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Abstract 

Because there is insufficient measurement data when implementing state estimation in distribution networks, this 
paper proposes an attention-enhanced recurrent neural network (A-RNN)-based pseudo-measurement modeling 
metho. First, based on analyzing the power series at the source and load end in the time and frequency domains, 
a period-dependent extrapolation model is established to characterize the power series in those domains. The 
complex mapping functions in the model are automatically represented by A-RNNs to obtain an A-RNNs-based 
period-dependent pseudo-measurement generation model. The distributed dynamic state estimation model of the 
distribution network is established, and the pseudo-measurement data generated by the model in real time is used 
as the input of the state estimation model together with the measurement data. The experimental results show that 
the method proposed can explore in depth the complex sequence characteristics of the measurement data such that 
the accuracy of the pseudo-measurement data is further improved. The results also show that the state estimation 
accuracy of a distribution network is very poor when there is a lack of measurement data, but is greatly improved by 
adding the pseudo-measurement data generated by the model proposed.

Keywords State estimation, Pseudo measurement, Recurrent neural network, Attention mechanism, Time-frequency 
domain analysis, Distribution network

1 Introduction
Power system state estimation is the process of deter-
mining the internal state of an energy system (e.g., node 
voltage vectors), by “fusing” a mathematical model and 
input/output data measurements. State estimation is fun-
damental to many analysis, monitoring, and energy man-
agement tasks, and its accuracy has an important impact 
on power system security and stability [1]. The amount 
of measurement resources is an important factor affect-
ing the estimation accuracy. Adequate measurement data 

can help to obtain high accuracy estimation results, while 
on the contrary, the estimation results may not reliably 
reflect the real state of the system or even make the state 
estimation problem insoluble if measurement data are 
inadequate [2].

In practice, the measurement system of a distribu-
tion network (DN) cannot provide sufficient resources 
because of the constraints of cost, communication delay, 
and uneven distribution of measurement points [3]. To 
solve this problem, researchers have proposed the solu-
tion of pseudo-measurement generation, i.e., artificially 
generating currently available "measurement data" using 
existing data (e.g., load power, distributed power output, 
etc.) without adding extra measurement equipment [3, 
4]. Pseudo-measurement generation for DN state estima-
tion has been widely studied. The literature in this field 
can be roughly categorized into two groups: statistical 
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and probabilistic methods, and machine-learning meth-
ods. Statistical and probabilistic methods can explic-
itly characterize the distribution of the data. Reference 
[5] considers the non-normal distribution properties of 
loads and the correlation of loads at different nodes, and 
fits a load density function satisfying log-normal and beta 
distributions based on hourly historical load data. How-
ever, the static characteristics of the load cannot be fully 
described by the mean and variance alone, and the gener-
ated load pseudo-measurement types are limited.

Compared with statistical and probabilistic methods, 
the machine-learning-based pseudo-measure generation 
method does not need to build an explicit mathemati-
cal model, and can directly mine and learn hidden char-
acteristics from the data. This offers a stronger feature 
characterization capability. In [7], historical load data, 
adjacent time interval load difference, real-time tem-
perature, humidity, and date are jointly used as inputs 
to train a Gaussian process regression model to obtain 
load pseudo-measurements. Reference [8] proposes a 
distributed game-theoretic-based correlation vector 
machine model to capture the uncertainty of node injec-
tion power and generate pseudo-measurements. How-
ever, Gaussian process regression models and correlated 
vector machines have very limited nonlinear fitting capa-
bility and cannot dig deeper into sequence features, and 
thus it is difficult for ordinary neural networks to mine 
long-term correlations in time series data (such as load 
and DG power). The proposed recurrent neural net-
works (RNNs) can solve this problem, because RNNs 
retain a memory of what had already been processed and 
thus can learn from previous iterations during the train-
ing. For example, reference [9] takes advantage of this 
by training recurrent neural network models through 
historical measurement data to generate more accurate 
pseudo-measurement data.

Although RNNs have a superior temporal correla-
tion feature learning capability, their initial attention to 
each element in the input dataset is same, which is not 
conducive to fast screening of high-value features. The 
attention mechanism can help to capture the model 
hidden layer dimensional relationships, and was ini-
tially used mainly for tasks such as natural language 
processing, where its focus was on the features needed 
for the target scenario. Reference [10] proposes a short-
term load forecasting method using a dual attention 
mechanism to improve the traditional gated recur-
rent unit (GRU). This weakens the influence of each 
input feature on the grid load situation and enhances 
the RNNs to capture the long-time dependence of the 
load data. The results from application of the algo-
rithm show that the prediction accuracy is improved, 
to different degrees, compared with previous models. 

Therefore, this paper considers combining RNNs with 
an attention mechanism to generate pseudo-measure-
ment data with higher accuracy.

For DN state estimation, a well-developed and widely 
used estimation algorithm is Weighted Least Squares 
(WLS). However, when WLS is directly applied to the 
state estimation problem, there are significant draw-
backs in terms of computational speed and estimation 
accuracy. Specifically, in terms of computational speed, 
the computational time complexity of WLS grows in 
a power series with the number of state variables, and 
thus the centralized WLS state estimation of all state 
variables in the DN takes a lot of time, which makes it 
difficult to provide timely data support for other real-
time tasks in dispatch management. In terms of esti-
mation accuracy, the dynamic uncertainty of the state 
of the DN is greatly enhanced because of the random-
ness and fluctuation of the power of active components 
such as renewable energy, while as WLS only uses the 
current measurement information to obtain the opti-
mal estimation, it is difficult to capture the dynamic 
change characteristics of the system. This leads to the 
final estimation results deviating from the real situ-
ation and not being able to provide reliable state data 
for dispatch management. To address the above prob-
lems, this paper adopts the technical idea of combining 
distributed estimation with the dynamic state estima-
tion algorithm, also known as distributed dynamic state 
estimation. As shown in Fig.  1, the distributed esti-
mation approach can divide a high-dimensional state 
variable into multiple low-dimensional state variables 
for parallel estimation, which significantly reduces the 
computational complexity of the estimation. As shown 
in Fig. 2, the dynamic state estimation algorithm is dif-
ferent from the static estimation. It uses not only the 
current measurement information but also the his-
torical state information to portray the trend of system 
state changes, to improve the estimation accuracy.

The main contributions of this paper are as follows:

Fig. 1 Schematic diagrams of centralized state estimation and 
distributed state estimation
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 (i) Introducing a distributed dynamic state estimation 
model to achieve fast state estimation of a large-
scale distribution network.

 (ii) Establishing a period-correlation extrapolation 
model to characterize the time–frequency domain 
of power series.

