cost 
of $5,462.85. It can be seen that considering flexibility 
can significantly reduce the various costs of the IES.

•	 When only the flexibility of the electricity network is 
considered, the corresponding costs become $806.14, 
$4,064.85, and $599.65, with a total cost of $5,470.64. 
This is because the electricity demand response is 
shifted to valley price periods, reducing the cost of 
purchasing electricity during peak price periods.

•	 When the flexibility of the thermal network is con-
sidered, the corresponding costs become $806.17, 
$4,065.31, and $599.69, with a total cost of $5,471.18. 
This is because the thermal demand response is 
shifted to valley price periods, reducing the cost of 
purchasing energy.

•	 When the flexibility of the hydrogen blending is con-
sidered, the corresponding costs become $802.98, 
$4,070.17, and $597.93, totaling $5,471.07. It can be 
seen that when the hydrogen blending ratio is not 
fixed, the IES can flexibly adjust the blending ratio to 
achieve better performance.

These results indicate that considering flexibility in the 
optimal scheduling of the IES can improve the economic 
operation of the system. It also further validates that the 
TSDRO model can effectively handle the IES flexibility.

5.4 � Analysis of the role of uncertainty
This study further analyzes the influence of uncertainty 
on IES optimal scheduling and explores the superiority 
of the TSDRO-based coordination scheduling model in 
solving uncertainty problems. Specifically, based on the 
forecast information on both the IES power supply and 
demand, 1000 random scenarios are generated accord-
ing to the numerical characteristics of the historical data 
prediction error. Then, based on the forecast informa-
tion and random scenarios, the IES optimal scheduling is 
studied with the minimum cost of day-ahead scheduling 
and intra-day rescheduling as the objectives, based on 
four scenarios:

•	 Scenario 1: without considering uncertainty;
•	 Scenario 2: SP-based uncertainty consideration;
•	 Scenario 3: RO-based uncertainty consideration;
•	 Scenario 4: TSDRO-based uncertainty consideration.

The results are shown in Table  3. As shown, the 
scheduling cost of Scenario 1 in the day-ahead stage is 
$5,394.62, which is lower than the day-ahead scheduling 
costs of the other three scenarios that consider uncer-
tainty. This is because, after considering the uncertainty, 
the formulation of the day-ahead scheduling strategy 
needs to take into account the intra-day rescheduling 
costs caused by the uncertainty. Given that intra-day 
rescheduling generally incurs higher costs, the intra-day 
rescheduling cost of the unit power is generally higher 
than that of the day-ahead scheduling stage. After con-
sidering both day-ahead and intra-day rescheduling pro-
cesses, Scenarios 2, 3, and 4 adopt more conservative 
strategies in the day-ahead stage. This is the reason why 
the day-ahead scheduling costs of the IES with uncer-
tainty are higher than those without uncertainty. How-
ever, from the perspective of intra-day rescheduling, 
Scenario 1 has an average intra-day rescheduling cost 
of $1,461.99 and a maximum cost of $3,035.25. These 
are significantly higher than the intra-day rescheduling 
costs of the other three scenarios. By considering both 
day-ahead and intra-day rescheduling processes, it can 
be found that Scenario 1 corresponds to the highest total 
cost. In extreme scenarios, the scheduling strategy of 
Scenario 1 incurs the highest cost to maintain the normal 
operation of the IES. The results effectively demonstrate 
the importance of considering uncertainty in the sched-
uling process.

By comparing the scheduling results of Scenarios 
2, 3, and 4 in Table 3, it can be seen that the day-ahead 
scheduling cost obtained by the SP model, which pro-
cesses uncertainty, is $5436.55 and is the lowest among 
the three IES optimal scheduling models that consider 
uncertainty. Furthermore, in the intraday rescheduling 
stage, its average rescheduling cost is $1257.59, which 
is also the lowest among the three methods. However, 
when dealing with extreme scenarios, the scheduling 

Table 2  Results comparison of different scenarios

Carbon 
trading 
cost ($)

Operational 
cost ($)

Maintenance 
cost ($)

Total cost ($)

Scenario 1 806.36 4068.70 599.97 5475.03

Scenario 2 802.58 4062.94 597.33 5462.85

Scenario 3 806.14 4064.85 599.65 5470.64

Scenario 4 806.17 4065.31 599.69 5471.18

Scenario 5 802.98 4070.17 597.93 5471.07

Table 3  Results comparison of different scenarios

Day-ahead 
scheduling cost ($)

Intra-day rescheduling 
cost ($)

Average Maximum

Scenario 1 5394.62 1461.99 3035.25

Scenario 2 5436.55 1257.59 2962.66

Scenario 3 5518.71 1294.32 2707.16

Scenario 4 5462.85 1278.08 2765.14
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strategy based on the SP model corresponds to the high-
est rescheduling cost among the three methods, reach-
ing $2962.66. The results show that the SP model mainly 
starts from the average angle of uncertain factors when 
processing uncertainty and cannot adequately handle 
uncertainty in extreme scenarios.

