Sheta et al.
Protection and Control of Modern Power Systems
https://doi.org/10.1186/541601-023-00296-9

Protection and Control of

(2023) 8:24
Modern Power Systems

REVIEW  OpenAcess
®

Check for
updates

Comparative framework for AC-microgrid
protection schemes: challenges, solutions, real
applications, and future trends

Ahmed N. Sheta ®, Gabr M. Abdulsalam’, Bishoy E. Sedhom' and Abdelfattah A. Elad!

Abstract

With the rapid development of electrical power systems in recent years, microgrids (MGs) have become increasingly
prevalent. MGs improve network efficiency and reduce operating costs and emissions because of the integration of
distributed renewable energy sources (RESs), energy storage, and source-load management systems. Despite these
advances, the decentralized architecture of MGs impacts the functioning patterns of the entire system, including
control strategy, energy management philosophy, and protection scheme. In this context, developing a convenient

applications, and future trends.

Distributed energy resources, Energy storage

protection strategy for MGs is challenging because of various obstacles, such as the significant variance in short-
circuit values under different operating modes, two-way power flow, asynchronous reclosing, protection blinding,
sympathetic tripping, and loss of coordination. In light of these challenges, this paper reviews prior research on
proposed protection schemes for AC-MGs to thoroughly evaluate network protection’s potential issues. The paper
also provides a comprehensive overview of the MG structure and the associated protection challenges, solutions, real

Keywords Microgrid, Active distribution network, Microgrid protection, Renewable energy sources, Smart grids,

1 Introduction

Renewable energy sources are becoming the primary
providers of power in electricity grids. This is because
of the negative environmental impact of fossil fuels, the
depletion of fossil fuel resources, power quality issues,
the deterioration of traditional power networks, and the
increasing demand for energy [1]. Consequently, micro-
grids (MGs) have evolved to handle the widespread use
of renewable energy sources (RESs). MGs are regarded as
independent networks comprised of distributed energy
resources (DERs) and intelligent loads that can function
in either a standalone or grid-connected mode driven
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by economic and technical constraints [2]. In this con-
text, MGs have allowed different resources such as solar
photovoltaic, wind turbines, geothermal, biomass, wave
energy, and energy storage systems (ESSs) like batteries
or fuel cells to be engaged in the generation process to
lessen the reliance on traditional sources, reduce hazard-
ous emissions and pollution, and secure a sustainable and
reliable source of energy [3-5].

The growing adoption of renewable energy sources,
as well as innovations in semiconductor switches, have
pushed the concept of MGs or decentralized grids as a
way to address the challenges posed by traditional power
networks. MGs can also contribute to smart grid features
such as DERs, digital and pilot communications, self-
observation and restoration, and distant and adaptable
inspection, etc. [6, 7].

Despite the significant contribution of MGs, their
configurations have posed significant challenges in
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terms of operating philosophy in grid-connected and
islanded modes, load balancing, stability, power quality,
power flow, voltage profile, frequency regulation, and
energy management, protection, etc. [8, 9]. MG pro-
tection is considered crucial in establishing a reliable
power network, and demands adequate configuration
of protective relays to handle electrical faults promptly
in both operating modes. However, it is challenging
in decentralized networks because of fault level dis-
crepancies, power flow inconsistencies, islanding inci-
dents, and relay reach settings, etc. [10-12]. Thereby,
studying the functioning of MGs under normal and
abnormal conditions serves as the basis for developing
effective protection schemes. This work delves deeply
into the pertinent challenges and investigates remedial
procedures.

Table 1 outlines the main limitations of conventional
protection schemes in AC-MGs and prospective
remedies as discussed in previous publications,
reflecting the leading contributions of this work. As
seen, this work investigates a wider range of protection
concerns in AC-MGs, with more issues such as auto-
recloser deficiency, asynchronous reclosing, loss of
coordination, and transformer winding connections
being taken into account. This study also examines
further protection schemes such as wavelet transform,
traveling waves, S-transform, Hilbert—Huang, decision
tree, and support vector machine-based methods.
Additionally, it considers the impact of using external-
helping devices such as fault current limiters, energy
storage units, and intelligent electronic devices to
aid conventional protective relays. This study offers
various real MGs and accompanying protection
systems as practical applications, demonstrating the
most frequently used protection schemes. Based on the
preceding, it provides a thorough survey of the most
reported protection frameworks to assist electrical
engineers in recognizing impending concerns and
developing adequate solutions to enhance system
quality. It also addresses gaps in the literature by
including the majority of research related to AC-MG
protection. Generally, the principal contributions of
this paper can be outlined as follows:

+ Examines a wide variety of difficulties posed by
DER penetration and the resulting impact on
conventional protection schemes.

+ Investigates various protection strategies for
MGs, demonstrating the primary operating
principles besides the merits and demerits of each
methodology in comparative tables.