It introduces a multi-headed attention mechanism 
to focus on data with high relevance to the target and 
combines it with RNNs to construct attention-enhanced 
RNNs (A-RNNs). This can generate more accurate 
pseudo-measurement data to improve the accuracy of 
state estimation.

The remainder of this paper is organized as follows. In 
Sect. 2, the basic principles and algorithms of distributed 
dynamic state estimation are introduced, while in Sect. 3 
the proposed periodic-correlation pseudo-measurement 
generation model based on A-RNNs is described. Sec-
tion  4 summarizes data sources and experiment imple-
mentation, while results of the proposed model are 
presented in Sect.  5, where comparisons with existing 
models are discussed. Section 6 concludes the paper.

2  Distributed dynamic state estimation model
To address the problem of long estimation time caused 
by DN high-dimensional state variables, and to further 
improve the accuracy of distribution network state esti-
mation, distributed dynamic state estimation is adopted. 
The distributed estimation can greatly reduce the dimen-
sion of state variables and shorten the time of state esti-
mation, and the use of dynamic estimation increases the 
effective use of state transition information and improves 
the accuracy of state estimation.

2.1  Distributed dynamic state estimation model 
and problem description

From a limited amount of measurement data which contain 
noise, it is difficult to obtain the true system state. However, 
multiple available valid information (e.g., measurement 

data and historical state estimates) can create conditions 
for computing optimal or suboptimal estimates of the true 
state. Specifically, the state transfer characteristics and their 
noise distribution obtained from the historical state esti-
mates provide a priori information that reflects the trend 
of the system, while the measurement data and their error 
statistics can help measure the likelihood that the estimated 
state is consistent with the true state. Based on state trans-
fer properties, measurement data and noise statistics, the 
dynamic estimation algorithm can find the optimal or sub-
optimal estimation of the system state [16].

2.1.1  State transition equation for distributed dynamic state 
estimation

Let a DN have s sub-areas, where the kth area has 
nk nodes. Denote the set of nodes constituting the 
kth area as Ak and its state variable at moment t is 
x
(k)
t = [θ

(k)
t,1 , . . . , θ

(k)
t,nk

,V
(k)
t,1 , . . . ,V

(k)
t,nk

]T , where θ
(k)
t,i  and 

V
(k)
t,i  represent the phase angle and amplitude of the volt-

age of the ith node at moment t , respectively. The state 
transition trend of x(k)t  can be described with a discrete 
first-order Markov model, as:

where w(k)
i  is the state transition noise and its distribution 

properties need to be described by a known probability 
distribution function (pdf), which is called prior pdf, i.e., 
w
(k)
i ∼ p(xt+1|xt) . The most commonly used Gaussian 

pdf is chosen to characterize w(k)
i  . Let w(k)

i  obey the mean 
of 0 and the covariance matrix of Wi with a Gaussian dis-
tribution, denoted as w(k)

i ∼ N (0,WI ) . f (k)(·) is the state 
transfer function of x(k)t  , and in general it is nonlinear. In 
order to reduce the computational complexity, f (k)(·) is 
usually linearized to be explicitly expressed [20], i.e.:

Set x̃(k)t−1 as the status value calculated by the state tran-
sition equation, x̂(k)t−1 as the final state estimation results 
at time t − 1 , F (k)

t  and G(k)
t  in (2) can then be obtained by 

using Holt-Winters exponential smoothing method, as:

where γ and ε are artificial smoothing parameters, a(k)t−1 is 
the state change of horizontal component, and b(k)t−1 is the 
state change of trend component at time t − 1 . The value 
of both at time t can be updated to:

(1)x
(k)
t+1

= f (k)(xt)+ w
(k)
i

(2)x
(k)
t+1 = F

(k)
t x

(k)
t + G

(k)
t + w

(k)
t

(3)F
(k)
t = ε(1+ γ )

(4)
G

(k)
t = (1+ γ )(1− ε)x̃

(k)
t−1 − γ a

(k)
t−1 + (1− γ )b

(k)
t−1

Fig. 2 Static state estimation and dynamic state estimation
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2.1.2  Measurement equations for distributed dynamic state 
estimation

The mathematical relationship between the measurement 
data and the system state x(k)t  can be expressed using the 
measurement equations. Let all the measurement data 
that can be received at time t be the measurement vector 
z
(k)
t  , and assume that all the measurement noise r(k)t  are 

independent of each other. Then the mathematical rela-
tionship between x(k)t  and z(k)t  can be described as:

Similar to wi in (1), r(k)t  is also described by a given 
pdf, called the likelihood pdf p(zt |xt) , i.e. r(k)i ∼ p(zt |xt) . 
Similarly, the most commonly used Gaussian pdf is cho-
sen, i.e., r(k)t  obeys a Gaussian distribution with mean 0 
and covariance matrix Rt of the Gaussian distribution, 
denoted as r(k)i ∼ N (0,Rt) . h(k)(·) represents the nonlin-
ear measurement function, which is determined by the 
type of measurement data and the state variable.

2.1.3  Distributed dynamic state estimation problem 
and solution

The objective of DN state estimation is to minimize the 
estimation errors of all nodes in the DN, i.e., the difference 
between the estimated state and the true state. Accord-
ing to [11], the optimization objective of the distributed 
dynamic estimation problem at time t can be expressed as:

where E(·) is the expectation function, while x(k)t  and x̂(k)t  
represent the true and estimated states, respectively. S(k)t  
is a custom weight function, which is usually set based on 
the measurement error. The constraints of the DN state 
estimation problem are the state transition equation of 
(1) and the measurement equation of (7).

Distributed dynamic state estimation for DN is accom-
plished quickly through three steps: local state estima-
tion, boundary state consistency and local state update 
for global estimation. Among the three steps, both the 
local state estimation step and the local state update step 
can be done based on existing dynamic estimation algo-
rithms, while the boundary state consistency step relies 
on boundary consistency estimation methods that can 
compute global estimates of boundary nodes. In the fol-
lowing paragraphs, the three steps of the distributed 

(5)a
(k)
t = εx̂

(k)
t−1 + (1− ε)x̃

(k)
t−1

(6)b
(k)
t = γ (a

(k)
t − a

(k)
t−1)+ (1− γ )b

(k)
t−1

(7)z
(k)
t = h(k)(xt)+ r

(k)
t

(8)min

x

k=1

E[(x
(k)
t − x̂

(k)
t )TS

(k)
t (x

(k)
t − x̂

(k)
t )]

dynamic estimation method will be introduced as an 
example of solving the global estimate of the sub-area k 
at time t + 1.

(1) Local state estimation: the computational process of 
local state estimation can be expressed as a whole as:

where b(k)t+1(·) is the mapping function between the global 
state estimate x̂(k)t  at time t of sub-area k and x̂l,(k)t+1  at time 
t + 1 . �̂(k)

t+1 is the set of parameters of function b(k)t+1(·) , 
which includes process noise, measurement noise, local 
measurement data, etc.

