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Jointly improving energy efficiency 
and smoothing power oscillations of integrated 
offshore wind and photovoltaic power: a deep 
reinforcement learning approach
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Abstract 

This paper proposes a novel deep reinforcement learning (DRL) control strategy for an integrated offshore wind and 
photovoltaic (PV) power system for improving power generation efficiency while simultaneously damping oscilla-
tions. A variable-speed offshore wind turbine (OWT) with electrical torque control is used in the integrated offshore 
power system whose dynamic models are detailed. By considering the control system as a partially-observable 
Markov decision process, an actor-critic architecture model-free DRL algorithm, namely, deep deterministic policy 
gradient, is adopted and implemented to explore and learn the optimal multi-objective control policy. The potential 
and effectiveness of the integrated power system are evaluated. The results imply that an OWT can respond quickly 
to sudden changes of the inflow wind conditions to maximize total power generation. Significant oscillations in the 
overall power output can also be well suppressed by regulating the generator torque, which further indicates that 
complementary operation of offshore wind and PV power can be achieved.

Keywords  Offshore wind turbine, Offshore photovoltaic power, Deep reinforcement learning, Deep deterministic 
policy gradient, Multi-objective optimal control

1  Introduction
Decarbonization of electricity production is critical 
for addressing the issues of climate change and global 
warming. Improvements in the efficiency and stability 
of renewable power generation such as wind and photo-
voltaic (PV) energy enable a more rapid and lower-cost 
transition to a decarbonized energy system. The joint 
operation of wind and PV power systems is especially 
effective in increasing renewable power production [1]. 

Based on their complementary nature, the integration 
and coordinated operation of wind and PV power ensure 
a reliable and adequate power supply, while adhering to 
the grid requirements by enhancing the peak power shav-
ing capacity. The integration of an offshore wind turbine 
(OWT) with offshore PV can potentially enhance energy 
output and reduce overall project cost because of the 
shared seawater space, power infrastructure and moor-
ing system. In addition, offshore PV can be complemen-
tery to OWTs in aspects of increasing the planned cable 
capacity factor and improving the turbine design life span 
[2]. Therefore, the integration of offshore wind and PV 
systems will be beneficial in both economical and techni-
cal terms.

Recently, a variety of methods have been investigated, 
primarily directed at the optimization and coordinated 

*Correspondence:
Meizhen Lei
lixingfile@163.com
1 The State Key Laboratory of Water Resources Engineering 
and Management, Wuhan University, Wuhan 430072, Hubei, China
2 The School of Information Science and Engineering, Zhejiang Sci-Tech 
University, Hangzhou 310018, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-023-00298-7&domain=pdf


Page 2 of 11Yin and Lei ﻿Protection and Control of Modern Power Systems            (2023) 8:25 

operation of complementary wind-PV systems to ensure 
power generation quality and efficiency. A multi-objec-
tive model is established to maximize power generation 
and minimize output fluctuations of a hydro-wind-pho-
tovoltaic power system in [3], whereas in [4], the fea-
sibility of adding an offshore floating solar farm to an 
existing Dutch offshore wind farm under the constraint 
of a certain fixed cable capacity is evaluated. The opti-
mal size and operation of complementary hydro-wind-
PV power systems are explored to provide reliable and 
adequate power for the grid in [5], while [6] presents a 
model for estimating emissions of electricity from sys-
tems that couple photovoltaic and wind generation 
with lithium-ion and vanadium redox flow batteries. In 
[7], the potential of combining offshore wind and solar 
power is explored based on the technical specifications 
of commercial wind turbines and PV panels, while in 
[8], a two-stage evaluation mode-based fuzzy multi cri-
teria decision making method is proposed to select the 
optimal site of wind-PV power plants given the differ-
ent attitudes of decision makers. Reference [9] suggests 
a multi-objective particle swarm optimization method 
to enhance the operation of a wind farm and a PV array 
with a battery energy storage system, while [10] presents 
the analyses of large-scale integration of wind and PV 
power into a Danish reference energy system by consid-
ering certain ancillary services to identify optimal mix-
tures from a technical point of view. In [11], it shows 
that renewables could provide a source of power com-
petitive with fossil-based alternatives in India by using a 
cost optimization model.

