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Abstract 

With the rapid development of electrical power systems in recent years, microgrids (MGs) have become increasingly 
prevalent. MGs improve network efficiency and reduce operating costs and emissions because of the integration of 
distributed renewable energy sources (RESs), energy storage, and source-load management systems. Despite these 
advances, the decentralized architecture of MGs impacts the functioning patterns of the entire system, including 
control strategy, energy management philosophy, and protection scheme. In this context, developing a convenient 
protection strategy for MGs is challenging because of various obstacles, such as the significant variance in short-
circuit values under different operating modes, two-way power flow, asynchronous reclosing, protection blinding, 
sympathetic tripping, and loss of coordination. In light of these challenges, this paper reviews prior research on 
proposed protection schemes for AC-MGs to thoroughly evaluate network protection’s potential issues. The paper 
also provides a comprehensive overview of the MG structure and the associated protection challenges, solutions, real 
applications, and future trends.

Keywords Microgrid, Active distribution network, Microgrid protection, Renewable energy sources, Smart grids, 
Distributed energy resources, Energy storage

1 Introduction
Renewable energy sources are becoming the primary 
providers of power in electricity grids. This is because 
of the negative environmental impact of fossil fuels, the 
depletion of fossil fuel resources, power quality issues, 
the deterioration of traditional power networks, and the 
increasing demand for energy [1]. Consequently, micro-
grids (MGs) have evolved to handle the widespread use 
of renewable energy sources (RESs). MGs are regarded as 
independent networks comprised of distributed energy 
resources (DERs) and intelligent loads that can function 
in either a standalone or grid-connected mode driven 

by economic and technical constraints [2]. In this con-
text, MGs have allowed different resources such as solar 
photovoltaic, wind turbines, geothermal, biomass, wave 
energy, and energy storage systems (ESSs) like batteries 
or fuel cells to be engaged in the generation process to 
lessen the reliance on traditional sources, reduce hazard-
ous emissions and pollution, and secure a sustainable and 
reliable source of energy [3–5].

The growing adoption of renewable energy sources, 
as well as innovations in semiconductor switches, have 
pushed the concept of MGs or decentralized grids as a 
way to address the challenges posed by traditional power 
networks. MGs can also contribute to smart grid features 
such as DERs, digital and pilot communications, self-
observation and restoration, and distant and adaptable 
inspection, etc. [6, 7].

Despite the significant contribution of MGs, their 
configurations have posed significant challenges in 

*Correspondence:
Ahmed N. Sheta
ahmednader@mans.edu.eg
1 Electrical Engineering Department, Faculty of Engineering, Mansoura 
University, El-Mansoura, Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-023-00296-9&domain=pdf
http://orcid.org/0000-0002-4552-3599


Page 2 of 40Sheta et al. Protection and Control of Modern Power Systems            (2023) 8:24 

terms of operating philosophy in grid-connected and 
islanded modes, load balancing, stability, power quality, 
power flow, voltage profile, frequency regulation, and 
energy management, protection, etc. [8, 9]. MG pro-
tection is considered crucial in establishing a reliable 
power network, and demands adequate configuration 
of protective relays to handle electrical faults promptly 
in both operating modes. However, it is challenging 
in decentralized networks because of fault level dis-
crepancies, power flow inconsistencies, islanding inci-
dents, and relay reach settings, etc. [10–12]. Thereby, 
studying the functioning of MGs under normal and 
abnormal conditions serves as the basis for developing 
effective protection schemes. This work delves deeply 
into the pertinent challenges and investigates remedial 
procedures.

Table 1 outlines the main limitations of conventional 
protection schemes in AC-MGs and prospective 
remedies as discussed in previous publications, 
reflecting the leading contributions of this work. As 
seen, this work investigates a wider range of protection 
concerns in AC-MGs, with more issues such as auto-
recloser deficiency, asynchronous reclosing, loss of 
coordination, and transformer winding connections 
being taken into account. This study also examines 
further protection schemes such as wavelet transform, 
traveling waves, S-transform, Hilbert–Huang, decision 
tree, and support vector machine-based methods. 
Additionally, it considers the impact of using external-
helping devices such as fault current limiters, energy 
storage units, and intelligent electronic devices to 
aid conventional protective relays. This study offers 
various real MGs and accompanying protection 
systems as practical applications, demonstrating the 
most frequently used protection schemes. Based on the 
preceding, it provides a thorough survey of the most 
reported protection frameworks to assist electrical 
engineers in recognizing impending concerns and 
developing adequate solutions to enhance system 
quality. It also addresses gaps in the literature by 
including the majority of research related to AC-MG 
protection. Generally, the principal contributions of 
this paper can be outlined as follows:

• Examines a wide variety of difficulties posed by 
DER penetration and the resulting impact on 
conventional protection schemes.

• Investigates various protection strategies for 
MGs, demonstrating the primary operating 
principles besides the merits and demerits of each 
methodology in comparative tables.

• Highlights some real-world MGs alongside the 
ratings of RESs and implemented protection 
schemes.

• Reveals further concerns, tendencies, and trends for 
future development and innovation in this research 
area.

The rest of the paper is structured as follows. Section 2 
outlines the review methodology; Section  3 gives an 
overview of the structure, different types, and modes 
of operation of MGs. Section  4 then examines the 
main limitations to implementing the traditional relay 
concepts, while Section 5 outlines the suggested methods 
for protecting AC-MGs. Section  6 presents practical 
examples of MGs and their protection strategies. In 
Section 7, some challenges that need to be considered for 
future research are identified, and finally, the conclusion 
of the work is presented in Section 8.

2  Review methodology
The review methodology of this paper involves a com-
prehensive examination of the relevant literature and 
research studies of AC-MGs. The first stage of this 
research is to collect previous publications that are 
clearly relevant to MG protection by using databases and 
search engines such as IEEE explorer, Egyptian Knowl-
edge Bank, ResearchGate, Google Scholar, Springer, Sco-
pus, Web of Science, IET Inspec, Wiley, and MDPI. Then, 
irrelevant documents to MGs protection are removed 
to allow a thorough and robust review. The remaining 
papers are then grouped into categories such as reviews, 
journal and conference papers, book chapters, online 
articles, and scientific theses. The study delves into exam-
ining the major limitations of traditional protection 
schemes and offers detailed insights into the proposed 
solutions. The study also takes into account practical 
applications by discussing various real MGs, highlight-
ing the implemented protection schemes in the real pro-
jects. Subsequently, the paper identifies some notable 
challenges and emerging trends that could be a focus of 
future research. Figure  1a and b outline different statis-
tics about the investigated research papers in this work in 
terms of year of publication and the type of these publi-
cations, respectively.

3  Background
MGs are defined as independent small-scale networks 
that comprise DERs and ESSs to supply some local 
loads. They are interfaced directly or through the use of 
power electronic converters, such as AC/DC and DC/
AC converters as shown in Fig.  2. According to tech-
nical and economic evaluations, MGs operate in either 



Page 3 of 40Sheta et al. Protection and Control of Modern Power Systems            (2023) 8:24  

Ta
bl

e 
1 

Pr
in

ci
pa

l f
ea

tu
re

s 
of

 th
is

 s
tu

dy
 a

ga
in

st
 o

th
er

 re
vi

ew
 w

or
ks

In
 T

ab
le

 1
, S

CC
: S

ho
rt

 c
irc

ui
t c

ap
ac

ity
, I

m
p.

RR
: I

m
pe

da
nc

e 
re

la
y 

re
ac

h,
 P

r.B
l: 

Pr
ot

ec
tio

n 
bl

in
dn

es
s, 

Bi
.P

F:
 B

id
ire

ct
io

na
l p

ow
er

 fl
ow

, S
y.

Tr
: S

ym
pa

th
et

ic
 tr

ip
pi

ng
, S

el
. a

nd
 S

en
.: 

Se
le

ct
iv

ity
 a

nd
 s

en
si

tiv
ity

, L
O

M
: L

os
s 

of
 m

ai
n 

(Is
la

nd
in

g)
, A

R.
 D

ef
.: 

D
efi

ci
en

cy
 o

f a
ut

or
ec

lo
se

rs
, A

sy
. R

ec
.: 

A
sy

nc
hr

on
ou

s 
re

cl
os

in
g,

 L
O

C:
 L

os
s 

of
 c

oo
rd

in
at

io
n,

 In
t. 

Tx
.: 

In
te

rf
ac

e 
tr

an
sf

or
m

er
s, 

Ad
.P

r.:
 A

da
pt

iv
e 

pr
ot

ec
tio

n,
 D

iff
. P

r.:
 D

iff
er

en
tia

l p
ro

te
ct

io
n,

 D
is

. P
r.:

 D
is

ta
nc

e 
pr

ot
ec

tio
n,

 O
C.

Pr
.: 

O
ve

rc
ur

re
nt

-b
as

ed
 p

ro
te

ct
io

n,
 V

.P
r.:

 V
ol

ta
ge

-b
as

ed
 p

ro
te

ct
io

n,
 W

T-
Pr

.: W
av

el
et

-b
as

ed
 s

ch
em

es
, T

W
.P

r.:
 T

ra
ve

lli
ng

 w
av

e-
ba

se
d 

sc
he

m
es

, S
T.

Pr
.: 

S-
tr

an
sf

or
m

-b
as

ed
 s

ch
em

es
, H

H
.P

r.:
 H

ilb
er

t–
H

ua
ng

-b
as

ed
 

sc
he

m
es

, H
rC

.P
r.:

 H
ar

m
on

ic
 c

on
te

nt
-b

as
ed

 s
ch

em
es

, A
N

N
.P

r.:
 A

rt
ifi

ci
al

 N
eu

ra
l N

et
w

or
k-

ba
se

d 
sc

he
m

es
, F

L-
Pr

.: 
Fu

zz
y 

lo
gi

c-
ba

se
d 

sc
he

m
es

, D
T.

Pr
.: 

D
ec

is
io

n 
tr

ee
s-

ba
se

d 
sc

he
m

es
, S

VM
.P

r.:
 S

up
po

rt
 v

ec
to

r m
ac

hi
ne

-b
as

ed
 

sc
he

m
es

, M
A

.P
r.:

 M
ul

tia
ge

nt
-b

as
ed

 s
ch

em
es

, F
CL

: F
au

lt 
cu

rr
en

t l
im

ite
rs

, E
SS

s:
 E

ne
rg

y 
st

or
ag

e 
sy

st
em

s, 
an

d 
IE

D
s:

 In
te

lli
ge

nt
 e

le
ct

ro
ni

c 
de

vi
ce

s

Re
fe

re
nc

e
Ye

ar
Ex

am
in

ed
 P

ro
te

ct
io

n 
ch

al
le

ng
es

Ex
am

in
ed

 P
ro

te
ct

io
n 

sc
he

m
es

Re
al

 
ap

pl
ic

at
io

ns
 

in
 a

ct
ua

l 
M

G
s

SC
C

Im
p.