(2) Boundary state consistency: x̂l,(k)t+1  is the estimation 
result obtained for the sub-area k based on locally valid 
information, without taking into account the external 
valid information. This makes it different from the cor-
responding global estimation results. Thus, the sub-area 
k needs to perform consistent estimation of the boundary 
state, i.e., exchanging information with all neighboring 
sub-areas and obtaining all external information related 
to its boundary nodes, so that the local estimate of the 
boundary nodes in x̂l,(k)t+1  of the local estimate is corrected 
to the global estimate.

(3) Local state update: after obtaining the global esti-
mation result x̂l,(k ,ib)t+1  of the boundary nodes in sub-area 
k, the local estimation of the internal nodes (all nodes 
except the boundary nodes) in sub-area k result x̂l,(k)t+1  is 
corrected by using it as the base, and finally the global 
state estimation result of sub-area k is obtained as:

where e(k)t+1(·) is the mapping function of sub-area k with 
its local state estimate x̂l,(k)t+1  , boundary global estimate 
x̂
(k ,ib)
t+1  and sub-area k global state estimate x̂(k)t+1 , after 

achieving the boundary state consistency. ϒ(k)
t+1 is the set 

of parameters of function e(k)t+1(·) , which includes locally 
valid information for the sub-area as well as externally 
valid information obtained from other sub-areas.

2.2  Distributed state estimation algorithm
In existing studies, the theoretical basis for solving 
dynamic state estimation problems is Bayesian filter-
ing [12]. According to (1) and (7), the power system is a 
dynamic system with first-order Markovianity, and the 
measurement at any moment depends only on the state 
at that moment and is independent of the measurement 
and state at other moments. Let the initial state of the 
power system be x0 , the state at time t is xt , the meas-
urement data is zt . Its priori pdf is denoted as p(xt |xt−1) , 
and the likelihood pdf is p(zt |xt) . According to Bayesian 
theory, the a posterior pdf that contains the complete 

(9)x̂
l,(k)
t+1 = b

(k)
t+1(x̂

(k)
t + �̂

(k)
t+1)

(10)x̂
(k)
t+1 = e

(k)
t+1(x̂

l,(k)
t+1 , x̂

(k ,ib)
t+1 ;ϒ

(k)
t+1)
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statistical information of xt can be obtained by calculat-
ing the a priori pdf and the likelihood pdf. Therefore, the 
statistical properties of the state variables characterized 
by the posterior pdf are considered to be approximately 
equal to the statistical properties of the real state, i.e., the 
optimal estimate of the state variables can be obtained 
from the posterior pdf. According to the state transition 
equation and the measurement equation, Bayesian filter-
ing can obtain the posterior pdf of xt through the predic-
tion step and the update step.

(1) Prediction step: using the previous t − 1 moments 
of the measure z1:t−1 = [z1, z2, . . . , zt−1] , and the poste-
rior pdf p(xt−1|z1:t−1) at the time t − 1 and the prior pdf 
p(xt |xt−1) at the time t, the predicted probability func-
tion at time t can be calculated as:

It can be seen that the prediction step of Bayesian fil-
tering is actually a fusion of statistical properties of the 
state variables of posterior information at t − 1 and prior 
information at t.

(2) Update step: On the basis of the prediction step, the 
measurement zt at time t and the corresponding likeli-
hood pdf p(zt |xt) are added to obtain the posterior pdf of 
the state variables at time t:

where η =
∫ +∞
−∞ p(zt |xt)p(xt |z1:t−1)dxt is a constant 

unrelated to xt . Usually, the expectation of the posterior 
pdf is the result of the state estimation at time t, as:

The flow chart and the calculation procedure of the dis-
tributed dynamic state estimation of the DN are shown in 
Figs. 3 and 4, respectively. It can be seen that the solution 
of the state estimation problem is influenced by the qual-
ity of the measurement data in each sub-region of the DN. 
However, because of economic constraints, only a small 
number of PMUs are installed in the DN sub-region, and 
most of the available measurement data are still provided 
by traditional measurement systems, including SCADA 
systems and Advanced Metering Infrastructure (AMI). 
Although SCADA systems can provide voltage amplitude 
and node injection power measurements every second, the 

(11)

p(xt |z1:t−1) =

+∞
∫

−∞

p(xt |xt−1)p(xt−1|z1:t−1)dxt−1

(12)

p(xt |z1:t) =
p(zt |xt)p(xt |z1:t−1)

p(zt |z1:t−1)

=
p(zt |xt)p(xt |z1:t−1)

∫ +∞
−∞ p(zt |xt)p(xt |z1:t−1)dxt

= ηp(zt |xt)p(xt |z1:t−1)

(13)x̂t =

∫

xtp(xt |z1:t)dxt

number of measurements obtained may be fewer than the 
number of state variables because of communication delays 
and limited measurement points, while the data upload 
period of AMI is 5 or 15 min, which cannot meet the real-
time requirements for state estimation [17]. Therefore, the 
DN sub-region suffers from a scarcity of measurements in 
the second-level. Therefore, in this paper, a periodic-cor-
relation pseudo-measurement generation model based on 
A-RNNs is considered to generate pseudo-measurement 
data in real time to alleviate the measurement scarcity 
problem in the DN sub-region.

3  A periodic‑correlation pseudo‑measures 
generation model based on attention‑enhanced 
recurrent neural networks

Analysis and modeling of time–frequency domain char-
acteristics of load and distributed power output.

Fig. 3 Schematic diagrams of distributed dynamic state estimation

Fig. 4 Calculation procedure of the distributed dynamic state 
estimation
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3.1  Periodic‑correlation extrapolation model
Generally, the source-load power series has a strong cor-
relation with the data that lags itself by several time steps. 
The autocorrelation of the different time series can be 
described by the maximum lag time step and the mini-
mum autocorrelation function (ACF) value, where the 
maximum lag time step is selected by humans and the 
minimum ACF value is the ACF value corresponding to 
the maximum lag time step. When the minimum ACF 
value is larger, the historical power data within the maxi-
mum lag time step has a stronger correlation with the 
power data at the current moment.

In addition to the autocorrelation of power series dem-
onstrated by ACF, power data are also related to exter-
nal factors such as weather and date. In this subsection, 
the Jensen-Shannon divergence (JS) is used to quantify 
the similarity between load, PV and wind power data and 
their corresponding external factor series. The JS value is 
0 when the two time series data are distributed indepen-
dently and is 1 when the opposite is true.

The power series not only has autocorrelation and 
external similarity in the time domain, but also exhibits 
periodic fluctuations in the frequency domain. These can 
be derived from Fourier spectrum analysis.