Reference [12] uses a mathematical tool, Copula, to 
unscramble the dependencies between the power of 
wind and PV plants and introduces a probability method 
to analyze how power and energy are compensated at a 
certain confidence level. In [13], fault detection, classifi-
cation, and location for a PV-Wind-based microgrid are 
presented, whereas [14] proposes a damping method for 
low frequency oscillations by incorporating a supple-
mentary damping controller with a PV generating station 
whose parameters are coordinated with a power system 
stabilizer. Reference [15] proposes a 2-degree of freedom 
combined proportional-integral and derivative control 
scheme for the frequency and power control of a wind 
integrated interconnected power system.

However, most recent works mainly focus on the eco-
nomic/technical planning and feasibility analysis of the 
onshore wind-PV systems at the planning level, while 
the real-time operation and optimization of the offshore 

integrated wind-PV system to improve energy efficiency 
and to smooth power oscillations have not been well 
investigated. There has been limited attention to the 
multi-objective real-time operations of the integrated 
offshore wind and PV power system by considering the 
intermittent and stochastic nature of wind and solar PV 
facilities, and hence the real-time complementary poten-
tial has not been fully explored. In addition, the con-
ventional proportional-integral and derivative control 
methods, which have been widely employed in the cur-
rent literature, may not fulfill the high-quality joint con-
trol objectives of the optimal wind power capture and 
power oscillation smoothing for an integrated OWT and 
PV power system.

This paper proposes a deep reinforcement learning 
(DRL) approach and deep deterministic policy gradient 
(DDPG) algorithm for the joint operations of the inte-
grated offshore wind and PV power system. Inspired 
by behavioral psychology, DRL has exhibited high 
potential in dealing with sequential complex decision-
making problems such that the cumulative reward can 
be maximized when interacting with an uncertain envi-
ronment. DRL is also adaptive and model-free, and does 
not need prior knowledge of the environment, as it can 
learn the generalized optimal control strategy from his-
torical data. By using DDPG for real-time control, the 
OWT rotor speed can be varied according to inflow 
wind conditions while the generator rotation speed can 
be synchronized with the grid frequency, and the com-
plementary operation and oscillation suppression of the 
OWT and the photovoltaic power can be well achieved. 
The potential and effectiveness of the integrated OWT 
and PV power system are evaluated based on design 
experiments.

The main novelties and contributions of this work are 
as follows:

(a)	 A control framework for the real-time operation 
and optimization of an offshore integrated wind-
PV system to jointly improve energy efficiency and 
smooth power oscillations.

(b)	 The DDPG methodology design for achieving a 
tradeoff between the power generation and power 
oscillation damping performance of the integrated 
OWT-PV power system.

(c)	 Verifications of the DDPG approach in simultane-
ously improving the power capture efficiency and 
power smoothing capability of the integrated power 
system using only the generator torque control.
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2 � Integrated offshore wind and photovoltaic 
power

Figure 1 shows a sketch of the integrated offshore wind 
and PV power system which consists of an offshore vari-
able speed wind turbine and PV panels that are arranged 
in an array. All the PV panels are connected to each other 
and are fixed to the floating wind turbine platform (not 
shown). By regulating the generator torque, the tur-
bine rotor speed can be continuously varied according 
to inflow wind conditions, while the generator rotation 
speed can be kept constant. The PV power system also 
includes a boost converter connected with the DC link 
and DC-AC inverter tied to the grid through a trans-
former. The boost converter acts as a step-up converter 
and performs maximum power point tracking (MPPT) 
operation of the PV panels. In order to develop the DRL 
control strategy to promote the complementarity opera-
tion of this offshore wind and PV resources and to reduce 
energy instability, it is essential to consider the system 
dynamic response and construct a control-oriented 
model.

2.1 � Dynamic model of the offshore wind turbine
As shown in Fig. 1, the dual-stage mechanical transmis-
sion and the electrical generator are important elements 
for the integrated power system. By varying the generator 
torque, the rotational speed of the turbine rotor varies, 
and hence the combined power output of the integrated 
system can be continuously varied accordingly. When the 
rotational speed of the wind turbine is changed accord-
ing to the inflow wind condition to maximize the wind 
power capture, the rotational speed of the generator is 
kept constant for connection with the grid. When there 
is insufficient PV power, the turbine rotor speed and 

generator power can be directly regulated such that the 
overall power generation of the integrated power system 
will be kept stable.