RR
Pr

.
Bl

Bi
.

PF
Sy

.
Tr

Se
l. 

an
d 

Se
n

LO
M

A
R.

 
D

ef
A

sy
. 

Re
c

LO
C

In
t. 

Tx
A

d.
Pr

D
iff

. 
Pr

D
is

. 
Pr

O
C.

Pr
V. Pr

W
T-

Pr
TW

.
Pr

ST
.

Pr
H

H
.

Pr
H

rC
.

Pr
A

N
N

.
Pr

FL
-

Pr
D

T.
Pr

SV
M

.
Pr

M
A

.
Pr

FC
L

ES
Ss

IE
D

s

[2
]

20
20

✓
✓

✓
✓

✓
✓

✓
✓

✓
[3

]
20

14
✓

✓
✓

✓
✓

✓
[6

]
20

21
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

[7
]

20
14

✓
✓

✓
✓

✓
✓

✓
✓

✓
[1

0]
20

20
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[1

4]
20

21
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[1

8]
20

19
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[2

8]
20

15
✓

✓
✓

✓
✓

✓
✓

✓
[3

5]
20

17
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[3

6]
20

15
✓

✓
✓

✓
✓

✓
✓

✓
[4

6]
20

21
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[5

8]
20

14
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[7

2]
20

20
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

[7
3]

20
22

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[8

6]
20

21
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[9

4]
20

16
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
[1

07
]

20
17

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

Th
is

 p
ap

er
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓



Page 4 of 40Sheta et al. Protection and Control of Modern Power Systems            (2023) 8:24 

grid-connected or autonomous mode, controlled by a 
fast-switching isolator located at the point of common 
coupling (PCC) [2, 13]. Generally, the grid-connected 
mode is a typical arrangement when the main grid is 
healthy and stable without any disturbances. On the 
other hand, the autonomous / islanding mode can be 
deliberately activated to power rural areas and military 
zones [1] or be automatically triggered as a response to 
perturbations in the main grid [14, 15].

MGs can be mainly classified as AC, DC, or hybrid, 
based on the electrical power type. AC-MGs allow for 
the direct connection of any facilities that generate or 
consume AC power to the main bus. Conversely, DC/
AC converters are necessary to interface with DC 
installations. This is in stark contrast to DC-MGs, 

which emerged as a response to increased tendencies 
toward DC-renewables, HVDC systems, rechargeable 
appliances (i.e., electric vehicles), etc. Hybrid grids, on 
the other hand, combine the individual structures of 
both AC- and DC-MGs, providing increased flexibility 
for new installations through the use of power 
electronics and limiting multiple conversion processes 
(i.e., AC/DC and DC/AC) to reduce capital expenses 
and improve overall efficiency [16–21].

4  Limitations of traditional protective relays 
in AC‑MGs

The decentralized framework of MGs has imposed vari-
ous challenges and limitations on conventional pro-
tection strategies, prompting the need for innovative 
methods to protect MGs from internal faults and isolate 
them during disruptions from the main grid [22, 23]. Fig-
ure 3 depicts most of such obstacles, which will be dis-
cussed in more detail.

4.1  Short circuit capacity
In MGs, the short-circuit current level is influenced 
by both the operating mode and the distributed energy 
resources (DERs) technology, such as synchronous or 
inverter-based generators [24]. Regarding the technol-
ogy used by DERs, synchronous generators can produce 
around 5–10 times the rated current during a fault. In 
contrast, converter-based resources typically produce 
less than twice the rated current, as illustrated in Fig. 4. 
Additionally, Fig. 4 illustrates the behavior of three differ-
ent DERs during a fault. The first source is a synchronous 
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generator, the second is an inverter-based DER that takes 
7 cycles to disconnect because of its ride-through capa-
bility, and the third disconnects immediately [25–27]. 
The operating mode of MGs has a significant effect on 
the fault level, with higher fault current when in grid-
connected mode due to the participation of the main 
grid in addition to the DERs. This is reduced when the 
grid is disconnected during islanding mode, particularly 
if inverter-based DERs predominate [14]. Consequently, 
configuring protective relays for both operating modes is 
challenging because of the significant variations in short-
circuit current levels. These can severely compromise the 
performance of existing relays [21, 28].

4.2  Impedance relay reach
Impedance or distance relays are widely employed to 
protect transmission networks and have recently been 
recommended to protect MGs, as they can detect and 
respond to both forward and backward faults. However, 
these relays face various challenges that can hinder 
their reliability, including issues with fault resistance, 
compensation factors during ground faults, and the 
effects of infeed currents [29, 30]. In this context, DER 
infeed may obstruct the decision of impedance relays in 
MGs, as it causes the perceived impedance at the relay 
to be higher/lower than the actual impedance between 
the relay and the fault point, resulting in the relay either 
under- or over-reaching. Thereby, the relay trip signal 
may be completely blocked or delayed, impacting the 
coordination of other relays [31, 32]. In MGs, the most 
common problem with impedance relays is under-
reaching, compared to over-reaching, which requires 
larger settings to address the infeed consequences as a 
possible solution. However, this adjustment may cause 
the relays to malfunction during disturbances, heavy 
loads (line loadability), system swings, etc. [29, 33]. 
For illustration, Fig.  5 clarifies the impact of the DER 
infeed on the upstream relay ( RA ) during a solid fault 

at (F). During the fault, the voltage ( UA ) at the relay 
position can be computed as outlined in (1), and then the 
impedance to the fault location as observed from RA can 
be determined as in (2) or (3).

where UA and IGrid are the measured voltage and current 
at the relay primary side during a fault (F), respectively. 
ZAB is the impedance of line AB, ZBF is the impedance 
between bus B and fault point F, ZR is the relay appar-
ent impedance during the fault, and ZAF is the actual 
fault impedance, which equals (ZAB + ZBF) . Ki represents 
infeed constant (IDER/IGrid).

The relation in (3) can be written in the polar form as:

According to (5), the influence of the infeed current on 
impedance calculations is highly dependent on the pre-
viously determined angles ϑi and ∅BF , leading to three 
different outcomes, which are illustrated in Table  2 and 
summarized in Fig. 6 [34].

4.3  Protection blindness
In general, the pickup value for current-based relays, 
such as overcurrent relays, directional relays, and reclos-
ers, is set to be greater than the rated current at the relay 
location and less than the minimum fault current at the 
remote end of the protected zone [35]. Normally, the 
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simultaneous feeding of a downstream fault from the 
DER and the main grid causes the actuating current of 
the upstream relay to drop below its pickup value, result-
ing in the relay failing to detect the fault [35, 36]. This 
phenomenon is demonstrated in Fig.  7, where Fig.  7a 
clarifies an illustrating network, while Fig.  7b repre-
sents the Thevenin’s equivalent at the fault location. 
This is used to determine the extent of the grid contri-
bution (IGrid) through the upstream relay (RA) based on 
Thevenin principles. Thevenin’s impedance (Zth) at the 
fault point is first determined as in (6), and then the total 
fault current (If) is calculated as in (7). The grid contribu-
tion is then defined using current-divider rules, as in (8).

(6)Zth =
(ZMG + ZAB)(ZDER)

ZMG + ZAB + ZDER
+ ZBF

(7)If =
Vth√
3Zth

where Vth represents the Thevenin voltage while ZMG 
and ZDER denote the equivalent impedances of the main 
network and DER, respectively. Based on (8), the grid 
contribution current through the upstream relay RA is 
significantly dependent on the size and location of the 
DER unit and fault distance. This reduces the upstream 
fault current to lower levels because of the partial partici-
pation from the DER source. This participation impacts 
the relay functionality [35, 36].

4.4  Bidirectional power flow
In radial-configured power systems, electrical power 
flows in one direction, from the source toward consump-
tion points. In contrast, MGs can introduce two-way cur-
rent flow in power circuits after faults, dynamic changes 
due to local generation/consumption imbalances, 

(8)IGrid =
ZDER

ZMG + ZAB + ZDER
If

Table 2 Infeed current impact on impedance value for impedance relay
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scheduled power exchange with the main grid, etc. This 
impacts the flow direction, current levels, and voltage 
profile, as shown in Fig.  8, which illustrates the RMS 
steady-state current amplitude and flow direction, as well 
as the voltage profile along different sections, with and 
without considering the effects of DER integration [6, 
36]. In Fig. 8, the DER unit contributes to the generation-
deficient area at the bus (B), creating a reverse stream of 
system current in section BC. Generally, the occurrence 
of reverse power flow in MGs can severely compromise 
the performance and coordination of conventional pro-
tective relays and increase voltage stress on system com-
ponents, This must be considered when designing the 
protective relays [37].

4.5  Sympathetic tripping
False/sympathetic tripping generally occurs when a relay 
serves for a fault beyond its permitted zone after being 
triggered by a substantial current value, which violates 
the relay’s reliability. This usually happens when a DER at 
a certain feeder contributes to a fault in another feeder 
where both feeders are attached to the same substation. 
As shown in Fig. 9, the relay R2 is supposed to respond 
promptly to the fault (F). However, the increased con-
tribution of the DER during this fault may substantially 
exceed the pickup value of R1 , causing R1 to respond 
faster than R2 , resulting in inaccurate interruption of 
feeder 1 [38–40].

4.6  Selectivity and sensitivity
Selectivity and sensitivity are critical features of all 
protective devices. Selectivity refers to the ability of the 
relay to accurately detect and isolate the faulty object, 
while sensitivity refers to the ability of the relay to detect 
even the smallest fault and operate correctly without 
altering its selectivity properties [41]. However, in MGs, 
conventional overcurrent relays, in particular, have 
their pickup values determined by the nominal current 
and minimum fault current, both of which are greatly 
influenced by the operating mode of the MGs, as well as 
the size, location, and type of DERs (i.e. inverter-based or 
synchronous-based) [6, 41].