(2023) 8:24

Page 2 of 40

+ Highlights some real-world MGs alongside the
ratings of RESs and implemented protection
schemes.

+ Reveals further concerns, tendencies, and trends for
future development and innovation in this research
area.

The rest of the paper is structured as follows. Section 2
outlines the review methodology; Section 3 gives an
overview of the structure, different types, and modes
of operation of MGs. Section 4 then examines the
main limitations to implementing the traditional relay
concepts, while Section 5 outlines the suggested methods
for protecting AC-MGs. Section 6 presents practical
examples of MGs and their protection strategies. In
Section 7, some challenges that need to be considered for
future research are identified, and finally, the conclusion
of the work is presented in Section 8.

2 Review methodology

The review methodology of this paper involves a com-
prehensive examination of the relevant literature and
research studies of AC-MGs. The first stage of this
research is to collect previous publications that are
clearly relevant to MG protection by using databases and
search engines such as IEEE explorer, Egyptian Knowl-
edge Bank, ResearchGate, Google Scholar, Springer, Sco-
pus, Web of Science, IET Inspec, Wiley, and MDPL. Then,
irrelevant documents to MGs protection are removed
to allow a thorough and robust review. The remaining
papers are then grouped into categories such as reviews,
journal and conference papers, book chapters, online
articles, and scientific theses. The study delves into exam-
ining the major limitations of traditional protection
schemes and offers detailed insights into the proposed
solutions. The study also takes into account practical
applications by discussing various real MGs, highlight-
ing the implemented protection schemes in the real pro-
jects. Subsequently, the paper identifies some notable
challenges and emerging trends that could be a focus of
future research. Figure la and b outline different statis-
tics about the investigated research papers in this work in
terms of year of publication and the type of these publi-
cations, respectively.

3 Background

MGs are defined as independent small-scale networks
that comprise DERs and ESSs to supply some local
loads. They are interfaced directly or through the use of
power electronic converters, such as AC/DC and DC/
AC converters as shown in Fig. 2. According to tech-
nical and economic evaluations, MGs operate in either



Page 3 of 40

(2023) 8:24

Sheta et al. Protection and Control of Modern Power Systems

S9IA3P D1U04IIIID JUSBI| AU :SQT| PUe ‘SWISAS db6eI0)s ABISUT :SSST ‘SI9IWI| JUDLIND JNed 11D ‘SaWdYDS paseq-1usberyniy Id VIA ‘sawayds

paseq-aulydew 101394 1oddns g AAS ‘SOWBLDS Paseq-saail uolsidaQ id'1d ‘sawayds paseq-d160| Azzn4 :id-14 ‘sowayds paseq-3410M1aN [BIN3N [BIYILY id' NNV ‘S9WYdSs paseq-1ualuod JIUOWIRH :I1d ' DJH ‘sawayds
paseq-buenH-13q|IH “Id'HH ‘S9Wayds paseq-Wwiojsuell-S id’| S ‘Sawayds paseq-anem Bul||aAeI] T M L ‘SOWYDS Pased-19|aABA id-1 M ‘Uo11da101d paseq-abey|op 1idA ‘Uo112310id Paseq-1ualindidnQ id" DO ‘uondaloid
2duelsIq g i ‘uol1deloid [ernualaylq id "Yid ‘uondaloid aandepy rid Py ‘SISWIOJSURIY 9dBLI9IU| IX ] “IU| ‘UOIIRUIPIOO0D JO SSOT DO ‘BulsSo|IR1 SnOUOIYdUASY I3y “ASy ‘siasojdalolne jo Adualdyaq jaq Yy ‘(Bulpuels|)
ulew jo sso:NOT ‘AHAIISUSS pue AIAIDBISS udS pue ‘|9s ‘Buiddiil dnnayredwiAs 1] AS ‘Mmoyy ;amod [euondaliplg :4d'lg ‘ssaupul|q UOId301d :|9°1d ‘Yoeas Aejas aouepaduw| :yy-dwy ‘Aydeded 3indi1d 1oys :)DS ‘| d|gel u|