In this paper, the NREL offshore 5-MW baseline wind 
turbine is considered for the integrated power system. 
The wind turbine has a rotor radius of about 63  m, 
the rated rotor speed is 12.1 rpm, with a rated genera-
tor speed of 1173.7 rpm, and gearbox ratio of 97:1. The 
control of the wind turbine and the integrated power 
system is focused on region 2 in which the generator 
torque is controlled to be proportional to the square 
of the filtered generator speed to maintain a constant 
(optimal) tip-speed ratio for optimizing power capture 
and smoothing the overall power output. In this region, 
the peak power coefficient of 0.482 occurs at a tip-speed 
ratio of around 8 and a rotor-collective blade-pitch 
angle of 0.0°.

By neglecting the damping of the mechanical transmis-
sion, the dynamic model of the mechanical transmission 
can be generally formulated as:

where Ta is the low-speed shaft aerodynamic torque, Tg is 
the high-speed shaft generator torque, TL and Th are the 
respective torques at the gearbox ends of the low-speed 
and high-speed shafts. wr and wg are the rotational speeds 
of the turbine rotor and generator shaft, respectively.

By assuming rigid mechanical transmission and a fixed 
gear transmission ratio, the model of the transmission 
can be described as:

where ig denotes the transmission ratio of the wind tur-
bine system.

By combining (1) and (2), the dynamic model of the 
turbine system cast to the low-speed turbine rotor side 
can be described as:

where Jr and Jg are the turbine rotor inertia relative to the 
turbine shaft and generator inertia relative to the high-
speed shaft, respectively.

The aerodynamic torque Ta can be described as:

(1)
{

Jrω̇r = Ta − TL

Jgω̇g = Th − Tg

(2)
TLωr = Thωg

ig =
TL
Th

(3)
(

Jr + Jgi
2
g

)

ω̇r = Ta − Tgig

(4)Ta =
πρR3υ2(t)

2�
CP(�,β)

Fig. 1  The integrated offshore wind and photovoltaic power system
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where v(t) is the inflow wind speed, R is the turbine 
radius, ρ is the sea air density, β is the turbine pitch angle 
which is set to zero in the control region 2 of this work, 
Cp denotes the power coefficient which indicates the 
power extraction performance of the turbine, and λ is the 
tip speed ratio, defined as λ = wrR/v(t).

The power coefficient can be defined as [16]:

where the constant coefficients are c1 = 0.5176, c2 = 116, 
c3 = 0.4, c4 = 5, c5 = 21, c6 = 0.0068.

As shown in Fig. 2, the power coefficient has a clearly 
nonlinear relationship with respect to the tip speed ratio. 
There also exists an optimal tip speed ratio such that the 

(5)







CP = c1

�

c2
�i
− c3β − c4

�

e
−c5
�i + c6�

1
�i

= 1
�+0.08β − 0.035

β3+1

while the power compensation of the PV is accomplished 
simultaneously.

2.2 � Model of the photovoltaic power
A PV array is composed of multiple series and parallel 
connected PV modules. Each PV module consists of a 
number of solar cells connected in series and parallel to 
obtain the desired output voltage and current. Each solar 
cell is basically a p-n diode that can convert the incident 
energy from sunlight directly into electrical energy.

The power generation of the PV cells is dependent on 
weather conditions including irradiation and tempera-
ture. For convenience, the single-diode model is used to 
describe the PV cell [17], so the relationship between the 
PV current and voltage can be modelled as:

where
Iph: the light-generated cell photocurrent at the nomi-

nal condition of 25◦C, 1000 W/m2

Rsh: the intrinsic shunt resistance or the equivalent par-
allel resistance, 500 Ω.
Rs: the equivalent series resistance, 0.1 Ω.
Ki: the short-circuit current/temperature coefficient, 

0.0017 A/K.
Isc: the short circuit current, A
Tk: the actual temperature, 298 K.
Tref: the reference temperature, 298  K.λpv: the irradia-

tion (W/m2), the nominal irradiation is 1200 W/m.2q: the 
electron charge, 1.610−19 Ck: the Boltzmann constant, 
1.380510−23 J/K
Voc: the open-circuit voltage, V
Ns: the number of cells connected in series in the given 

photovoltaic module.
Np: the number of cells connected in parallel in the 

given photovoltaic module.n: the ideality factor, 1.6
T: the module operating temperature, 323 K.
Tref: the reference temperature, 298 K.
Eg0: the bandgap energy of the semiconductor, 1.1  eV 

(1 eV = 1.6 × 10–19 J).