4.7  Islanding (loss of main)
Islanding or loss of main (LOM), occurs when the MG 
is detached from the main grid but still feeding its local 
needs via the connected DERs. Basically, LOM can occur 
intentionally or unintentionally, with deliberate islanding 
resulting from load shedding or maintenance activities, 
while accidental islanding is caused by faults in the 
main grid or the coupling breaker at the PCC, as shown 
in Fig.  2. Accordingly, significant deviations in system 
parameters such as voltage, frequency, and current level, 
among others, occur, affecting the protective relays 
and posing a risk to personnel and equipment [42, 43]. 
Thus the prompt detection of islanding events is crucial, 
typically within 2 s [6].

4.8  Deficiency of automatic reclosers
Auto reclosers (ARs) are commonly used in radial sys-
tems to clear temporary faults by disconnecting the 
downstream side of the AR due to the absence of back-
feed, as shown in Fig.  10a, as opposed to transmission 
networks, which require the simultaneous seclusion of 
both ends of the faulted line to clear the fault [44]. MGs, 
in turn, operate similarly to transmission networks in 
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that the fault is fed from both sides, namely the main 
utility and the DER, as shown in Fig.  10b, making the 
single-side interruption through the AR ineffective [14, 
45]. Consequently, the prompt disconnection of the DER 
is crucial to revert to the radial configuration; otherwise, 
the temporary fault will be replaced by a permanent one, 
which reduces the AR functionality. The early disconnec-
tion of DER in the dead-time of AR as depicted in Fig. 11 
is needed for proper operation [44].

In Fig.  11, the waveforms depict the operation of AR 
in Fig. 10b during the fault (F), where Fig. 11a represents 
the response of AR during the fault, while Fig.  11b, c 

reflect the circuit current and connectivity status of both 
the grid and DER, respectively. Figure 11 clarifies that the 
fault is initiated at  (tf) and it takes until  (tr) for the AR to 
detach the utility side, to consider the breaker separation 
time and arc extinguishing, at which point the recloser 
begins its dead time  (tR-dead). However, the fault is still 
back-fed from the DER, which is disconnected at  (tdisc) 
to completely clear the fault for a period  (tinterruption). 
After that, the AR only reconnects the utility side to start 
the reclaim time at  (tcon) to see whether the temporary 
fault is cleared or still powered by the main grid, while 
the DER remains isolated until the system is completely 
healed.

4.9  Asynchronous reclosing
Asynchronous reclosing is a normally expected activity 
when linking two active regions, as depicted in Fig. 10b, 
typically following fault events or MG islanding. Conse-
quently, synchronization checking is indispensable when 
attaching active areas, to avoid harming the DERs and 
connected devices. It does this by preventing the parallel 
operation of multiple sources before synchronization [45, 
46]. In most cases, after islanding, the detached region 
may witness frequency variation due to the mismatch of 
active power (i.e. 

∑
generation, PDER <

∑
load, Pload) , 

causing it to run asynchronously with the utility grid. Fig-
ure 12 demonstrates a MG that initially operates in grid-
connected mode at frequency fs, before being entirely 
separated at  (tisland), and then the islanded area frequency 
falls by Δf, forcing it to operate asynchronously at fre-
quency fi. Thereby, synchronization factors must be con-
firmed preceding the reconnection with the main grid, to 
avert multi-phase faults and deleterious consequences on 
facilities of both sides, notably rotating machinery, etc. 
[44].
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4.9.1  Loss of coordination
Generally, relays are properly coordinated so the 
primary relay operates faster than the backup relay for 
a specific fault in order to maintain system reliability. 
Consequently, the operating time of the backup relay for 
the same fault must exceed that of the primary relay by a 
time slot known as "coordinating time interval (CTI) as 
in (9)," which varies from 0.2 to 0.5 s [47–49]:

where tbackup and tprimary are the backup and primary 
relay operating times, respectively.

As aforementioned, the participation of DERs in the 
system, particularly those that are synchronous-based, 

(9)tbackup − tprimary ≥ CTI

boosts the fault current magnitude and may also change 
its direction. This impedes the coordination proto-
col among overcurrent relays (OCRs). Accordingly, 
the operating time of inverse-characteristics-featured 
OCRs declines as the fault current increases. Thus, the 
minimum CTI margin cannot be fulfilled, compromis-
ing coordination between primary and backup relays. 
Figure  13 [47, 48] depicts the effect of increased fault 
current due to DER integration on both the operating 
and coordination timings. As observed, as the fault 
current increases, the primary relay may be unable to 
coordinate with the backup relays because of the reduc-
tion of the coordinating time (below the marginal CTI). 
Furthermore, if this current goes beyond the primary 
relay rating, it will malfunction and may even be dam-
aged [47].

4.9.2  DER‑interface transformer
Besides the challenges discussed in the preceding 
paragraphs, there are others already noted from tradi-
tional power systems, such as those caused by wind-
ing connections of transformers ( YG , Y , and ∆) [32]. 
Although direct integration of DERs into power sys-
tems is attainable, they are commonly interfaced via 
power transformers to guarantee insulation coordina-
tion and the security of the associated facilities [50]. 
Consequently, this requires a precise selection of wind-
ing arrangements to limit their impact on the fault cur-
rent path during ground faults, insulation coordination, 
triple-harmonics circulation, resonance events (i.e., 
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aloperation and 
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Fault current

x

Fig. 13 Coordination relationship between relays

Table 3 Winding configurations of interface transformers and associated protection challenges

Configuration Advantages Disadvantages

HV 
(utility-
side)

LV (DER-side)

YG YG Low ferroresonance sensibility in cable-fed applications
System voltages in HV and LV sides are in-phase Mitigates 
TOV after ground faults on both sides

Permits circulation of triplen-harmonics (zero-sequence) on 
both sides
Has an effect on relay coordination
Permits the DER to feed ground faults in the utility zone and 
vice versa, which increases damage

Δ YG Prevents the DER to feed ground faults in the utility zone 
and vice versa.
Blocks triplen-harmonics at DER side to flow in utility

Ungrounded side expose utility to TOV during ground faults 
Permits circulation of triplen-harmonics (zero-sequence) at 
DER side
Highly sensitive to ferroresonance in cable-fed applications

YG Δ Blocks triplen-harmonics at DER side to flow in utility
Prevents the utility to feed ground faults in the DER zone
No TOV at utility side due to ground faults

Permits circulation of triplen-harmonics from utility which 
heating-up the transformer
Participates in utility ground faults increasing the damage 
level
Increases possibility of sympathetic tripping towards adjacent 
ground faults due to the transformer contribution
Ground-relays settings are dependent on the existence of 
the transformer in service to keep proper coordination and 
sensitivity of relays
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ferroresonance), overvoltage incidents (i.e., temporary 
overvoltages (TOV)), etc. Table 3 highlights the upsides 
and downsides of three typical winding connections 
from the protection standpoint [51–55].

5  Proposed techniques for protecting Ac‑MGs
As previously stated, traditional protection schemes are 
inadequate for effectively protecting AC-MGs becaiuse of 
the significant variations in short circuit levels depending 
on the operating mode, DER type, etc. As a result, various 
strategies have been proposed in the literature to address 
these limitations. This section will review the advantages 
and disadvantages of some proposed approaches for pro-
tecting AC-MGs in a comparative framework. A sche-
matic categorization of some strategies is provided in 
Fig.  14 to help in the readability and comprehension of 
this manuscript.

5.1  Traditional approaches
Traditional protection schemes have been successfully 
used in conventional power grids, but the integration 
of DERs has presented new challenges that can affect 
the reliability and functionality of these approaches. As 
a result, various strategies have been proposed in the 
literature to improve the philosophy and technology of 
traditional relays. This section briefly overviews some of 
these methods and summarizes their features in Table 4.

5.1.1  Adaptive protection
Adaptive protection refers to the capability of protective 
relays to adapt automatically to any changes in power 
systems by updating their settings via external signals, as 
depicted in Fig. 15 [56, 57].

In general, digital relays of different setting groups 
are more suited to this form of protection, together 
with intelligent controllers and efficient communication 

routes for sharing regulating signals in centralized or 
decentralized frameworks [58–60]. Reference [61] pro-
poses a hybrid (centralized/decentralized) scheme using 
IEC 61,850-based smart electronic devices to reduce the 
computational burden and capabilities of controllers, 
whereas [62] employs a wide-area wireless network based 
on WiMAX concepts to alleviate data transfer uncertain-
ties. In [63], a technique that relies on periodically gath-
ered information, such as MG probable configurations, 
the status of circuit breakers, simulated abnormalities, 
etc., is used to build a database of novel settings and com-
mands. The work in [64] suggests a strategy for optimiz-
ing the setting groups to determine the optimal pickup 
value and time-dial setting (TDS) of adaptive overcur-
rent relays using non-linear programming, while [65] 
employs linear programming for radial/meshed systems. 
The dual simplex approach is used in [66] to optimize 
both the TDS and operating time of relays by building a 
look-up table (LUT) that records network currents and 
relays parameters, which are all updated through a cen-
tral protection system (CPS) to meet all probable setups 
and events. Reference [67] uses directional overcurrent 
relays with single and dual settings that are optimized 
using the interior point approach to accomplish effec-
tive relay coordination in networked MGs. In contrast, 
reference [68] employs ant colony optimization to opti-
mize the operating time of primary and backup relays 
while keeping their selectivity. The study in [69] outlines 
an adaptive overcurrent scheme for ungrounded distri-
bution systems based on local measures and real-time 
estimation of Thevenin’s system parameters. It precisely 
calculates fault currents to re-configure the overcurrent 
relays according to the existing topology. An adaptive 
strategy based on two directional elements, i.e., overcur-
rent and undervoltage, is reported in [70]. This approach 
applies an online robust optimization strategy to tackle 
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parameter uncertainties when tuning relays for varied 
operating circumstances. The scheme is mainly based on 
two essential modules, those of monitoring and protec-
tion adjustment, where the former assesses the opera-
tional state of all power sources to recognize normal/
abnormal occurrences and then communicates to the 
second module to determine the right relay settings. Ref-
erence [71] suggests an adaptive distance scheme of Mho 
characteristics, outperforming adaptive overcurrent and 
differential strategies in terms of sensitivity and selectiv-
ity when using real-time data from phasor measurement 
units (PMUs).