Combining the above analysis, a periodic-correlation 
extrapolation model is constructed to map the time–fre-
quency domain characteristics of the power series. The 
independent variables of this model consist of two parts. 
One is the autocorrelated periodic series Xt,T , which 
reflects the autocorrelation and periodic volatility of the 
power series, and the other is the externally correlated 
periodic series Et,T , which reflects the similarity and 
periodic volatility of the power series and the external 
factor series, and they are collectively called the periodic-
correlation input. The periodic-correlation extrapolation 
model characterizing the target power xt at the time of t 
with its periodic-correlation input is given as:

where br is the residual coefficient, WS1 and WE1 are the 
weight matrices of the mapping functions φS(·) and φE(·) , 
respectively. WS2 and WE2 represent the weight matrices 
of Xt,T and Et,T , respectively. The autocorrelated periodic 
series Xt,T is based on the power series data {x} and can 
be expressed as:

where Xt,S = [xt−1, . . . , xt−m] is an autocorrelated 
sequence of m lagged time steps of xt . Xt,Ti(i = 1, · · · , k) 
is a periodic cycle sequence with xt and Xt,T in a strong 
cycle Ti , i.e.:

(14)
xt = WS2φS(W

T
S1Xt,T )+WE2φE(W

T
E1Et,T )+ br

(15)Xt,T = [Xt,S ,Xt,T1 , · · · ,Xt,Tk
]

where the jth (j = 1, . . . , c) element of Xt,Ti is 
Xt,Ti ,j = [xt−jTi , xt−1−jTi , . . . , xt−m−jTi ] , and c is the num-
ber of iterations of Xt,Ti . The external correlation periodic 
sequence Et,T is based on the external factor sequence 
{ε} , and its construction is similar to the above process, 
which can be expressed as:

Thus, after determining the autocorrelation maxi-
mum lag term m, k strong period T1,T2, . . . ,Tk , and the 
number of cycles c, the cycle correlation input of the 
power series can be constructed based on the histori-
cal power data and external factor data. If the optimal 
weight matrix {ŴS1, ŴS2, ŴE1, ŴE2} , residuals b̂r and 
mapping functions φ̂S(·) and φ̂E(·) exist, let

then the power data can be predicted using periodic-
correlation input and periodic-correlation extrapolation 
models.

However, the mapping functions φS(·) and φE(·) are 
usually nonlinear and may be either explicit or implicit 
functions, making it difficult for traditional algorithms 
to find their optimal representations. Deep learning, 
as an emerging type of data-driven optimization algo-
rithm, can mine the hidden shallow and deep features 
from a large amount of data through multiple neu-
ron computation nodes and multiple layers of net-
work operations, so as to approximate the correlation 
between input and output as much as possible and 
complete the automated representation of complex 
mappings. Therefore, a suitable deep learning frame-
work is considered to achieve the optimization objec-
tive described in (21).

3.2  Pseudo‑measurement data generation model
The powerful temporal correlation learning capability 
and nonlinear fitting ability of RNNs can approximate 
the periodic-correlation extrapolation models proposed 
in (21). However, when these RNN models take the auto-
correlated periodic sequence Xt,T as input, they will 

(16)
Xt,Ti = [Xt,Ti ,1,Xt,Ti ,2, . . . ,Xt,Ti ,c], i = 1, . . . , k

(17)Et,T = [Et,S ,Et,T1 , . . . ,Et,Tk
]

(18)Et,S = [εt−1, . . . , εt−m]

(19)Et,Ti = [Et,Ti ,1,Et,Ti ,2, . . . ,Et,Ti ,c], i = 1, . . . , k

(20)
Et,Ti ,j = [εt−jTi , εt−1−jTi , . . . , εt−m−jTi ], j = 1, . . . , c

(21)
min�xt =

∣

∣

∣
xt − ŴS2φ̂S(Ŵ

T
S1Xt,T )+ ŴE2φ̂E(Ŵ

T
E1Et,T )+ b̂r

∣

∣

∣
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focus equally on historical data with different lag steps, 
and incorporate invalid information from some data 
with large lag time steps into the feature representation, 
thus wasting computational resources or even affecting 
the accuracy of the fit. Therefore, RNNs should focus 
more on data with high relevance to the target in order 
to obtain more critical detailed information and suppress 
other useless information.

For this reason, this paper introduces a multi-headed 
attention mechanism to focus on data with high rele-
vance to the target and combines it with RNNs to con-
struct A-RNNs to better fit (21).

3.2.1  Multi‑headed attention mechanism
The attention mechanism is an information focusing 
technique that imitates a human cognitive attention 
mechanism, which can help RNNs focus more on the less 
but important information in the input. The core idea is 
to train the generation of weight coefficients correspond-
ing to the input under a given target, so as to determine 
the importance of information. As shown in the left side 
of Fig.  4, the attention mechanism represents the input 
as a "key-value pair", with "key" K used to calculate the 
attention distribution and "value" V used to calculate the 
aggregated attention value. Then the attention value of V 
is obtained by using the scaled dot product scoring func-
tion and the query vector Q.

The multi-head attention mechanism (MAM) uses 
multiple attention mechanisms to obtain multiple sub-
feature spaces, thereby focusing on important features 
of the original information from different aspects. As 
shown on the right side of Fig. 5, it decomposes the input 
into multiple uncorrelated sub-feature spaces, each with 
its own "key" Ki , "value" Vi , and query vector Qi . Then the 
attention results of each subspace are calculated, and all 
the results are spliced to get the final multi-head atten-
tion results. MAM is consistent with the proposed idea 
of mining power data features from multiple perspectives 
in the time–frequency domain. Therefore, this paper con-
siders using a neural network combined with MAM and 
RNNs to approximate the periodic-correlation extrapola-
tion model.

3.2.2  Attention‑enhanced recurrent neural networks 
and pseudo‑measurement generation model

A-RNNs, combining MAM with RNNs framework, can 
obtain more critical detail information from the input 
and suppress other, useless, information. As shown in 
Fig.  6, A-RNNs containing one layer of RNNs and one 
layer of MAMs are used as an example to introduce the 
model.

(1) Input layer: At time t , the time series 
Xt= [xt,1,xt,2, · · · ,xt,n]

T with n samples and dk dimen-
sions is received.

(2) RNNs layer: This layer receives the time series Xt 
from the input layer, and uses it as the input to the RNNs 
network structure. Using the ability of RNNs to process 
and memorize time series correlations over long peri-
ods of time, the results of sequence feature characteriza-
tion are obtained without differentiating between their 
importance, i.e.:

where RNNs(·) represents the input-to-output map-
ping in RNNs, and can be derived from traditional RNN 
(TRNN), LSTM or GRU. The superscript GRNNs repre-
sents the corresponding set of training parameters.