3 � The DDPG methodology
By considering the control system as an extension to a 
partially-observable Markov decision process (MDP), 
an actor-critic architecture DRL algorithm, i.e., deep 

(6)
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Fig. 2  The wind turbine power coefficient

power coefficient achieves the maximum value. As shown 
in Fig. 2, the maximum power coefficient is around 0.48 
and the optimal tip speed ratio is around 8.11. Thus, it is 
clear that the maximum power capture can be achieved 
if appropriate generator torque control is applied. How-
ever, the PV power generation control is also designed 
by regulating the generator torque such that the overall 
power generation of the integrated system can be rela-
tively smooth.

By observing (1)–(5), it is clear that the transmission 
ratio of the wind turbine can be continuously varied by 
regulating the generator torque according to the turbine 
rotation speed and inflow wind condition, and hence the 
maximum power tracking control can be readily achieved 
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deterministic policy gradient (DDPG), is adopted herein 
to explore and learn the optimal multi-objective control 
policy. Unlike the existing model-based control algo-
rithms that are heavily reliant on accurate system mod-
eling, the DDPG algorithm is a model-free approach that 
is well-suited to sequential uncertain optimal control 
problems.

3.1 � The problem formulation
For the integrated power system, the multi-objective 
value function to be minimized at the time can be for-
mulated as a trade-off between the power generation and 
power oscillation damping performance, as:

where ER(t) denotes the operational value function, α1 
and α2 denote the penalty coefficients. Rp(t) denotes the 
normalized variation rate of the power output of the inte-
grated power system.

The normalized variation rate of the power output of 
the integrated power system Rp(t) can be defined as:

where �t denotes the time interval for evaluating the 
total power oscillations, �Pg,pv denotes the integrated 
power variation during a time interval, and Rp,max 
denotes the variation rate of the power output of the inte-
grated power system.

As a stochastic control process, MDP is designed to 
provide the framework for modelling the sequential-
decision making problem. MDP can be represented by 
a tuple of a finite of states, control actions and the state 
transition probability, and hence can model the inter-
actions between the integrated power system and the 
DDPG agent.

The main components for MDP can be described as 
follows:

(1)	 Agent The DDPG agent aims to generate control 
actions by gaining experience through repeated 
interactions with the environment. A well-trained 
DDPG agent can generate the optimal or near-opti-
mal control policy for the integrated system in real 
time. The control action is:

(2)	 States As real-time information from the environ-
ment, the states are used to indicate the status of the 
environment. DDPG will make control decisions 

(7)min ER(t) = α1 · Cp(t)+ α2 · Rp(t)

(8)Rp =

∣

∣

∣

∣

�Pg,pv

Rp,max�t

∣

∣

∣

∣

(9)a(t) � Tg(t)

based on the obtained state information through 
interaction with the environment. The state of the 
integrated system is the turbine rotation speed, as:

(3)	 Reward As the evaluation index of the DDPG agent 
in MDP, the reward is designed to guide the agent 
to learn the optimal control policy by minimizing 
the control objective in (10). The reward is designed 
as the performance value, as:

(4)	 Constraints The essential constraints of the inte-
grated system include the constraints for the con-
trol actions and states i.e.:

where ωr,rated denotes the rated turbine rotation speed 
(1.267 rad/s), Tg,min and Tg,max denote the minimum and 
maximum generator torques, respectively.

As a discounted sum of the reward function, the accu-
mulated reward R(t) of the exploration process beginning 
with the state s(t) can be formulated as:

where γ ∈ [0, 1] denotes a discount factor, and T denotes 
the time period of the exploration process.