5.1.2  Differential protection
Differential protection is a unit/pilot scheme that works 
whenever the difference between two or more compa-
rable electrical values surpasses a certain threshold. Fig-
ure 16 depicts a current-differential protection scheme in 
which system currents at both ends of the protected line 
are measured and then compared through the differential 
relay to investigate abnormalities within the protected 
area [72, 73]. Generally, differential protection schemes 
provide a better degree of selectivity and sensitivity, while 
their reliance on data communication between the ends 
of the protected equipment supports them in protecting 

the MGs. In [74], a genetic algorithm is implemented to 
optimize the number of relays and their zones to identify 
MG faults, using current differential protection. Refer-
ence [75] recommends a differential scheme based on 
sequence components (positive, negative, and zero) and 
data mining concepts to adjust relay settings to handle 
low fault currents caused by high impedance faults and/
or inverter-based DERs, while the study in [76] employs 
only positive-sequence current as a differential feature.

Reference [77] suggests a fault detection scheme based 
on the differential negative-sequence impedance angle 
between both ends of the protected line for identifying 
low and high impedance asymmetric faults as shown 
in Fig.  17. In contrast, reference [78] employs the posi-
tive-sequence impedance angle to detect all fault types, 
symmetric and asymmetric, while [79] uses positive-
sequence voltage angles at protected line terminals. The 
work in [80] proposes a differential scheme based on 
instantaneous power differences between protected line 
terminals using a fuzzy algorithm with Hilbert space the-
ory to recognize fault occurrences.

A data-mining-based differential methodology for MGs 
is given in [81]. It uses a discrete Fourier transform (DFT) 
to extract some distinctive differential features (e.g., rate 
of change of frequency, voltage, active power, reactive 
power, power angle difference, negative sequence voltage, 
and negative sequence current) for data-mining models 
that decide fault events. Similarly, the study in [82] uses 
the Hilbert–Huang transform (HHT) and machine learn-
ing algorithms, where the HHT is used instead of the 
DFT to compute the differential features from current 
measures to be fed into machine learning algorithms to 
define the fault instances. Reference [83] presents a dif-
ferential energy-based protection approach that uses a 
time–frequency transform (S-transform) to estimate the 
spectral energy contents of fault currents at both ends of 
the protected line, whereas [84] uses then HHT instead 
of the S-transform. Both [83] and [84] employ differen-
tial energy to identify fault events and the predefined 
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threshold value is adapted to match all probable modes of 
MGs and fault scenarios [83, 84].

5.1.3  Distance protection
Distance protection is a highly selective scheme for 
power systems. one that detects fault incidences based 
on the measured impedance at the relay point [85, 86]. 
In such approaches, the currents and voltages of the pro-
tected line at one or both ends are recorded to compute 
the apparent impedance to the relay, as described in (2). 
This is then compared to the preset settings to detect the 
fault [10, 30]. Distance relays have diverse characteris-
tics and different patterns on the R/X diagram, such as 
impedance, resistance, mho, reactance, quadrilateral, 
and blinders. For time-settings, each distance relay typi-
cally covers six/seven zones, including one instantane-
ous zone and up to five/six time-delayed zones [18, 86]. 
Figure  18 shows the time settings for different distance 
relays in the depicted system, with R12 as an example hav-
ing three settings: an instantaneous setting (zone1(R12)) , 
and two time-delayed settings with different time delays 
and reaches ( zone2(R12) and zone3(R12) ). R32 is shown 
with three time-setting zones: instantaneous and two 
time-delayed ones, while R23 is depicted with only an 
instantaneous and a time-delayed zone. It is worth men-
tioning that the number of actual zones and associated 
time delays are defined according to design and technical 
requirements.

The study in [87] proposes a distance-based protection 
technique for inverter-based MGs using high-frequency 
current/voltage signals. This method employs the ability of 
controllers of inverter-based DERs to generate harmonic 
currents of different orders (h). Accordingly, fundamental 
and superimposed harmonic currents stream together 
in the circuit once a fault is initiated. Given that only the 
inverter-based DER can supply harmonic current, the 
remaining system components are modeled as passive 
elements in the h-harmonic domain, mimicking a 
conventional system. This eliminates the effect of the 

infeed current of multiple sources in addition to fault 
resistance when compared to system reactance that is 
magnified by the harmonic order (h) [88]. Another scheme 
in [89] addresses sympathetic tripping and blindness 
concerns, where a distance-based protection strategy 
characterized by two features is suggested: directionality 
and adaptability of the trip area. However, it neglects the 
coordination philosophy and the impact of high impedance 
faults and DER infeed percentage on the relay reaches. 
Reference [90] develops a mho-characteristic distance 
relay in which the time-distance settings are upgraded 
to be reliant on the infeed percentage of DERs (adaptive 
logic) rather than their absolute values by considering 
a counterbalancing factor for DER infeed. In [91], an 
impedance-based technique based on the π-line model 
is proposed to derive a quadratic equation as a function 
of fault distance. Once a fault has occurred, all lines are 
eligible for fault location, and thus an iterative procedure 
is used to examine all lines to track the fault based on the 
estimated distance. This provides a valid location if it is not 
greater than the length of the investigated line; otherwise, 
another section is then evaluated. Reference [92] develops 
a fault detection technique for MGs based on monitoring 
the changes in magnitude and phase difference of bus 
admittances to consider the protection of bus loads, not 
only interconnecting lines [92, 93].

5.1.4  Overcurrent‑based protection
Overcurrent relays are among the most effective devices in 
conventional networks. They are, however, prone to various 
challenges in MGs depending on the operating modes 
of the MGs, DERs technologies, etc., all of which affect 
the amount and/or direction of short circuit current, and 
may mislead overcurrent relays with conventional settings 
[94, 95]. Accordingly, the concepts of adaptive relaying, in 
which relay parameters are upgraded dynamically based on 
network conditions and fault current level, are employed in 
MGs. In [96], another philosophy is discussed based on a 
composite acceleration coefficient and a beetle antennae 
search optimization approach. The suggested scheme 
not only improves the protection coordination but also 
significantly boosts the operating speed of the relay. In this 
scheme, a distinct factor ( Kvi ) depending on system voltage 
and measured impedance during fault is embedded into 
the operating time formula of an inverse-time over current 
relay (ITOCR), to accelerate its response, as described 
in (10). Then, the beetle antennae search algorithm is 
employed to enhance the coordination framework and 
further parameters i.e., pickup settings, TDS, and shape 
coefficients of relay curves.
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where top is the relay operating time, A represents a 
constant coefficient, TDS reflects the time dial setting, 
α is the ITOCR curve shape coefficient, while If and Ip 
indicate fault and pickup currents, respectively.

Reference [97] adopts overcurrent and overload 
protection schemes for islanded MGs that depend on 
voltage-controlled DERs. Since the DER terminal voltage 
drops once the fault occurs, the voltage controller 
raises this voltage value to a specific amount, causing 
the current to reach a higher level that activates the 
overcurrent relay, whereas overload protection restricts 
the DER output to a safe limit when a larger demand is 
desired.

In the context of the aforementioned overcurrent-
based protection methods, reverse power flow in MGs 
owing to fault events remains problematic. A directional 
overcurrent relay (DOR) offers a robust option for such 
issues by upgrading the tripping philosophy of typical 
overcurrent relays to consider both the magnitude and 
direction of the fault current before releasing any trip 
commands [98, 99]. In [100] a dual-setting directional 
overcurrent relay-based intelligent protection scheme is 
described for islanded MGs. This technique uses voltage 
and current measurements to compute the transient 
energy caused by the fault event, and its sign is used 
as a directional indicator, ensuring a precise direction 
independent of network topology. The consequences 
of DER plug-and-play, high-impedance faults, and 
insufficient power production due to DER shutdowns 
are then evaluated. In [101], a combination of single-and 
dual-setting DORs is used to protect the mesh-configured 
MGs, where a particle swarm algorithm is employed to 
define the optimal number of dual-setting DORs and 
their settings to reduce the operating time of all relays. 
In contrast, reference [102] only employs single-setting 
(traditional) DOR to protect islanded and grid-connected 
MGs. To address the non-linearity of the protection 
coordination problem, a genetic algorithm is used to 
determine relay parameters such as the time multiplier, 
plug-setting multiplier, and relay curve coefficients. A 
novel directional overcurrent approach based on the 
harmonic current injection ability of converter-based 
DERs is suggested in [103]. The operational signal in this 
scheme uses the system actual current for grid-connected 
mode or with synchronous-based DERs, whereas the 
harmonic current is employed for islanded mode with 
inverter-based DERs. This current decoupling makes 

(10)
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coordination among primary and backup relays easier 
for both modes of operation. The directional element, in 
turn, is based on a normalized harmonic current factor 
instead of current/voltage phase angles.

5.1.5  Voltage‑based protection
Voltage dip is typically induced by faults, overloading, 
or large motor startup, whereas overvoltage events 
are caused by lightning, capacitor energization, large-
loads switching off, ferroresonance, insulation failures, 
etc. The integration of DERs impacts the voltage level 
because of reversal power flow, generation-load imbal-
ance, etc. Accordingly, overvoltage and undervoltage 
relays are implemented in MGs [18]. In [104], a robust 
technique is developed for detecting internal and exter-
nal failures based on transforming the DER terminal 
voltage using the dq reference frame into DC values. 
Consequently, fault occurrences may be identified 
smoothly when the terminal dq voltages are compared 
to predefined reference values, as illustrated in Fig. 19.

The study in [105] uses a short-time Fourier 
Transform to assess voltage depression events by 
extracting some distinguishing features, typically nine 
for symmetrical faults and another six for asymmetrical 
faults. All features are then used as input variables to 
a decision tree algorithm to distinguish real faults 
from other normal conditions such as overloading, 
capacitor switching, etc. An improved scheme based 
on voltage synchrophasors from PMUs is discussed 
in [106], in which two fault detection indices are 
estimated from voltage phasors at each busbar. One 
index is based on differential active and reactive 
power (�P and �Q) , voltage magnitude, and phase 
changes (∆V and ∆δ), while the other relies on different 
sensitivity coefficients (�P/�V) , (�P/�δ) , (�Q/�V) , 
and (�Q/�δ) , and then both coefficients are compared 
with the threshold values for detecting a disturbance. 
However, most voltage-based protection schemes 
are only applicable for particular topologies of MGs 
because of their limitations with high impedance 
faults, distinguishing momentary from permanent 
voltage depression events, as well as complicated data 
processing in large grids, e.g., Park transformation, 
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etc. Therefore, MGs commonly implement voltage-
based relays as backup protection devices [72, 86, and 
107]. Table  4 presents the previously examined works 
in a comparative context, indicating the publication 
year and the number of citations per document. It also 
refers to the generation technique of DERs. These can 
be synchronous or inverter-based. In addition, the 
relay type and essential data for executing the proposed 
protection methods are recorded, as well as the major 
aspects of each technique.