(3) MAM layer: this layer obtains all the feature infor-
mation yt,RNNs about Xt from RNNs, and then extracts 
the key information highly associated with the target val-
ues from them while discarding useless information, so 

(22)yt,RNNs = RNNsGRNNs(Xt)

Fig. 5 Schematic diagram of a multi-head attention mechanism

Fig. 6 Attention-enhanced recurrent neural network
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that the subsequent networks can focus more on char-
acterizing the target data using the key information. The 
input–output relationship of this layer is expressed as:

where MAM(·) represents the input to output mapping 
in MAM, and GMAM represents the corresponding set of 
training parameters.

(4) Fully connected layer: this layer integrates the infor-
mation computed in the MAM layer that is significantly 
associated with the target data, and constitutes the final 
output, as:

where Wfc and bfc are the parameters to be trained in 
the fully connected layer, and ReLu(·) represents an 
activation function operating elementwise on vector vk 
expressed as:

All the training parameters in the input layer, RNN 
layer, MAM layer, and fully connected layer of the 
A-RNNs can be obtained using the temporal backpropa-
gation algorithm.

Based on the above A-RNNs, a pseudo-measurement 
generation model can be constructed to fit the power 
series of the periodic-correlation extrapolation model, 
and its basic structural framework is shown in Fig.  7. 
Corresponding to (14), the power autocorrelation series 
and the external factor correlation series can be used 
as inputs to fit the functions φS(·) and φE(·) by A-RNNs 
respectively, and then the results of both can be inte-
grated using a layer of fully connected layers to obtain 
the final pseudo-measurement generation results. This 
model is called the periodic correlation pseudo-measure-
ment generation model based on A-RNNs, abbreviated 
as A-RNNs-PC. If the RNNs are LSTM models, they are 
abbreviated as A-LSTM-PC, and so on for other meth-
ods. The schematic diagrams of distributed dynamic state 
estimation with pseudo-measurement is shown in Fig. 8.

4  Case study
In this section, cases based on the SimBench database 
are analyzed to verify the effectiveness of the proposed 
A-RNNs-PC from the time domain and frequency 
domain respectively. The impact of the generated 
pseudo-measurement data on the state estimation accu-
racy of the DN is then shown. All experiments are run on 
a computer with Intel-i5-10400F CPU and 16 GB mem-
ory, and the programs are compiled by Python compiler.

(23)yt,MAM = MAMGMAM (yt,RNNs)

(24)ŷt = ReLu(Wfcyt,MAM + bfc)

(25)ReLu(vk) = max(vk , 0)
4.1  Data description and assessment metrics
The German SimBench project is a sub-project of the 
German Federal Government’s "Research for an envi-
ronmentally friendly, reliable and orderly energy sup-
ply" energy project, which aims to create a benchmark 
database for researchers to perform power system trend 
simulation, transient steady-state analysis, planning, 
etc. The SimBench database, which is built based on the 
actual German power system, contains network topology 
and parameter information of various transmission and 
distribution networks, as well as historical series data 
of generators, distributed power sources, and customer 
loads [13]. In this paper, some cases are selected from the 
SimBench database to verify the effectiveness of the pro-
posed algorithm.

Corresponding to the time–frequency domain charac-
terization, root mean square error (RMSE) is adopted as 
the time domain accuracy assessment metric. In the fre-
quency domain, the energy spectra similarity (ESS) eval-
uation index is defined as:

Fig. 7 Periodic correlation pseudo-measurement generation model 
based on attention-enhanced recurrent neural network

Fig. 8 Flow chart of distributed dynamic state estimation with 
pseudo-measurement
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where Areal(i) and Apre(i) represent the energy ampli-
tudes of the Fourier spectra of the real sequence and 
the pseudo-measurement sequence at the frequency fi , 
respectively. The smaller the value of ESS is, the closer 
the spectrum of the pseudo-measurement sequence is to 
the spectrum of the real sequence.

4.2  Benchmark and parameter setting
Referring to [18, 19], six commonly used machine 
learning-based pseudo-measurement generation mod-
els are chosen, namely, Gradient boosting decision tree 
(GBDT), Random Forest (RF), Back propagation neural 
network (BPNN), TRNN, LSTM, and GRU as bench-
mark models. The inputs of these six benchmark models 
are the commonly adopted sequential inputs, i.e., con-
tinuous historical data with a lag of M time points of the 
target values are used as the inputs, while the inputs of 
A-RNNs-PC are determined by the autocorrelated max-
imum lag term of its periodic-correlation inputs m , the 
strong period T1,T2, · · · ,Tk , and the number of cycles 
c . The A-RNNs-PC models tested in the experiments 
include A-TRNN-PC, A-LSTM-PC and A-GRU-PC, and 
the autocorrelation maximum lag term in its periodic-
correlation input m is determined by the average maxi-
mum lag point with autocorrelation greater than 0.85 in 
the historical source-load data, while selecting the strong 
period from the two frequency points corresponding to 
the highest energy in the Fourier spectrum of the histori-
cal source-load data.

The hyperparameters of all the pseudo-measure-
ment generation models are shown in Table 1, and their 
values are taken as the parameters with the smallest 
errors selected after multiple iterations. Among them, 

(26)ESS =
1

l

l
∑

i=1

√

(Areal(fi)− Apre(fi))2
n_estimator is the number of GBDT/RF estimators, max_
depth is the maximum depth of GBDT, learning_rate rep-
resents the learning rate, hidden_layer and hidden_size 
are the number of hidden layers and the corresponding 
number of hidden neurons of the neural network, respec-
tively. Heads is the number of heads of multi-headed 
attention, and drop_out is the neuron dropout rate, 
which is used to prevent the neural network from over-
fitting. For the neural network-based models, i.e., BPNN, 
TRNN, LSTM, GRU, A-TRNN-PC, A-LSTM-PC, and 
A-GRU-PC, Adam is adopted as the optimizer, and the 
number of samples for one training (batch size) is 1000. 
In particular, learning_rate is given as a range rather than 
a fixed value in Table 1 because the selection of the learn-
ing rate varies with the dataset and it usually requires 
several iterations to determine the optimal value. The 
range of learning rates listed in Table  1 is the optimal 
range selected after a large number of iterations, and the 
applicable learning rate can be determined within this 
range according to the dataset. The ratio of the amount of 
data in all training sets to the test set is 7:3.