For the policy π generated by the agent, the value func-
tion Qπ (s, a) for performing the exploration process can 
be described as:

The DDPG agent approximates the long-term reward 
and hence the optimal control policy π∗ can be designed 
as:

At each discrete time step in MDP, the agent decides a 
possible action as input for the environment by observ-
ing the current state. This results in the next state and a 
reward from the environment. Consequently, through 
continuous interactions with the environment and map-
ping the local states to the control actions at finite time 
steps, the DDPG agent can derive the optimal control 

(10)s(t) � {ωr(t)}

(11)r(a(t)|s(t)) � ER(t)

(12)







0 < ωr < ωr,rated

Tg,min < Tg < Tg,max

0 < Cp < 1

(13)

R(t) = r(a(t)|s(t))+ γ r(a(t + 1)|s(t + 1)

+ γ 2r(a(t + 2)|s(t + 2))+ · · · + γ T−t r(a(T )|s(T ))

= r(a(t)|s(t))+ γRt+1

(14)Qπ (s, a) = E
π [R(t)|s = s(t), a = a(t)]

(15)π∗ = arg max
π

{Qπ (s, a)}
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policy π∗ such that the maximum accumulative reward 
over time can be achieved sequentially.

3.2 � The implementation procedure
The DDPG agent approximates the long-term reward 
given actions and observations by using two critic 
value function representations for different purposes: 
the critic function provides the judgement of the actor 
and the actor function learns and updates the control 
policy by using the minimum value function estimate 
[18].

As illustrated in Fig.  3, the overall control architecture 
comprises three parts, i.e., the Actor networks (online actor 
and target actor networks), the Critic networks (online 
critic and target critic networks), and the experience replay 
buffer [19]. The Actor networks are used to map the states 
to the control action, the Critic networks are employed for 
estimating the value of state and state-action, while the 
replay buffer takes charge of storing experiences. The two-
copy networks (target actor and target critic networks) are 
employed to improve the stability of the DDPG algorithm 
by calculating the target values. In addition, the experience 
replay buffer is adopted to store a large number of transi-
tions and can randomly sample a mini-batch data from the 
memory to help break the correlation among training data 
when updating. The actor network, which is parameterized 

by θµ , has the output a(t) = µ(s(t); θµ) , while the output 
of the target actor network (parameterized by θµ′ is 
a(t)′ = µ′

(

s(t + 1); θµ
′
)

 . The output of the critic network 

(parameterized by θq ) is q = Q(s(t), a(t); θq) , and the out-
put of the target critic network (parameterized by θq′ ) is 
q′ = Q′

(

s(t), a(t)′; θq′
)

.
During the MDP training process, the parameters of 

the actor networks are updated by the gradient descent 
method in the direction of reducing the loss. Hence:

where m denotes the batch size.
The parameters θq  of the critic network are updated by 

minimizing the following loss function:

Additionally, a soft update strategy is employed to 
update the parameters of the target actor and critic net-
works, as:

where θµ′, θq′ denote the target actor and critic network 
parameters, respectively.τ ∈ (0, 1] denotes the coefficient 
of the soft update.

The clipped Gaussian noise (or the target policy 
noise) is also added to the actions to improve the ran-
domness of the control actions, as:

where N  represents the Gaussian process, which makes 
the DDPG agent more effectively explore the continuous 
action domain.

Afterwards, the algorithm starts running with epi-
sodic iteration and contains three stages: exploration, 
learning and convergence. In order that the critic can 
provide a more accurate judgement and the actor can 
learn a better control strategy, the actor and critic net-
works are trained against each other and the main algo-
rithm is designed as the following:

(16)

∇θµ J ≈
1

m

m
∑

i=1

[

∇aQ
(

s, a; θq
)

|si,µ(si)∇θµµ(s; θ
µ)|si

]

(17)L =
1

m

m
∑

i=1

[

yi − Q
(

si, ai; θ
q
)]2

(18)yi = ri + γQ′
(

si+�t ,µ
′
(

si+�t; θ
µ′
)

; θq′
)

(19)
{

θµ′ ← τθµ + (1− τ )θµ′

θq′ ← τθq + (1− τ)θq′

(20)ã(t) = a(s|θµ)+N

Fig. 3  The DDPG control architecture diagram for the integrated 
OWT and PV power system
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4 � Results and discussions
The potential and effectiveness of the DDPG control for 
the integrated OWT and offshore PV power system are 
evaluated based on design experiments. The performance 
of the optimal power generation and power oscillation 
suppression is also verified. The validations are con-
ducted based on comparison with the results obtained by 
using a PI (Proportional-Integral) type conventional con-
troller widely used in the wind energy industry.