5.2  Signal processing-based approaches
As a result of the significant changes in system 
parameters due to fault incidents, system output signal 
patterns are correlated to such failures and their features. 
Thus, signal-processing-based fault detection algorithms 
can be adopted for both traditional and MG systems. 
In such strategies, some distinguishing characteristics 
are extracted from system signals to be processed using 
various signal-processing schemes, such as Wavelet 
transform (WT), traveling waves (TWs), Stockwell 
transform (ST), etc., to define the fault situations [98]. 
This section briefly discusses some of these techniques, 
with features summarized in Table 5

5.2.1  Wavelet transform‑based schemes
Unlike the Fourier transform or short-time Fourier 
transform, WT is a signal processing tool that analyses 
non-stationary signals into the time–frequency domain 
using an adjustable data window for better resolution. 
Wavelets have been employed in various fields, such as 
data compression, transient analysis, image processing, 
time–frequency spectrum estimation, etc. [98, 108]. 
In power engineering, WT has been used to identify 
fault events by capturing the transient components 
holding fault data from the system disturbance signals. 
Consequently, the extracted transients are then broken 
into a sequence of wavelets, each of which refers to a 
time-domain signal covering a particular frequency band 
with certain information [109].

Reference [110] employs discrete WT and decision 
trees to detect high-impedance faults in MGs. In this 
strategy, fault currents are pre-processed using discrete 
WT to reveal some discriminating time–frequency 
information, which is then used to train the decision 
tree to identify high-impedance faults from normal 
conditions. Another scheme suggested in [111] uses 
an integration of both WT and data mining (decision 
tree) to detect and classify the faults. Fault current 
signals at relay locations are decomposed using WT to 
derive basic features such as mean, standard deviation, 
entropy, change in energy, etc., to train the decision 

tree to detect all possible failures. The fault current 
sequence components are also analyzed using the WT 
to extract different properties to train the decision tree 
to classify the fault type. In [112], voltage and current 
total harmonic distortion indices are extracted using 
WT to train a random forest (RF) classifier, a data 
mining method, and reactive and active power negative-
sequence components to identify and categorize fault 
occurrences. In this scheme, the RF classifier is subjected 
to a diversified input dataset for efficient training by 
varying fault type, location, resistance, inception timings, 
as well as capacitor switching and load fluctuation events. 
The work in [113] combines Park’s transformation and 
WT to detect faults in MGs. This method converts 
system voltages or currents to the dq0 reference frame 
before being processed using WT to extract the required 
parameters for fault detection.

5.2.2  Travelling wave‑based schemes
After a fault occurrence in power lines, electromagnetic 
waves are produced at the defect point, propagating 
in both directions at nearly the speed of light, provid-
ing high-speed communication of fault data at line end/
ends for later analysis. In general, TWs-based detection 
schemes can either use the naturally generated signals 
at the fault location or those externally injected after 
fault inception to recognize fault events. Figure 20 dem-
onstrates the traveling waves with different timings of 
reflection and refraction on the lattice diagram [30, 114].

The study in [115] employs TWs to detect single line-
to-ground (SLG) faults in MGs based on the polarities 
of initially recorded current and voltage waves at line 
terminals. Forward-oriented relays are then operated 
with a specific coordinating time dependent on their 
position to isolate the fault, similar to directional 
overcurrent protection. Reference [116], in turn, 
proposes a high-speed fault detection approach for 
inverter-based MGs using current TWs following fault 
incidence. The approach considers wave magnitude 
and timing and polarity data to eliminate magnitude 
inaccuracies induced by fault location, type, resistance, 
and initiation time. In [117], a TW-based scheme 
is suggested for detecting faults in MGs using local 
measurements and some exchanged data with adjacent 
protection devices. This scheme detects internal faults 
based on the extracted data from fault current traveling 
waves using WT.

5.2.3  S‑transform based schemes
S-transform is a time–frequency representation of 
non-stationary signals that combines the positives of 
short-time Fourier transform and WT for a satisfactory 
time–frequency distribution. The S-transform can be 
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Table 5 Distinctive features of investigated signal processing-based protection schemes

References Year Citation DER Required measures Method Features

[110] 2016 20 Synchronous and inverter 
based

Fault current WT and decision tree Twelve statistical features 
such as: mean, standard 
deviation, energy, entropy, 
etc., are extracted from fault 
current decomposition to 
train the decision tree
High impedance faults are 
detectable
Requires offline training, and 
high computational burden

[111] 2016 260 Inverter based Actual and sequence 
components of fault 
current

WT and decision tree Nine features are used for 
fault detection, while fifteen 
for fault classification
70% of input data are used 
for training, remaining 30% 
for testing
High computational burden 
due to required trainings
Low-impedance faults are 
only used for training

[112] 2021 10 Synchronous and inverter 
based

Voltage and current data WT and random forest Random forest is used as a 
data mining tool to accurately 
process a large input 
database, unlike the decision 
tree.
75% of input data are used 
for training, the remaining for 
testing
Considers DERs outages and 
fault initiation periods
Robust against measurement 
noise
Requires high capability 
software for training

[113] 2017 35 Synchronous and inverter 
based

Voltage or current data WT and park’s 
transformation

The d-q voltages/currents 
feed wavelet model
Not preferable for high-
impedance faults
High sampling frequency, 
and low accuracy
Large time response for data 
processing
Detection signal is delayed to 
distinguish false faults

[115] 2019 19 Not reported Voltage and current waves TWs Fault is detected based on 
traveling waves polarities
Considers zero-sequence 
voltage to avoid false 
detection
Considers fault inception 
time, type, and resistance
Applicable for SLG faults in 
non-effectively grounded 
systems

[116] 2014 123 Inverter based Fault current wave TWs Low-bandwidth 
communication is employed 
for high-speed operation
Stable during normal 
transients i.e. motor starting
Considers traveling wave 
amplitude, timing, and 
polarity for accurate 
detection
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Table 5 (continued)

References Year Citation DER Required measures Method Features

[117] 2017 5 Synchronous and inverter 
based

Local currents and fault 
current wave

TWs Detect fault based on WT 
of the traveling wave, while 
zone classification relies on 
wave signs
Applicable for close-in faults
Stable during switching 
transients and external 
abnormalities

[121] 2022 2 Synchronous and inverter 
based

Currents at both ends of 
line

S-transform-based 
differential current

Varied threshold value with 
the operating mode and 
fault impedance, i.e. high 
impedance fault.
High impedance faults are 
detectable
Robust against measurement 
noise

[122] 2021 10 Inverter based Current and voltage data S-transform-based distance 
relay

Fault energy is used as a fault 
indicator, while distance relay 
defines trip timings.
Low computational burden
High impedance faults are 
addressed

[123] 2014 15 Synchronous and inverter 
based

Currents at both ends of 
line

S-transform and decision 
tree

Low computational burden
Fast response (1–1.5) cycle
Requires offline training

[126] 2021 8 Synchronous and inverter 
based

Currents at both ends of 
line

Hilbert–Huang transform Low required time for fault 
detection and classification 
processes
Limited to fault impedance 
larger than 1000 Ω
Self-adaptive threshold: large 
in normal conditions and 
decreases with faults

[82] 2018 144 Synchronous and inverter 
based

Current measurements Hilbert–Huang transform Three distinctive differential 
features are used: phase 
current energy, standard 
deviation of phase current, 
and zero-sequence current 
energy
Applicable for high-
impedance faults
Machine learning model uses 
70% of input data for training, 
remaining 30% for testing
Offline training is needed

[127] 2008 120 Inverter based Voltage data Harmonic content-based THD value is dependent on 
network configuration
Individual values of THD are 
used to classify fault type
Applicable only for identical 
DERs
High impedance faults are 
not investigated

[128] 2016 13 Inverter based Harmonic current (5th 
harmonic)

Harmonic content-based Inverter-based DER injects 
harmonic currents
Not applicable for high-
impedance faults
Inaccurate in a harmonic rich 
system
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considered as a phase-corrected WT, thereby offering 
more precise data on the local features of a signal in the 
time–frequency domain [118–120]. In [121], a protection 
scheme is suggested for radial/meshed MGs using differ-
ential protection and S-transform concepts. The differen-
tial currents of protected line terminals and differential 
fault energy ( Ediff ) are calculated as:

where  Idiff is the differential current between line (x − y) 
terminals, and  Ix and  Iy are currents at bus (x) and bus 
(y), respectively. The S-transform is applied to the 

(11)Idiff = Ix − Iy

(12)Ediff = (Idiff)
2

differential energy,  Ediff, to define the peak value of the 
resultant curve, which is then compared to a specified 
threshold to identify fault situations. The S-transform 
is also considered in [122] to enhance the functionality 
of distance protection-based schemes in MGs. In this 
incorporated module, fault current energy is estimated 
using the S-transform to define a fault detection indicator, 
namely S-energy, which is almost flat under normal 
conditions but increases during disturbances. Voltage 
and current samples are then employed to identify fault 
directionality to trigger the distance relay. This defines 
the zone settings and related time delays. Work in [123] 
discusses a hybrid S-transform and data mining-based 
protection scheme. In this strategy, fault currents at both 
ends of the protected feeder are processed using the 
S-transform to reveal some differential features between 
both terminals, such as median, mean, energy, standard 
deviation, etc., to train the decision tree model and to 
detect and classify faults in MGs regardless of their 
operating mode.

5.2.4  Hilbert–Huang‑based schemes
The Hilbert–Huang transform (HHT) is a time–fre-
quency-based approach for processing nonlinear and 

Table 5 (continued)

References Year Citation DER Required measures Method Features

[129] 2022 1 Inverter based Multiple Harmonic 
components

Harmonic content-based Multiple harmonics injection 
ameliorates sensitivity
Reliable and low-cost due to 
communication-free protocol
Injected harmonic 
component has a magnitude 
of 10% of fault current
Each inverter injects a distinct 
harmonic content
Detects high-impedance 
faults

[130] 2018 4 Inverter based Voltage and current data
Harmonic current

Harmonic content-based Optimized coordination 
settings using Particle Swarm 
Optimization
Only low-impedance faults 
are verified
Avoids resonance conditions 
when selecting the injected 
harmonic
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Travelling wave
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t2

Reflected wave Refracted wave

Fig. 20 TW-based protection approaches

Fig. 21 HHT schematic
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non-stationary time-series data based on two subsequent 
algorithms: Empirical mode decomposition (EMD) and 
Hilbert spectral analysis (HSA), where the first algorithm, 
EMD, processes the input signal of mixed frequencies to 
extract a set of finite components, namely intrinsic mode 
functions (IMFs), which are then used to compute the 
instantaneous frequency signal through HSA, as illus-
trated in Fig. 21 [124, 125].