5  Results and discussion
5.1  Analysis and modeling of load and PV output time–

frequency domain characteristics
Three different sets of PV output curves and six differ-
ent sets of load power curves with a sampling period 
of 15 min are selected from the SimBench database at 
random as examples to explore the characteristics of 
source-load power in the time domain and frequency 
domain. The three sets of photovoltaic (PV) output 
curves are recorded as PV1, PV2, PV3, and the six sets 
of load power curves are recorded as Load1, Load2, 
Load3, Load4, Load5, Load6.

The autocorrelation diagram of the series is shown in 
Fig.  9. Although the autocorrelation of PV output and 
load power varies widely, the source-load power series 

Table 1 Hyperparameters and algorithm characteristics of the pseudo measurement generation models

Models Hyperparameters Algorithm characteristic

GBDT n_estimator = 100, max_depth = 3 GBDT is the state of the art of machine learning model with 
extremely high accuracy

RF n_estimator = 100 1. Good regression performance for high dimensional data. 2. 
No easy overfitting. 3. Fast Training speed, easy to make parallel 
method

BPNN learning_rate = ,hidden_layer = 2, hidden_size = [128,128], 
drop_out = 0.1

1. Strong robustness and fault tolerance. 2. Can fully approximate 
any complex nonlinear relation

TRNN, LSTM, GRU learning_rate = 0.0002–0.0005, hidden_layer = 2, hidden_
size = [128,128], drop_out = 0.1

TRNN, LSTM, GRU are the most popular deep learning frameworks 
for processing time series data

A-TRNN-PC, 
A-LSTM-PC, 
A-GRU-PC

learning_rate = 0.0001–0.0003, heads = 2,hidden_layer = 2, hid-
den_size = [128,128], drop_out = 0.1

\
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has a strong correlation with the data that lags itself by 
several time steps. This conclusion is also confirmed in 
[21, 22].

According to [14], external factors associated with 
power data generally include both temporal and climate 
data. Here, time and temperature, time and sunshine 
duration are selected as external factors affecting load 
power and PV output, respectively, and the JS diver-
gence of power series and external factor series are cal-
culated separately. The results are shown in Table 2. It 
is shown that power sequence has different similarity 
characteristics with different external factors. The load 
power has significant similarity with the time factor, 
but is not sensitive to the climate factor. The PV output 
is not sensitive to the time factor, while it is highly simi-
lar to the sunshine duration.

The power series not only has autocorrelation and 
external similarity in the time domain, but also exhibits 
periodic fluctuations in the frequency domain, fluctua-
tions which can be derived from Fourier spectrum analy-
sis. Figure 10 shows the Fourier spectra of the nine power 
series. It is evident that both the PV power output and 

load power have multiple significant frequencies, such 
as PV1 with higher energy at 124h

−1 , 112h
−1 and 18h

−1 , and 
Load1 with higher energy at 124h

−1 and 112h
−1.

5.2  Accuracy of the A‑RNNs‑PC model
In this section, a 0.4  kV DN with the number "1-LV-
rural3-0-no_sw" from the SimBench dataset is used 
as the test system. The network has 129 nodes and 127 
lines, of which 118 nodes are loaded and 17 nodes are 
equipped with PV. Detailed network topology and data 
information can be found on the official SimBench pro-
ject website [15]. The data contain the time series of load 
power and PV output in the test system from January 1, 
2016 to December 31, 2016 with a collection period of 
15 min. The network topology is shown in Fig. 12 in the 
“Appendix”.

Fig. 9 Diagrams of autocorrelation of source-load power series

Table 2 JS values between source-load power sequences and their corresponding external factor sequences

External factors Load1 Load2 Load3 Load4 Load5 Load6

Time factor 0.150 0.077 0.088 0.067 0.068 0.059

Climate factors 0.475 0.441 0.462 0.396 0.402 0.418

External factors PV1 PV2 PV3

Time factor 0.446 0.425 0.403

Climate factors 0.107 0.144 0.108

Fig. 10 Fourier spectra of source-load power sequences
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In order to test the accuracy of the load power and PV 
output pseudo-measurement generated by A-RNNs-
PC, the PV output data numbered "PV1" and "PV4" are 
chosen, and are then re-numbered as "PV1 "and "PV2". 
For the load power data, the numbers "H0-A" and "H0-
G" are chosen and are then re-numbered as "Load1" and 
"Load2". In addition, from the analysis results in Sect. 5.1, 
time and sunshine duration are selected as external fac-
tors of load and PV, respectively. The time series is the 
numbering sequence of sampling points in one day from 
1 to 96 in chronological order. Based on the PV instal-
lation locations provided in [13], the sunshine duration 
data are obtained with a collection period of 10 min from 
the website of the German Meteorological Office for the 
corresponding locations, and these data are interpolated 
to make a sequence of sunshine duration with a collec-
tion period of 15  min. In order to avoid differences in 
magnitudes between different data and to eliminate the 
effect of different spans of values on the accuracy of 
pseudo-measurement generation, the values of all raw 
data are converted to the range [0, 1] by the maximum-
minimum normalization method.

Based on the time domain evaluation index RMSE and 
the frequency domain evaluation index ESS, the accuracy 
of the pseudo-measurements generated by each model 
for PV output and active load under the DN is demon-
strated to verify the effectiveness of the A-RNNs-PC 
model. All results are the average values after 10 replicate 
tests. The results of pseudo-measurement generation 
accuracy for PV output (PV1 and PV2) and active load 
(Load1 and Load2) under nine pseudo-measurement 
generation models are shown in Table 3.

In terms of the time-domain assessment metric RMSE, 
the accuracies of the pseudo-measurements generated by 
GBDT and RF are similar, with slight differences in per-
formance with different data. However, their accuracies 
are generally inferior to that of the neural network-based 

series models, because of the lack of learning ability of 
GBDT and RF for deeper features of the data. Among 
the various types of neural network models, BPNNs 
have the lowest accuracy in generating pseudo-measure-
ments because they do not have the ability to mine tem-
poral correlation properties in time-series data. RNNs 
models, i.e., TRNN, LSTM, and GRU, can compensate 
for this shortcoming, but their accuracies in the time 
domain are worse than those of LSTM and GRU because 
of the gradient loss/explosion problem that may occur 
when TRNNs deal with long time series. By comparing 
A-RNNs-PC model and RNNs model, it is shown that 
the average RMSEs of A-TRNN-PC, A-LSTM-PC, and 
A-GRU-PC in each source-load dataset are reduced by 
6.28%, 6.24%, and 6.96% compared with TRNN, LSTM, 
and GRU, respectively. Clearly, the proposed A-RNNs-
PC model can generate pseudo-measurement data closer 
to the real data. Analyzing the differences between RNNs 
and A-RNNs-PC structures, it can be concluded that the 
effective cooperation of the recurrent neural network 
structure with the attention mechanism, together with 
the periodically correlated inputs picking historical auto-
correlated and externally correlated data with positive 
gain on the target value, enhance the ability of the neu-
ral network to characterize the data properties, enabling 
A-RNNs-PC to focus more on learning the data features 
from the valid information and then generating pseudo-
measurement data with higher accuracy.