4.1 � The design experiments
The employed OWT is a three-bladed 5  MW offshore 
upwind horizontal-axis variable speed wind turbine with 
a monopile type platform. The power coefficient is a 
function of the tip-speed ratio and blade-pitch angle [20], 
while the peak power coefficient is 0.48 at the tip speed 
ratio of 8.116. The minimum generator speed is 670 rpm 
which corresponds to the minimum turbine rotation 
speed of 6.9 rpm. The PV cells are designed and grouped 
in larger units called PV modules, which are further 
interconnected in a series–parallel configuration to form 
a PV array.

The main parameters for the case study are provided in 
Table 1.

The OWT is initially operated under below-rated 
wind conditions (7–10  m/s) and the PV panels oper-
ate based on the maximum power point tracking mode. 
The DDPG algorithm and MDP are implemented by 
using the Tensorflow in Python. The MDP model is 
designed with a discrete time step of 0.1  min and the 
simulation time period is 6 min. All the DDPG param-
eters have been carefully tuned to obtain satisfactory 

performance of the integrated power system. Both the 
actor and critic networks have five fully-connected lay-
ers with 50 neurons adopted by rectified linear units to 
each layer. They are then fed into the fully-connected 
layer of the actor and critic networks to approximate 
the action and Q value, respectively. The dropout layers 
are also employed to avoid the vanishing gradient prob-
lem. The DDPG algorithm are trained for 300 episodes 
to learn the optimal generator torque control strategy.

As shown in Fig.  4, the turbulent inflow wind speed 
for the OWT is generated with the inflow wind speed 
to be within the range of (7, 10) m/s, and is employed 
for the optimal peak power capture and power smooth-
ing of the integrated power system.

As shown in Figs. 5 and 6, 100 PV modules are con-
nected together to form a PV array for validating the 
power generation control of the integrated OWT and 
PV power. For each PV module, the PV current var-
ies within 30–320 A and the PV voltage varies within 
1–48  V, while the PV power output varies around 
0.5  MW. The typical PV array characteristics are 
employed as the exogenous power input for testing the 
DDPG method since the PV power acts as external per-
turbation for the control design.

Table 1  Main design parameters for integrated power system

Parameters Values

Turbine blade radius R 63 m

Wind turbine rotor inertia Jr 38, 759, 227 kg m2

Generator inertia Jg 534.2 kg m2

Gearbox ratio ig 97:1

Inflow wind speed range 7–10 m/s

Generator torque range 1.79–39.9 kNm

Turbine rotation speed range 0.1–1.267 rad/s

Maximum power variation ratio of the integrated 
system

4.535 MW/s

Minimum and maximum PV power output 0.4 MW, 0.58 MW

Minimum and maximum integrated power output 0.575 MW, 5.11 MW

Number of cells connected in parallel, Np 100

Number of cells connected in parallel, Ns 10

Short circuit current, Isc 10 A

Open-circuit voltage, Voc 28 V

Fig. 4  The inflow wind speed for the wind turbine

Fig. 5  The PV panel characteristics
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4.2 � The power generation performance
As shown in Fig. 7, the turbine rotor speed can be well 
regulated such that the maximum active power from 
the wind can be extracted when the DDPG control is 
employed while the rotation speed cannot be well regu-
lated to track the optimal value when the conventional 
control is employed. The result suggests a promising 
potential in the use of the DDPG in achieving smooth 
wind power generation and regulation, which is particu-
larly important for electric power with high penetration 
of intermittent renewables.

As shown in Fig.  8, the integrated power system 
with the DDPG control can quickly respond to sudden 
changes of the inflow wind condition. Because of the suf-
ficient capability, the power coefficient of the OWT can 
be maintained around the optimal value using the con-
ventional control while the power coefficient will vary 
such that the overall power variations can be compen-
sated for when the DDPG control is used. The result indi-
cates that it is possible to adaptively regulate the power 
coefficient by using the DDPG control as compared with 
the conventional control when considering more control 
objectives.

As shown in Fig. 9, the total power generated from the 
OWT and PV array has significant oscillations because 
of the intermittent wind inflow and the PV power vari-
ations when using the conventional control method. The 
rapid variations in the generated power will in turn cause 
mechanical vibrations on the OWT blades and tower. By 
using the DDPG control for the power oscillation damp-
ing, it is clear that variations of the integrated power gen-
eration can be reduced, making the OWT complement 
the PV power outputs and smoothing the total power 
fluctuations.