In power systems, voltage and current signals 
are applied to EMD to retrieve the intrinsic mode 
functions. HSA then processes the instantaneous 
magnitude, phase angle, frequency, etc., to determine 
fault incidents [48]. A self-adaptive scheme for 
identifying and categorizing faults in MGs is proposed 
in [126]. HHT decomposes fault currents at protected 
line terminals to extract the instantaneous differential 
phase, which is compared to a pre-defined threshold to 
decide the fault, whereas the zero-sequence component 
of fault current is employed to categorize the fault type. 
Another strategy discussed in [82] uses a combination 
of both HHT and machine learning to detect the 
faults in MGs. Fault current signals are pre-processed 
by HHT to capture fault detection features such as 
standard deviation, change in energy, etc., to feed a 
support vector machine, a machine learning model, to 
decide fault conditions.

5.2.5  Harmonic content‑based schemes
The integration of inverter-based DERs has raised 
harmonic levels in MGs. Accordingly, different strategies 
for protecting MGs based on harmonics analysis have 
been recently proposed. In [127], the total harmonic 
distortion (THD) of terminal voltages of inverter-
based DERs is used to identify faults when exceeding 
a predefined threshold value., as THD is almost null 
( THD ≈ 0 ) under normal conditions and increases 
under fault situations because of contributions from 
the fault current. Also, the THD values of each phase, 
besides their fundamental frequency, are employed to 
classify fault types. Injected fifth-harmonic current is 
employed in [128] to define faults in MGs, in which the 
injected component activates related digital relays to 
decide the fault event when it surpasses a specified value, 
overcoming the insensitivity of traditional relays to low 
fault currents in islanded MGs. In contrast, reference 
[129] suggests a communication-free protection scheme 
based on injecting multiple harmonics to recognize faults 
in grid-connected and islanded modes. Once the fault 
is detected, all the inverter-based DERs reduce their 
current contribution and deliberately inject a particular 
harmonic component to trigger the protective relays. 
The study in [130] proposes a combined protection 

scheme based on harmonics injection and machine 
learning to detect and isolate faults. In this approach, the 
output signals of DERs, i.e., voltages and currents, are 
decomposed using a support vector machine (SVM), a 
machine learning model, to extract some distinct features 
to decide fault occurrence. From this the DERs with the 
lowest voltages, closest to the fault, inject high-frequency 
currents to enable the harmonic-based relays to operate 
in coordination. As a summary, Table  5 compares the 
previously analyzed publications in terms of publication 
year and citations of each work. Also, it refers to the 
DER types, the main measurements for implementing 
the offered strategy, besides the distinct objects of each 
technique.

5.3  Knowledge-based approaches
Artificial intelligence and machine learning-based 
protection strategies (e.g., artificial neural network 
(ANN), Fuzzy logic (FL), genetic algorithm (GA), decision 
tree (DT), support vector machine (SVM), Random forest 
(RF), Naive Bayes algorithm) have been widely used in 
protecting MGs to address the challenges of network 
complexities and data uncertainties. Essentially, these 
techniques need a wide range of data, such as system 
measurement (voltage, current, frequency, power, etc.), 
the status of breakers, protective devices profile, ambient 
conditions, and so on [35, 46]. Nevertheless, such 
techniques’ performance and processing time should 
be considered for rapid and reliable fault detection 
and categorization [98]. Some of these techniques are 
briefly described below, while Table 6 illustrates the key 
elements of the methodologies investigated.

5.3.1  Artificial Neural Network‑based schemes
Reference [131] uses a combination of discrete WT and 
deep neural networks to detect and categorize faults in 
MGs. Initially, system currents are pre-processed using 
WT to extract some evaluation metrics, which are then 
employed as inputs to three neural networks to detect, 
classify and locate the faults. The study in [132] suggests 
an adaptive protection scheme based on overcurrent and 
distance relays, with their settings upgraded using a com-
bined ANN and SVM model. Once the fault is detected, 
system measurements are directly transmitted to the 
ANN model to validate the fault occurrence, and if con-
firmed, the SVM model is then applied to pinpoint the 
fault and update the relay settings. In [133], a protection 
scheme is proposed for autonomous MGs using ANN 
and transient monitoring functions (TMFs), where the 
fault is identified based on TMF values of the current 
waveform, while ANN is then employed to categorize the 
fault type.



Page 23 of 40Sheta et al. Protection and Control of Modern Power Systems            (2023) 8:24  

Table 6 Distinctive features of investigated knowledge-based protection schemes

References Year Citation DER Required measures Method Features

[131] 2017 216 Synchronous and inverter 
based

Current data ANN with WT Robust against measurement 
noise and uncertainty
High computational burden 
due to training process
Accuracy varies with system 
configuration

[132] 2019 74 Synchronous and inverter 
based

Voltage and current signals ANN-SVM-based 
overcurrent and distance 
protection

Adaptive. Self-learning, and 
self-training
High computational burden
Complex implementation
High accuracy

[133] 2019 13 Inverter based Current data ANN Uses TMF to discern 
temporary/permanent faults.
Improves auto-recloser 
functionality by 
discriminating permanent/
transient failures.
Requires less computing time
Online training is feasible

[134] 2018 14 Inverter based Current data Fuzzy logic Two Fuzzy logic models for 
firstly deciding operating 
mode, and then detecting/
classifying internal faults of 
MG
Response time is about 0.25 
– 1 cycle
Simple and feasible 
implementation
Robust against DERs outages 
and load variation

[135] 2015 33 Synchronous and inverter 
based

Current data Fuzzy logic and decision 
tree

High computational burden 
due to decision tree training
Large number of extracted 
features
Response time is about 2.25 
cycle
High impedance faults are 
detectable

[136] 2018 46 Inverter based Voltage and current signals Type-2 Fuzzy logic Addresses data uncertainties
Identifies fault and its 
direction
Low computational burden
No need for training

[139] 2018 18 Inverter based Voltage and current signals Bagged decision tree Considers changes in 
load, generation, and fault 
resistance
Applicable for high 
impedance faults
Robust against data noise
Large dataset for tree training
High computational burden 
due to training

[141] 2017 20 Synchronous and inverter 
based

Voltage and current signals SVM and WT Considers changes in fault 
resistance, location, and 
initiation timing
High computational burden 
due to training process
Applicable for high 
impedance faults
Fault classification accuracy 
nears 95.5%
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5.3.2  Fuzzy logic‑based schemes
The study in [134] proposes an intelligent FL-based 
protection scheme for detecting and classifying faults for 
MGs. This scheme initially decides the operating mode 
of the MG through the phase angle of positive-sequence 
current and FL, thereby confirming the islanding mode 
for utility faults (external faults) or grid-connected 
mode for MG internal faults. Subsequently, both the 
fundamental and zero-sequence currents are provided 
as inputs to the proposed fuzzy model to identify and 
classify the fault in the MG. In [135], DTs and FL are 
integrated to provide a relaying scheme for MGs. One 
cycle of the fault current, directly after fault inception, is 
processed using the S-transform to extract some distinct 
parameters to train the DT, whose outputs are used 
as inputs to the fuzzy model for the final fault decision 
(detection and classification). In this scheme, fuzzy rules 
are employed to relax DTs’ crisp (sharp) logic. In [136], 
a type-2 Fuzzy logic (T2FL) is employed to address the 
data uncertainties for providing a reliable protection 
scheme. In this scheme, voltage and current signals are 
pre-processed to provide required inputs to the T2FL 
module, which contains two T2FL subsystems, one for 
detecting/classifying faults and the other for identifying 
the fault direction concerning the relay.

5.3.3  Decision trees‑based schemes
DT is a supervised machine learning algorithm used 
for the regression and classification of large amounts of 
data. As seen in Fig. 22, decision trees are hierarchically 
organized, comprising three types of nodes (a root node, 
internal nodes, and leaf nodes), that are connected by 
branches. A decision tree often begins with a basic node 
(root node), then branches into many outcomes, each of 

which leads to other nodes (internal nodes), which divide 
into further alternatives until reaching terminating con-
ditions (leaf nodes). Essentially, the branching process is 
executed by selecting the attribute that maximizes the 
information gain factor or lowering the Gini impurity 
factor, as detailed in [137, 138].

In power systems, voltage and current signals 
are usually processed using time–frequency signal 
processing tools to extract associated characteristics 
to fault occurrences, which are subsequently used for 
training the DT for fault detection/classification. In 
[110, 111], WT is integrated with DT to detect/classify 
faults in MGs, where distinct features, i.e., mean, 
standard deviation, change in entropy, and change in 
energy, are used to train the tree, while [123] employs 
the S-transform for feature extraction. Reference [105], 
in turn, employs the short-time Fourier transform to 
capture the distinguishing features related to voltage 
dip following fault conditions to train the tree. In [139], 
wavelet and short-time Fourier transforms are combined 
to extract the features from voltage and current data, 
thereby training a bagged decision tree that reduces the 
overfitting and variance of a normal decision tree.

5.3.4  Support vector machine‑based schemes
An SVM is a supervised machine learning algorithm that 
can be applied for classification, pattern recognition, and 
regression purposes. In an SVM, various features (data-
sets) are classified and segregated by an iteratively gener-
ated hyperplane; to maximize the margin between these 
classes, as illustrated in Fig. 23 [140]. This philosophy is 

Root Node Internal Node Leaf Node Branch

R1

N1
N2

N3

N4

M1
M2

M3

M4

M5

NR M

B1

B2
B3

B7

B4

B5
B6

B9B8

Fig. 22 Decision tree representation Fig. 23 Support vector machine representation
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commonly used in power systems, where fault-related 
characteristics (classes) are captured when processing 
voltage and current signals to train the SVM classifier to 
find abnormalities. In [82], HHT is used to gather fault 
distinguishing characteristics, such as standard devia-
tion, change in energy, mean, median, etc., in order to 
train the SVM model to determine fault occurrences, 
whereas [141] uses WT for features extraction. Voltage 
and current samples are wavelet-transformed to generate 
the training data for the SVM-based protection strategy. 
Table 6 highlights the distinct elements of the discussed 
studies within the knowledge-based techniques category, 
presenting the input data for each study and examining 
DER type in the same manner as in Tables 4 and 5.