In addition to the time domain perspective, the per-
formance of the A-RNNs-PC model can also be ana-
lyzed from the frequency domain perspective using the 
ESS evaluation index. From the ESS values shown in 
Table 3, it can be seen that the pseudo-measurement data 
obtained from the A-RNNs-PC model are the closest to 
the frequency domain characteristics of the real data, 
for both PV output and active load. A-LSTM-PC and 
A-GRU-PC have the highest frequency domain accuracy. 

Table 3 Accuracy of pseudo measurements of PV output and active load under different models

Models PV1 PV2 Load1 Load2 PV1 PV2 Load1 Load2
RMSE (×10−1 kW) ESS (×10−3 kW)

GBDT 0.621 0.123 1.390 1.313 2.02 0.41 3.55 3.27

RF 0.606 0.119 1.378 1.319 1.73 0.34 3.41 3.27

BPNN 0.540 0.110 1.361 1.245 1.56 0.29 3.17 3.19

TRNN 0.490 0.104 1.332 1.231 1.47 0.27 3.05 3.11

LSTM 0.478 0.098 1.317 1.226 1.42 0.25 2.95 3.06

GRU 0.479 0.101 1.316 1.228 1.41 0.24 2.89 3.07

A-TRNN-PC 0.480 0.096 1.308 1.092 1.35 0.23 2.77 2.75

A-LSTM-PC 0.470 0.091 1.269 1.076 1.31 0.20 2.71 2.71

A-GRU-PC 0.471 0.090 1.272 1.075 1.33 0.20 2.73 2.71
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A-TRNN-PC is the next most accurate one, whereas 
the worst performers are GBDT and RF. A TRNN-PC, 
A-LSTM-PC, and A-GRU-PC have average ESS reduc-
tions of 10.96%, 11.81%, and 9.71% in each source-load 
dataset compared to those of TRNN, LSTM, and GRU, 
respectively. As an example, the average ESS of A-LSTM-
PC is reduced by 26.14%, 21.86%, and 15.82% compared 
to those of GBDF, RF, and BPNN, respectively. There-
fore, the proposed A-RNNs-PC model can capture more 
frequency domain feature information from the source-
load historical data. This makes the generated pseudo-
measurements close to the real data in the frequency 
spectrum, thus improving the accuracy of the pseudo-
measurements in the frequency domain.

In summary, A-RNNs-PC has a better ability to capture 
the time–frequency domain characteristics of source-
load power data than RNNs, and pseudo-measurement 
generation models based on machine learning such as 
GBDF, RF, and BPNN can provide more accurate pseudo-
measurement data for the state estimation of DN.

5.3  Number of training parameters and training time 
of A‑RNNs‑PC model

The A-RNNs-PC model can be encapsulated into a fixed 
model after training, receive data from the measurement 
system, and generate the corresponding pseudo-meas-
urement data by combining with the existing histori-
cal data in the database. Since the model parameters are 
already determined, the computation time required to 
generate pseudo-measurements is usually below micro-
seconds, which has good real-time performance. How-
ever, the A-RNNs-PC model requires a large number of 
parameters to build, and this will occupy large storage 
space in the computing device. In addition, the model 
may need to consume some time at regular intervals to 
train and update the parameters to adapt to the changing 
characteristics of the power data at the source-load end.

Figure  11 shows the numbers of training parameters 
for A-RNNs-PCs, RNNs and BPNNs, as well as the run-
ning time for one epoch (i.e., all data are fed into the neu-
ral network and one forward pass and back propagation 
calculation is completed). It can be seen that the num-
ber of training parameters and training time of BPNN 
are the smallest, but its accuracy is also lower compared 
to A-RNNs-PC and RNNs. The training parameters 
of A-RNNs-PC are slightly fewer compared to RNNs, 
which saves storage space. This is because A-RNNs-PC 
trains two sub-RNNs models with power data and exter-
nal factor data separately, and its periodic-correlation 
input method selects data with positive gain to the out-
put as the input of the two sub-RNNs, which greatly 
reduces the number of neurons in the input layer. In con-
trast, RNNs splice power data and external factor data 

into one-dimensional sequences for input to the model 
under the sequential input method, and thus, not only 
more input layer neurons are used, but also the number 
of weight parameters in the input and hidden layers is 
increased. In addition, A-RNNs-PCs and RNNs complete 
an epoch at a very similar rate, but the former generates 
pseudo-measurements with higher accuracy. It is shown 
that A-RNNs-PC can mine more effective information 
from the original source-load data without increasing 
the training parameters and training time, and quickly 
build a pseudo-measure generation model with superior 
performance.

5.4  Effect of pseudo‑measurement on the accuracy 
of state estimation

In this subsection, the network numbered "1-EHVHV-
mixed-all-0-no_sw" is selected from the SimBench data-
base as the test system, and is then divided into one 
380 V network, two 220 V networks and two 110 V net-
works according to the electrical connection relation-
ship, with each sub-network renumbered. The 380  V 
network, whose network topology is shown in Fig. 13 in 
the “Appendix”, is denoted as D380 and has 291 nodes, 
354 branches, 222 generators distributed in 94 nodes, 
and 170 clean energy generators in 118 nodes, includ-
ing 19 PVs and 123 wind generators. The 220 V network, 
as shown in Fig. 14 in the “Appendix”, consists of 2 rela-
tively independent sub-networks of D220-1 and D220-2, 
which are divided according to the electrical connection 
relationship. D220-1 has 223 nodes, 277 branches, 101 
generators distributed on 52 nodes, and 6 generators 
distributed on 6 nodes, whereas D220-2 is smaller than 
D220-1, with only 57 nodes, 67 branches, 23 generators 
distributed in 13 nodes, and 13 clean energy generators 
distributed in 8 different nodes, including wind power 
generators only. The wind power generation equipment is 
included, as shown in Fig. 15 in the “Appendix”. The two 

Fig. 11 Comparison of training parameters and training time of the 
pseudo measurement generation models based on neural network
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110 V grid models are D110-1 and D110-2. D110-1 has 
61 nodes, 59 branches, no generators, and 41 wind tur-
bines distributed in 41 different nodes, and the network 
topology is shown in Fig.  16 in the “Appendix”. D110-2 
has 81 nodes, 82 branches, no generators, and only 19 
wind turbines distributed in 19 different nodes, and the 
network topology is shown in Fig. 17 in the “Appendix”.