4.3 � The training performance of DDPG
As shown in Fig. 10, the episode score converges quickly 
to around 0.45 at about 50 episodes for the DDPG train-
ing despite the initial oscillations of the episode score val-
ues. Therefore, the DDPG method has good convergence 
performance and it is possible to design and apply a 
well-trained DDPG agent in the control of the integrated 
power system.

As illustrated in Fig. 11, the rolling score for DDPG also 
converges eventually to around the value of around 0.45 
which is the same as the episode score. In practice, the 
rolling score is a filtered version of the episode score and 

Fig. 6  The power generation of the PV panel used as input for the 
control design

Fig. 7  The turbine rotation speed variations

Fig. 8  The power coefficient

Fig. 9  The offshore OWT and PV power output



Page 10 of 11Yin and Lei ﻿Protection and Control of Modern Power Systems            (2023) 8:25 

it is clear that the DDPG control method will converge 
to the optimal rolling score value. The results clearly 
reveal that it is promising to apply the DDPG control in 
the integrated power system such that the optimal rolling 
score can be achieved.

As observed from Fig.  12, the normalized variation rate 
of the power output of the integrated power system per epi-
sode decreases and reaches a steady state value of around 0 
quickly, within about 50 episodes, indicating that the DDPG 

control of the integrated power system is closed loop stable 
and can well achieve the joint operation of power efficiency 
maximization and power oscillation damping.

As illustrated in the above validation results, it is clear 
that the DDPG method has relatively good performance 
and the following advantages:

(a)	 The proposed DDPG method has a faster response 
than the conventional control method. By using 
the well-trained DDPG model, it is possible to gen-
erate the control action within a very short time 
interval and hence the trained agent in DDPG will 
be actively involved in the control of the integrated 
power system.

(b)	 The DDPG method can provide a feasible solution 
to the constrained finite time optimal multi-objec-
tive control problem. Hence, by using the DDPG 
method, the control objectives of improving energy 
efficiency and smoothing power oscillation of inte-
grated offshore wind and photovoltaic power can 
be both taken into consideration.

(c)	 The proposed RL method is incorporated with a 
feasible or allowable range of the control actions 
such that the safety of the integrated power system 
can be checked in a timely manner in case the agent 
generates wrong actions and causes failed future 
power generation. Therefore, the proposed DDPG 
method is safer than the conventional control algo-
rithm.

(d)	 The proposed DDPG method is model-free and 
does not require prior domain knowledge or a pre-
defined rule to decide how to choose an action.

Considering the above advantages of the proposed 
method, it is promising to use the DDPG control method 
in real-world applications. Therefore, in order to imple-
ment the DDPG method, the hyperparameters of the 
DDPG model can be adaptively tuned to match the real-
world control plant. Also, the valuable knowledge from 
the control plant can be collected before the implemen-
tation such that the decision-making problems can be 
quickly addressed. In addition, a laboratory-level testbed 
using the Raspberry Pi boards [21] could be first con-
structed by specifying key technical details and imple-
mentation procedure over which the DDPG algorithm 
can be tested and validated such that appropriate control 
actions can be generated before practical application.

5 � Conclusion
The paper has presented the design, dynamics and DDPG 
optimal control for an integrated OWT and PV power 
system, considering the damping of power oscillations 
in particular. A variable-speed OWT with electrical 

Fig. 10  The episode score variations

Fig. 11  The rolling score variations

Fig. 12  The normalized variation rate
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generator torque control has been used in the integrated 
offshore system for active power regulation and oscilla-
tion damping. The results from design experiments indi-
cate that the OWT responds quickly to maximize the 
total power generation when using the DDPG control, 
while the power oscillations can also be better damped 
by regulating the generator torque when using the DDPG 
control. The results indicate the potential for synergies 
between offshore wind and PV power utilization, and it 
is clear that the complementary operations of the inte-
grated system can achieve peak power shaving perfor-
mances. In future work, a scaled-down prototype of the 
offshore WT and PV station will be built and experimen-
tal verifications of the proposed control approach will be 
conducted.
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