5.4  Multiagent-based approaches
A typical multiagent-based protection scheme combines 
many intelligent agents with linking communication 
networks, where each agent is supposed to perform a 
defined task. Smart agents in power systems are required 
to receive and transmit information/commands in an 
integrated manner to achieve global goals, i.e., protec-
tion of MGs [142]. In this case, the multi-agent protec-
tion scheme generally comprises three layers of different 
responsibilities in a hierarchal configuration, as shown 
in Fig. 24, namely, the equipment, substation and system 
layers [107, 143]. In such a configuration, the equipment 
layer, which is the bottom layer, includes measurement 
(CT and VT agents), performer (CB agents), and pro-
tector agents, etc. Initially, system state variables, i.e., 
voltage and current signals, are collected through the 
measurement agents to be analyzed using the protector 
agents. The protector agents then transfer their analysis 
and calculations to the management agents in the substa-
tion (middle) layer through the regional agent to decide 
fault existence, type, and location, thereby updating relay 

settings, and then activating performer agents in the low-
est layer to either open or close required CBs. Meanwhile, 
evaluation agents in the upper layer scrutinize and assess 
the modifications for further improvements or upgrades 
[144, 145]. In [146–149], the deployment of multiagent-
based protection methods in MGs is examined for fault 
detection, relay configuration updates, and maintaining 
adequate coordination, though high impedance faults 
and communication failures offer significant restrictions 
in the use of such strategies.

5.5  External helping devices
As previously stated, MGs pose significant issues to 
traditional relaying systems, owing to short circuit 
capacity variations with operating mode and generating 
philosophy of DERs, whether synchronous or inverter-
based. Therefore, some advocate the use of external 
devices to ameliorate the problems of effectiveness of 
conventional relays in MGs. Such devices include fault 
current limiters, energy storage systems, and intelligent 
electronic devices. The following section briefly explains 
the operational philosophies and constraints of their 
implementation.

5.5.1  Fault current limiters
Fault current limiters (FCLs) are series installed devices 
to restrict and minimize the fault current contribution 
from DERs or the main grid to a tolerable level, nearly 
3–5 times the rated current [150]. Basically, FCL has 
a low impedance value under normal conditions that 
does not affect power flow or quality indices. However, 
this value drastically increases during faults [151, 
152]. FCLs are generally classified into two main types: 
superconductor and solid state FCLs, which are further 
subdivided into distinct sub-types as detailed in [58, 
153]. According to the literature, FCL installation in MGs 
has challenging concerns regarding the location, sizing, 
and tuning of parameters, concerns which necessitate 
a rigorous study to reveal the optimum solutions, 
technically and economically [45, 46].

5.5.2  Energy storage systems
As aforementioned, the broad integration of inverter-
based DERs has influenced the performance of tradi-
tional relays, particularly in islanded operating modes, 
because of the lowered short circuit levels, which typi-
cally are less than double the rated currents. Accordingly, 
some advocate connecting additional capacity, such as 
energy storage devices, during fault events in order to 
support and boost the short circuit level to a sensible and 
traceable level by traditional relays [35, 98]. Nevertheless, 
adopting these devices incurs extra expense, besides the 

Power system
Regional
Agent

Management
Agent

Evaluation
Agent

Communication

Measurement
Agent

Performer
Agent

Protector
Agent

Fig. 24 Multiagent-based protection scheme
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crucial needing for islanding detection technologies [35, 
58].

5.5.3  Intelligent electronic devices
Microprocessor and communication technology 
advances have contributed considerably to real-time 
measurement using smart equipment, e.g., intelligent 
electronic devices (IEDs) [154]. In a relaying system, 
several IEDs are dispersed through the power system to 
monitor voltage and current data, which subsequently 
are fed into learning-based algorithms to identify and 
diagnose fault occurrences [155].

A summary of the examined protection schemes in 
this work is given in Table  7, highlighting the merits 
and demerits of each scheme. In traditional approaches, 
adaptive protection allows automatic adjustment of MG 
relays using external signals, where several setting groups 
are created in databases based on MG simulations that 
take into account all conceivable changes and disruptions. 
Accordingly, responsible communication channels and 
controllers are essential for this scheme for safe, fast, and 
reliable operation. Differential protection, in turn, offers 
a sensitive and selective solution for protecting MGs, 
though significant failures beyond the MG boundaries, as 
well as data discrepancy at protected facility terminals on 
regular occasions, limit the functionality of this scheme. 
Furthermore, data transfer between system terminals 
poses a problem to this method, as delayed or attacked 
signals will indeed cause associated relays to malfunction. 
In distance relays, voltage and current data at one or both 
ends are employed to estimate the system impedance 
during faults. However, significant constraints restrict the 
use of these relays in MGs, such as fault resistance and 
DER infeed currents, which influence the relay selection. 
Adjustable distance relay settings may be a solution but 
line loadability in normal instances is a limitation to 
these adjustments. Traditional overcurrent relays have 
many limitations in terms of fault current magnitude 
and direction, limitations which may be addressed by 
integrating directional features (DOR). Although DOR 
addresses the issue of bidirectional current flow, the 
quantity of fault current remains difficult, particularly 
for islanded MGs. Some proposals use inverters’ 
harmonic current injection capacity as a triggering input 
instead of the real current, which is only possible with 
inverter-based DERs. Voltage-based relays also offer 
simple and low-cost protection for MGs. However, their 
application is limited because of high impedance faults 
and difficulties in discriminating between normal and 
abnormal events that result in system voltage reduction. 
Accordingly, these relays are commonly used as backup 
devices for better reliability. In signal processing-based 
approaches, discriminating properties and statistical 

metrics of fault events are extracted and processed 
using appropriate signal processing techniques such 
as WT, S-transform, and HHT. However, this entails 
employing data classification models (classifiers) to find 
defects based on the extracted characteristics, which 
takes more time and needs high-capability software. 
Traveling waves are also included in this category, where 
the investigation of induced/injected electromagnetic 
waves following faults is employed to determine their 
occurrences. However, the high implementation costs, 
high sampling rate of fault recorders, and unwanted 
reflections limit the use of TWs. This category includes 
another technique based on correlated harmonics to 
system voltages and currents. In the higher-frequency 
domain, this technique mimics conventional networks, 
but the reliance on system layout and inaccuracies in 
harmonic-rich systems restrict its widespread adoption. 
Knowledge and learning-based methods provide safe 
and dependable frameworks for protecting MGs. In such 
approaches, system signals, response patterns of relays 
and breakers, extracted characteristics of fault events 
via signal processing algorithms, etc., are employed for 
further training and classification to determine abnormal 
activity. Most of these approaches, however, are time-
consuming, necessitate a large amount of data for 
training, take more memory, and so necessitate elevated 
software. In multiagent-based schemes, the main 
functions of MGs are restructured into several layers 
with diverse responsibilities, which ease monitoring 
and protection tasks. Nevertheless, such schemes have 
only demonstrated their superiority in small-scale MGs, 
aside from the need for robust communication channels. 
Finally, several auxiliary devices to conventional relays, 
such as FCLs, ESSs, and IEDs, are employed for various 
purposes. However, these devices pose issues in terms of 
implementation costs, installation location selection, and 
necessary maintenance.

6  Real applications in MG protection
This section briefly discusses some real MG applications 
in North America (the USA, Canada, and Mexico), 
along with the protection systems that were actually 
implemented, where the available protection scheming 
data encouraged the investigation of MGs in these 
countries. However, this work discusses only the 
implemented schemes since most MGs in North America 
are relatively new and have not, in reality, been subjected 
to a large number of fault scenarios. Accordingly, the 
behavior of the relaying systems under fault conditions is 
not known for these MGs. In general, most MG projects 
in Canada and Mexico use hydro and solar DERs, 
respectively, while the USA employs solar, gas, wind, 
diesel, and thermal MGs. Accordingly, in the USA and 
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Mexico, the DERs are a mix of rotating machines-based 
and inverter-based, in contrast to the Canadian MGs that 
mainly use rotating machines-DERs [156].

6.1  Electric power board MG, Chattanooga, USA
This MG is a 12.47  kV system with a diesel generator 
and 4408 solar panels (1.3  MW), which generate 
backup power for the main operation building and 
domestic demands, respectively. In this MG, the 
lateral feeders are protected using fuses of different 
ratings [156]. Schweitzer Engineering Laboratories 
(SEL) protective relays (SEL-751) are installed in the 
main substations to provide multiple protection and 
fault-locating capabilities, monitoring, control, and 
communication, all in one package [157]. Furthermore, 
the 12.47  kV distribution lines are outfitted with 
multiple IntelliRupters to identify system failures. The 
IntelliRupter is a directional overcurrent device that uses 
PulseClosing technology to recognize temporary and 
permanent faults, lowering potentially destructive stress 
on system components with each reclosing activity, as 
opposed to traditional autoreclosers [158].

6.2  Santa Rita Jail MG, Dublin, USA
The Santa Rita Jail MG is equipped with a 1.2  MW PV 
system, a 1 MW fuel cell, 2 × 1.2 MW emergency diesel 
generators, 5 × 2.3  kW wind turbine generators, and 
a 2  MW/4 MWh-ESS [159], which provides power to 
around 4000 inmates [156]. This MG is connected to the 
main grid through a static switch, which allows for quick 
isolation of the MG. To identify islanding occurrences, 
traditional over/under voltage and over/under 
frequency relays are used while coordinated with MG 
DERs following an islanding. Furthermore, directional 
overcurrent relays are installed to detect fault events 
within the MG (internal faults) [160]. Nonetheless, the 
protection frame in this MG lacks selective coordination 
toward islanded MG failures, which means that a defect 
in the islanded MG trips the whole zone [156, 160].

6.3  Illinois Institute of Technology MG, Chicago, USA
The Illinois Tech MG is a campus MG that is fed through 
two identical substations, 12.47/4.16  kV, offering 
additional reliability in case of a feeder loss [156]. This 
MG, which has a peak capacity of 12  MW, is mainly 
composed of several DERs: a 300  kW PV system, an 
8  MW gas turbine, a 500 kWh ESS, an 8  kW wind 
turbine, and a 4  MW emergency generation [160]. In 
terms of the protection strategy, this MG implements a 
4-level hierarchical scheme using differential protection. 
The following points briefly outline the basic function of 
each level [156, 160].

– Loads protection level (LPL): It mainly comprises 
directional overcurrent relays to protect against load 
faults. Over/under voltage and over/under frequency 
relays are also employed to allow load shedding and 
other control strategies.