Since this paper proposes a pseudo-measurement gen-
eration model for active power at the source-load side, it 
does not generate line power and node power. The meas-
urement system shown in this table only adjusts the node 
power measurement of the original measurement sys-
tem, i.e., reduces the ratio of nodal active/reactive power 
measurement, and adds nodal active pseudo-measure-
ment. To analyze the impact of pseudo-measurement on 
distributed dynamic estimation accuracy, three measure-
ment cases are considered:

• Case 1: Network measurements are sufficient and the 
measurement system is set up as shown in Table 4.

• Case 2: D110-1 and D110-2 are measurement-poor, 
PMU and SCADA measurement ratios are set as in 
Table 5, and no pseudo-measurement information is 
added.

• Case 3: D110-1 and D110-2 are measurement-poor, 
and the measurement ratio and pseudo-measure-
ment ratio of the measurement system are as shown 
in Table 5.

Distributed dynamic state estimation is performed 
for this DN model in the three measurement cases. The 
comparison of voltage magnitude and voltage phase 
angle estimation accuracy and lifting degree are shown 
in Tables 6 and 7, respectively. Lifting degree represents 
the multiple of a model’s calculation results superior to 
the standard model. Let the RMSE values of the model’s 
calculation results be v and the RMSE values of standard 
model’s calculation results be v0 , then lifting degree liftv,v0 
can be expressed as:

When the RMSE values of model results are taken as 
indicator, a lifting degree greater than 0 indicates that the 
model is better than the standard model, equaling 0 indi-
cates that the model’s performance is consistent with the 
standard model, whereas lower than 0 indicates that the 
model’s calculation results are worse than the standard 
model.

(27)liftv,v0 = −
v − v0

v

In Case 3, even though the pseudo-measurements 
are added to D110-1 and D110-2, the pseudo-measure-
ments are limited to the active power of load, PV and 
wind power, and the reactive power data are lacking. 
Therefore, the accuracy of the pseudo-measurements is 
poorer than the real measurements, so the accuracy of 
global estimation in Case 3 is inferior to that of Case 1 

Table 4 Measurement system settings

Area PMU ratio 
(%)

SCADA Measurement ratio Pseudo‑
measurement 
ratio

Voltage 
amplitude 
(%)

Nodal 
power 
(%)

Line 
power 
(%)

Nodal active 
power (%)

D380 90 100 100 80 0

D220-1 70 100 100 80 0

D220-2 70 100 100 80 0

D110-1 40 90 90 80 0

D110-2 40 90 90 80 0

Table 5 Measurement system settings with pseudo-
measurements

Area PMU ratio 
(%)

SCADA Measurement ratio Pseudo‑
measurement 
ratio

Voltage 
amplitude 
(%)

Nodal 
power 
(%)

Line 
power 
(%)

Nodal active 
power (%)

D380 90 100 100 80 0

D220-1 70 100 100 80 0

D220-2 70 100 100 80 0

D110-1 40 90 40 80 50

D110-2 40 90 40 80 50

Table 6 RMSE values of voltage magnitudes obtained under 
three measurement conditions (×10–4)

Area Case 1 Case 2 Case 3 Lifting degree

Case 3 
compared to 
Case 1 (%)

Case 3 
compared to 
Case 2 (%)

D380 1.472 1.507 1.489 − 1.14 1.21

D220-1 1.911 1.970 1.941 − 1.55 1.49

D220-2 2.414 2.764 2.704 − 10.72 13.8

D110-1 3.712 5.540 4.868 − 23.75 13.80

D110-2 2.972 4.125 3.820 − 22.20 7.98
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(as shown in Tables 6 and 7). However, the inclusion of 
pseudo-measurements in Case 3 significantly improves 
the estimation accuracy of D110-1 and D110-2 compared 
to Case 2, which results in a positive effect on the bound-
ary-consistent estimation results, leading to a small 
increase in the estimation accuracy of other sub-areas, as 
can be seen in Tables 6 and 7.

In summary, although the pseudo-measurement data 
obtained by the A-RNN pseudo-measurement genera-
tion model can hardly help the state estimation to reach 
the accuracy under the real measurement, it can improve 
the estimation without increasing the economic cost, and 
alleviate the negative impact of local measurement short-
age on the global estimation of DN.

6  Conclusion
In order to alleviate the negative impact of insufficient 
measurement of DN on the accuracy of state estimation, 
and based on the solution idea of generating pseudo-
measurement, this paper analyzes the time–frequency 
domain characteristics of the source-load historical 
power sequence, and the autocorrelation of the sequence 
and the probability similarity with external factors using 
autocorrelation function and JS dispersion. The periodic 
fluctuation of the sequence from the frequency domain 
is verified using Fourier spectrum. A-RNNs are then 
chosen to automate the representation of the mapping 
function of the model, so that an A-RNNs-PC pseudo-
measurement generation model can be established for 
mining the power time–frequency domain characteris-
tics of the source-load end. Finally, the generated pseudo-
measurement data are used as the input to the distributed 
dynamic state estimation model.

The experiments validate the performance of the 
proposed A-RNNs-PC pseudo-measurement genera-
tion model based on the load and PV output tempo-
ral data of the distribution network in the SimBench 

database. The results show that A-RNNs-PC exhibits 
better accuracy in both time and frequency domains 
than six commonly used machine learning-based 
pseudo-measurement generation models, includ-
ing RF, GBDT, BPNN, TRNN, LSTM, and GRU. In 
addition, it is also verified that A-RNNs-PC can 
obtain pseudo-measurements with higher accuracy 
using similar training parameters and training time 
as RNNs. The generated pseudo-measurement data 
can improve the accuracy of distributed dynamic 
state estimation without adding additional economic 
burden.

Considering the non-synchronism of measurement 
data caused by the different sampling frequencies 
and communication delays of measurement equip-
ment in the state estimation of distribution network, 
as well as three-phase imbalance in some regions 
caused by imbalance of line parameters, single-phase 
load access etc., the solution of asynchronous meas-
urement data in state estimation and distributed 
dynamic state estimation in the condition of three-
phase imbalance of a local network will be explored 
in the future.

Appendix
See Figs. 12, 13, 14, 15, 16, and 17.

Table 7 RMSE values of voltage phase angles obtained under 
three measurement conditions (×10–4 rad)

Area Case 1 Case 2 Case 3 Lifting degree

Case 3 
compared to 
Case 1 (%)

Case 3 
compared to 
Case 2 (%)

D380 7.005 7.152 7.089 1.20 0.89

D220-1 5.120 5.328 5.209 − 1.71 2.28

D220-2 6.266 7.169 7.013 − 10.65 2.22

D110-1 11.084 15.582 15.136 − 26.77 2.95

D110-2 10.070 14.776 13.943 − 27.78 5.57

Fig. 12 Network topology of "1-LV-rural3–0-no_sw"
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