s/ Lror 2 LroLr 2 Y Y S Y A I S N Y S S S Y Y R N S S 1aded sjy).
, Y Y Y , , /, s, S L107 [zo1]
, VY Y R Y Lroo2 , , , 910T [v6]
Lror 2 , , VY Y Y , I R S Y {14 [0g]
VI , , Y Y R Y Y /, , , S TT0T e
, , s, Y Y Y , LrL 2 , S 020C [z
s, Y Y N , , L vlOT [85]
s, Y Y Y Y Y S N S S Y VR I R S S V(4 [ov]
, , VRV L, L oSL0T [og]
, VY , , , ror 2 s, Y Y R N Y S VA4 [s€)
V. s, , , , , L SloT (87
V. , , s L2 S 6l07 (1]
VR r2 V. , LrooLr L2 Y Y R N Y S (4 1]
, s, V. , , s, I R S Y {04 [01]
LroL Y Y Y , S vloT 7
Y Y Y VY L, SoLT0T [9]
, R , S vlog (€]
, , s, s, , , , , S 0207 [
uas
SOW id id M M d M Md d d 4 Md d Md d Md X %3y J2a pue il d4d 19 WM
mco__whw__u“g:h s@3dl sss3 14 VW CWAS LA 14 NNV DIH CHH IS ML -IM A DO i HId PV W D01 Asy v WO1 RS As ‘1lg ud cdwy DDS
) ._mwm S3WAYDS UOIID)04d paulwexy sabudj|eyd uo11I30Id paulwexy Jedp duISRY

SYIOM MIIAI D10 Jsulebe Apnis SIy Jo sainledy jeddulld L djgeL



Sheta et al. Protection and Control of Modern Power Systems

20

10 10
10 8 8

No. of publications

4%

52%

= Scientific thesis
m Conference papers

(W)
Fig. 1 Classification of surveyed-publications in this paper a by year,
b by type

= Review papers
Online articles

= Journal papers
= Book chapters

Diesel PVarray Wind Farm  Biomass :
AC 1""‘15 generator ‘ 0
Grid-connected i

Y Mode
Transfer
Utility ?swnch :
Main Transformer
— ul .................................
Mode

Grid
Fuel cell

m P

DC loads Battery

Fig. 2 Atypical AC-MG arrangement

grid-connected or autonomous mode, controlled by a
fast-switching isolator located at the point of common
coupling (PCC) [2, 13]. Generally, the grid-connected
mode is a typical arrangement when the main grid is
healthy and stable without any disturbances. On the
other hand, the autonomous / islanding mode can be
deliberately activated to power rural areas and military
zones [1] or be automatically triggered as a response to
perturbations in the main grid [14, 15].

MGs can be mainly classified as AC, DC, or hybrid,
based on the electrical power type. AC-MGs allow for
the direct connection of any facilities that generate or
consume AC power to the main bus. Conversely, DC/
AC converters are necessary to interface with DC
installations. This is in stark contrast to DC-MGs,
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which emerged as a response to increased tendencies
toward DC-renewables, HVDC systems, rechargeable
appliances (i.e., electric vehicles), etc. Hybrid grids, on
the other hand, combine the individual structures of
both AC- and DC-MGs, providing increased flexibility
for new installations through the use of power
electronics and limiting multiple conversion processes
(i.e., AC/DC and DC/AC) to reduce capital expenses
and improve overall efficiency [16-21].

4 Limitations of traditional protective relays
in AC-MGs

The decentralized framework of MGs has imposed vari-
ous challenges and limitations on conventional pro-
tection strategies, prompting the need for innovative
methods to protect MGs from internal faults and isolate
them during disruptions from the main grid [22, 23]. Fig-
ure 3 depicts most of such obstacles, which will be dis-
cussed in more detail.

4.1 Short circuit capacity

In MGs, the short-circuit current level is influenced
by both the operating mode and the distributed energy
resources (DERs) technology, such as synchronous or
inverter-based generators [24]. Regarding the technol-
ogy used by DERs, synchronous generators can produce
around 5-10 times the rated current during a fault. In
contrast, converter-based resources typically produce
less than twice the rated current, as illustrated in Fig. 4.
Additionally, Fig. 4 illustrates the behavior of three differ-
ent DERs during a fault. The first source is a synchronous

Protective
relays limitations
in AC-MGs

Fig. 3 Problems encountered by conventional protective relays in
AC-MGs
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Fig. 4 Fault current characteristics with generation technology

generator, the second is an inverter-based DER that takes
7 cycles to disconnect because of its ride-through capa-
bility, and the third disconnects immediately [25-27].
The operating mode of MGs has a significant effect on
the fault level, with higher fault current when in grid-
connected mode due to the participation of the main
grid in addition to the DERs. This is reduced when the
grid is disconnected during islanding mode, particularly
if inverter-based DERs predominate [14]. Consequently,
configuring protective relays for both operating modes is
challenging because of the significant variations in short-
circuit current levels. These can severely compromise the
performance of existing relays [21, 28].