The day-ahead scheduling cost obtained by the RO 
model is $5518.71 and its average intraday rescheduling 
cost is $1294.32. These are the largest among the three 
scheduling models considering uncertainty. However, 
in extreme scenarios, its intraday rescheduling cost is 
$2707.16, being the lowest among the three models. This 
indicates that the RO model can effectively consider the 
worst-case scenarios of IES operation when formulating 
scheduling strategies. The computational results of the 
RO-based scheduling model show that its advantage is in 
handling extreme uncertainty, and its robustness is good. 
However, its drawback is that the formulated strategy is 
more conservative, resulting in the highest average intra-
day rescheduling cost.

The day-ahead scheduling cost, intraday scheduling 
cost, and extreme value of the TSDRO-based coordi-
nated scheduling model are $5462.85, $1278.08, and 
$2765.14, respectively, all of which are intermediate val-
ues among the three models. The results show that the 
TSDRO model can effectively balance robustness and 
conservatism when dealing with uncertain problems, and 
its superiority is further verified.

5.5 � Analysis of the role of hydrogen
To investigate the role of hydrogen in the optimal sched-
uling of the IES, two further scenarios are considered, i.e., 
Scenario 1: IES without hydrogen units; and Scenario 2: 
IES with hydrogen units. Based on these scenarios, the 
impact of hydrogen on the energy purchase costs from 
DN/GN and renewable energy consumption of the IES, 
as well as carbon trading costs are analyzed and the 
results are presented in Table 4.

As seen from Table 4, the IES without hydrogen units 
has a carbon trading cost of $856.83, an operational cost 
of $4397.81, a maintenance cost of $534.21, and a total 
cost of $5788.85. However, with the introduction of the 
hydrogen units, the corresponding costs are decreased to 
$802.58, $4062.94, $597.33, and $5462.85, respectively. 
These changes are due to the introduction of hydrogen 
units, which can convert previously unabsorbed renew-
able energy into hydrogen through EL. Hydrogen can 
then satisfy the demand for loads in different ways under 
scheduling, reducing the energy purchasing cost of the 
IES from DN and GN. In addition, the use of hydrogen 
as an energy supply does not produce carbon emissions, 
which further reduces carbon trading costs.

For a typical day, the cumulative consumptions of 
renewable energy in the IES with and without hydrogen 
units are shown in Fig. 8.

From Fig.  8, it can be seen that during the time 
period from 01:00 to 10:00, the cumulative renew-
able energy consumption of the IES with and without 
hydrogen units overlap, indicating that both types of 
IES can consume 100% of the renewable energy gener-
ated during this period. However, starting from 10:00, 
the cumulative renewable energy consumption of the 
IES without hydrogen units begins to deviate from that 
of the IES with hydrogen units. The deviation trend 
gradually increases from 10:00 to 17:00 and stabilizes 
at around 17:00, meaning that during this time period, 
there are many abandoned WF and PV in the IES with-
out hydrogen units. After 17:00, both types of IES once 
again consume 100% of the renewable energy gener-
ated. By analyzing the data for the entire day, it shows 
that the IES with hydrogen units consumes 29,175.40 
kWh of renewable energy, which is significantly higher 
than the 26,359.81 kWh for the IES without hydrogen 
units. These results indicate that the addition of hydro-
gen units can effectively enhance renewable energy 
consumption.

Table 4  Cost comparison of IES in different scenarios

Carbon 
trading 
cost ($)

Operational 
cost ($)

Maintenance 
cost ($)

Total cost ($)

Scenario 1 856.83 4397.81 534.21 5788.85

Scenario 2 802.58 4062.94 597.33 5462.85
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6 � Conclusions
In this study, a TSDRO-based coordinated schedul-
ing model for IES with electricity-hydrogen hybrid 
energy storage is proposed. The proposed scheduling 
model considers the high-order uncertainty and flex-
ibility of the IES, the coordination scheduling among 
different networks, and the energy gradient utiliza-
tion of the system. After linearization, the TSDRO-
based coordinated scheduling model is analyzed 
using the C&CG algorithm. Numerical case studies 
are conducted to verify the effectiveness of the pro-
posed model. Based on the simulation results, it can 
be concluded that:

(1)	 The proposed TSDRO-based coordinated sched-
uling model can effectively achieve the optimal 
scheduling task while considering the high-order 
uncertainty of the IES. Compared with traditional 
methods, the proposed scheduling model can bet-
ter balance conservativeness and robustness.

(2)	 The TSDRO-based coordinated scheduling model 
can effectively coordinate the operation of the elec-
tricity, thermal, and gas networks, so as to fully 
mobilize the flexibility of the IES to achieve better 
operational performance.

(3)	 The introduction of hydrogen units can effectively 
reduce energy purchase costs from DN and GN. 
Moreover, it can also reduce carbon trading costs 
and promote renewable energy consumption.

As the current research mainly focuses on small-scale 
IES, it lacks consideration of the dynamic characteristics 
of the thermal and gas networks, which is the main limi-
tation of this study. In future work, the dynamic charac-
teristics of thermal and gas networks during scheduling 
can be further investigated. In addition, because hydro-
gen and natural gas have different physical properties, 
the detailed model of the hydrogen blending process also 
requires further research.
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