– Transmission lines (loop) protection level (TLPL): 
Differential protection is employed at this level to 
identify faults in the MG lines using communication-
assisted relays. This level protects the LPL from 
breaker failure and offers backup protection.

– Feeders protection level (FPL): This upper level 
employs adaptive overcurrent relays in coordination 
with LPL and TLPL to handle fault current variations 
with different modes of the MG. It also offers a 
backup protection frame for both LPL and TLPL 
levels.

– MG protection level (MPL): The MPL consists of 
over/under voltage, over/under frequency, and 
overcurrent relays, to mainly protect the entire MG 
against utility failures. In addition, it offers a backup 
scheme for all the lower levels (LPL, TLPL, and FPL) 
in the connected mode.

6.4  Borrego Springs MG, California, USA
This MG was constructed primarily to provide energy 
to around 2800 clients since the community of Borrego 
Springs was experiencing power outages owing to 
environmental and technical issues [161]. The MG is 
fed from the utility through a 69/12  kV substation and 
comprises 2 × 1.8  MW diesel generators, a 700  kW PV 
system, and 500 kW/1500 kWh ESS. Overcurrent relays 
are mainly employed for protecting the MG. However, the 
limited fault current during islanded mode has promoted 
the deployment of voltage-restrained OCRs [156]. This 
scheme adjusts the OCR settings (pickup value and TDS) 
dependent on system voltage, enabling the OCR to detect 
low fault currents. Nevertheless, the coordination with 
the relays of fixed settings is challenging [162].

6.5  Guásimas del Metate, and Tierra Blanca del Picacho 
MGs, Mexico

Guásimas del Metate and Tierra Blanca del Picacho are 
two rural areas in Mexico that have been electrified by 
two identical MGs, each of which can power around 
52 homes. Each MG is driven only by a PV system of 
45.9 kW, while both MGs operate only in islanded mode, 
since the connection to the main grid is neither practical 
nor economical for such regions [163]. In these MGs, 
the employment of traditional overcurrent relays is 
unworkable because of the small fault current of the PV 
system in the islanded mode. Therefore, the inverter’s 
self-protection is regarded as the primary protection, 
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while undervoltage, voltage balance, and volts-hertz 
protection are implemented as back-up protections 
against MG faults and inverter failures [156, 163].

6.6  British Columbia Hydro MG, Canada
This MG is located in Boston Bar, Canada, and comprises 
two sets of hydropower generators each rated at 
2 × 3.5  MW, which are connected to a 4.16/25  kV bus 
when synchronized [164]. The MG is connected to the 
utility via a 25/69 kV substation, and has a peak load of 
3 MVA [160]. The MG employs adaptive overcurrent 
protection to modify the settings according to the 
operating mode. In addition, a payable telephone line is 
used for communication purposes within the MG, such 
as monitoring system breakers and communicating relay 
settings for adaptive schemes [164].

6.7  British Columbia Institute of Technology MG, Canada
This is a research and educational campus MG located 
in Burnaby, Canada. It contains 2 × 5 kW wind turbines, 
250 kW steam turbines, 300 kW PV systems, and 550 kW 
ESS [156]. The MG employs a communication-aided fault 
diagnosis framework, using differential protection to 
identify faults and abnormalities within the MG for grid-
connected and autonomous modes [160].

To sum up, the pie charts in Fig. 25 show the percent-
ages of protection schemes used in the North America 
MG projects, where Fig.  25a represents the classical 

schemes and Fig. 25b represents the other schemes based 
on [156]. According to Fig. 25a, traditional under-voltage, 
inverse time overcurrent, and directional overcurrent 
protection are the dominant schemes in North America, 
while adaptive protection is the most prevalent noncon-
ventional strategy in these MGs, as shown in Fig.  25b. 
Table 8 summarizes the main details of the described real 
MGs in terms of country, voltage level, load rating, mode 
of operation, types and ratings of DERs, and protection 
strategy.

7  Challenges and future trends
Based on the evaluation and analysis of the discussed 
schemes for protecting AC-MGs, these strategies 
still face considerable challenges influencing their 
performance, such as data sharing and cyber security. 
Thereby, the following points may be considered for 
future research and improvement in this promising 
area, in order to provide reliable and practical relaying 
systems.

• Most research on AC-MGs assumes balanced 
operation, but the increasing use of RESs and single-
phase roof-top solar panels have led to an increase in 
system imbalance. This lead to detrimental impacts 
such as increased losses, degraded voltage, greater 
stress on transformers, protection equipment 
malfunctions, harm to sensitive loads, elevated 
neutral currents and neutral-ground voltage, 
and power oscillations. Generally, the imbalance 
problem in AC-MGs can be evaluated based on 
the MG operation mode, either in islanded or 
grid-connected mode. In islanded mode, the main 
challenges are the overloading of DERs because of 
overcurrent, unbalanced voltage, high circulating 
current, and power oscillation. In grid-connected 
mode, the key challenges are rapid fault detection, 
proper synchronization, fault ride-through control, 
stable ramping up of power after recovery, as well as 
controlling DER power and overcurrent [165].

• The adoption of the latest trends in AI approaches 
in MG-protection, such as physical-informed AI 
and explainable AI, to address the limitations of tra-
ditional AI methods, such as overfitting of training 
data, lack of interpretability, limited understanding 
of complex systems, and reliance on large amounts 
of data. Physical-informed AI enhances interpret-
ability and accuracy by incorporating physical 
knowledge and constraints into AI models informed 
by physical laws and principles. Common physical-
informed AI approaches include physics-based and 
data-driven physics models, and physics-informed 
neural networks. Explainable AI, on the other hand, 

(a)

(b)

Directional 
overcurrent

15% Undervoltage
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Impedance
2%

Overvoltage
13%

Voltage balance
4%
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overcurrent

12%
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Fig. 25 Protection schemes of MGs in North America a classical 
methods, b non-classical methods
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focuses on making AI systems more transparent and 
understandable to human users through techniques 
such as LIME (Local Interpretable Model-Agnostic 
Explanations), counterfactual explanations, and sali-
ency maps. This leads to better predictions, decision-
making, and outcomes across a range of fields and 
the ability to handle uncertainty and incomplete data 
[166–169].

• In power systems, inertia refers to the stored energy 
in large rotating machines such as generators and 
some industrial motors. This can be tapped for a few 
seconds to give the grid time to detect and respond 
to system failures, thus enhancing system stability. 
Conversely, AC-MGs consist mainly of inverter-
based resources, which reduce the amount of inertia 
available and can result in instability and security 
issues. This makes AC-MGs more vulnerable to 
faults [170].

• In MGs, it is crucial to carefully consider the type of 
inverters being used, as the characteristics of current 
source inverters (CSI) and voltage source inverters 
(VSI) can impact the protection schemes during both 
normal and abnormal conditions. CSI-based DERs 
maintain a constant current flow at near-rated levels 
during faults, requiring more advanced protection 
schemes for fault detection. In contrast, VSI-based 
DERs significantly contribute to fault current while 
maintaining constant voltage, which makes fault 
detection easier [171].

• MGs have recently emerged as a solution to 
traditional network challenges, combining DERs, 
ESSs, and load management systems to improve 
system reliability, promote sustainability, and reduce 
toxic emissions. Meanwhile, rapid developments 
in monitoring and measurement devices and 
communication capabilities have resulted in the 
acquisition of extensive data volumes (i.e., the status 
of circuit breakers, system currents, and voltages). 
Accordingly, using big data analysis tools for such 
recordings enables MGs to quickly identify defects 
and failures, highlighting the role of data science in 
power engineering.

• More research should be conducted on using the 
internet of things (IoT), Fog, and cloud platforms 
to improve system monitoring and data storage, for 
reliable decisions with reasonable timing. Such plat-
forms, in turn, link all power system apparatus to 
the internet, permitting data interchange with the 
cloud. This online framework supports data gather-
ing, evaluation, and processing to reveal distinct pat-
terns for effective decisions. However, data security 

and privacy are challenging when using these online 
platforms.

• The development of communication frameworks 
to suit the needs of MG operation, control, and 
protection is critical to the behavior of such grids. 
Accordingly, these communication routes must have 
enough bandwidth to store and process the huge 
amounts of data gathered by intelligent devices in the 
MG. In addition, they should support plug-and-play 
applications for more flexible operation. Wired, fiber-
optic, wireless, microwave, and satellite connections 
are all examples of communication methods.

• Again, communication channels are essential in 
MGs for data gathering for monitoring, control, 
management, and protection purposes. However, 
the widespread use of these networks threatens 
the security of MGs, exposing them to risky cyber-
attacks, which impact the performance of the 
protective devices. These attacks may be classified 
into several forms, including malware, phishing, 
cryptojacking, SQL injection, DNS tunneling, denial 
of service attacks, etc. Consequently, it is essential to 
consider cyber security while designing protection 
strategies for MGs.

• Cloud computing adoption offers exceptional 
processing power and storage capacity, particularly 
in poor countries. This technology lowers hardware 
costs, delivers the most recent software, optimizes 
data processing timing, allows flexible data access, 
and improves dependability and security. However, 
cyber-attacks and losing control over sensitive 
information are significant challenges when moving 
to cloud computing.

8  Conclusion
This study has examined the challenges and solutions 
for protecting AC microgrids (MGs). Traditional 
protection techniques have been reviewed and a 
comprehensive examination of reported protection 
methods in the literature has been provided. The 
methods were categorized into five classes: traditional, 
signal processing, knowledge and learning, multi-
agent, and assisting external devices-based techniques. 
The paper also examined some real MGs in North 
America and identified additional challenges for future 
research. It was found that adaptive and differential 
protection schemes can effectively protect AC-MGs 
when efficient and stable communication channels 
are available. Directional overcurrent relays (DORs) 
are also a possible alternative, but variations in fault 
current can affect the selection of their operating 
characteristics, such as pickup current and time-delay 
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settings. Multi-agent systems for protecting MGs 
depend on the performance of individual agents and 
communication platforms. Artificial intelligence and 
learning-based frameworks are suggested to address 
operational concerns, but they also make the system 
vulnerable to cyber-attacks, resulting in a decline in 
overall performance and access to sensitive information. 
In general, the protection of AC-MGs remains a crucial 
challenge for ensuring the reliability and stability of 
these systems, where further research and development 
are necessary considering emerging challenges and 
trends, so as to provide more viable and sustainable 
solutions.
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