4.2 Impedance relay reach

Impedance or distance relays are widely employed to
protect transmission networks and have recently been
recommended to protect MGs, as they can detect and
respond to both forward and backward faults. However,
these relays face various challenges that can hinder
their reliability, including issues with fault resistance,
compensation factors during ground faults, and the
effects of infeed currents [29, 30]. In this context, DER
infeed may obstruct the decision of impedance relays in
MGs, as it causes the perceived impedance at the relay
to be higher/lower than the actual impedance between
the relay and the fault point, resulting in the relay either
under- or over-reaching. Thereby, the relay trip signal
may be completely blocked or delayed, impacting the
coordination of other relays [31, 32]. In MGs, the most
common problem with impedance relays is under-
reaching, compared to over-reaching, which requires
larger settings to address the infeed consequences as a
possible solution. However, this adjustment may cause
the relays to malfunction during disturbances, heavy
loads (line loadability), system swings, etc. [29, 33].
For illustration, Fig. 5 clarifies the impact of the DER
infeed on the upstream relay (Ry) during a solid fault

(2023) 8:24
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21: Impedance relay

Fig. 5 DER-infeed current effect

at (F). During the fault, the voltage (Uy) at the relay
position can be computed as outlined in (1), and then the
impedance to the fault location as observed from R4 can
be determined as in (2) or (3).

Ua = ZaglGrid + ZBr(IGrid + IDER) (1)
Ua IpER
Zp = =  Zap+Zpr + ZgE
LGrid —_—— LGrid
True impedance
to fault point _error due to
infeed current
2)
Zr = Zar + Ki Zgpr (3)

where Uy and Ig,q are the measured voltage and current
at the relay primary side during a fault (F), respectively.
Zag is the impedance of line AB, Zpr is the impedance
between bus B and fault point F, Zy is the relay appar-
ent impedance during the fault, and Z¢ is the actual
fault impedance, which equals (Zag + Zpr). K; represents
infeed constant (Iper/IGrid)-
The relation in (3) can be written in the polar form as:

Zr = Zar + |Ki| £9| * Zpp| Z0pF (4)

Zr = Zar + |Kj * Zpp| Z(¥; + VBE) (5)

According to (5), the influence of the infeed current on
impedance calculations is highly dependent on the pre-
viously determined angles ¥ and @gr, leading to three
different outcomes, which are illustrated in Table 2 and
summarized in Fig. 6 [34].

4.3 Protection blindness

In general, the pickup value for current-based relays,
such as overcurrent relays, directional relays, and reclos-
ers, is set to be greater than the rated current at the relay
location and less than the minimum fault current at the
remote end of the protected zone [35]. Normally, the
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Table 2 Infeed current impact on impedance value for impedance relay

Case DA D5 9 + Dpr Impedance relay condition
1 + + + - Under reach increased fault distance
2 - + + if |@ge| > [0 Under reach increased fault distance
3 - + - if |Bgr| < 9] Over reach reduced fault distance
" gr has always a positive value assuming that Zgr = Rgr + jXgr
A
X

l/\\ —

'K ‘)—( Zyig )

Mgin

Grid

Over current
relay
(a)
IDhR r?
» \ DER _J I
f
> Zgy
@ @ —
R > (Zars

Fig. 6 Infeed currentimpact on apparent impedance to the relay Ra

simultaneous feeding of a downstream fault from the
DER and the main grid causes the actuating current of
the upstream relay to drop below its pickup value, result-
ing in the relay failing to detect the fault [35, 36]. This
phenomenon is demonstrated in Fig. 7, where Fig. 7a
clarifies an illustrating network, while Fig. 7b repre-
sents the Thevenin’s equivalent at the fault location.
This is used to determine the extent of the grid contri-
bution (Igiq) through the upstream relay (Ry) based on
Thevenin principles. Thevenin’s impedance (Z,) at the
fault point is first determined as in (6), and then the total
fault current (I¢) is calculated as in (7). The grid contribu-
tion is then defined using current-divider rules, as in (8).

_ (ZmG + ZaB) (ZpER)

= + ZBE 6
th ZMG + ZaB + ZDER ©
Vin
I =
! V3Z @)

(b)

Fig. 7 Overcurrent relay blindness: a illustrating network, b
Thevenin's equivalent

ZDER .
ZMmG + Zag + ZDER

Igrid = (8)
where Vi, represents the Thevenin voltage while Zyg
and Zpgr denote the equivalent impedances of the main
network and DER, respectively. Based on (8), the grid
contribution current through the upstream relay Ry is
significantly dependent on the size and location of the
DER unit and fault distance. This reduces the upstream
fault current to lower levels because of the partial partici-
pation from the DER source. This participation impacts
the relay functionality [35, 36].

4.4 Bidirectional power flow

In radial-configured power systems, electrical power
flows in one direction, from the source toward consump-
tion points. In contrast, MGs can introduce two-way cur-
rent flow in power circuits after faults, dynamic changes
due to local generation/consumption imbalances,
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scheduled power exchange with the main grid, etc. This
impacts the flow direction, current levels, and voltage
profile, as shown in Fig. 8, which illustrates the RMS
steady-state current amplitude and flow direction, as well
as the voltage profile along different sections, with and
without considering the effects of DER integration [6,
36]. In Fig. 8, the DER unit contributes to the generation-
deficient area at the bus (B), creating a reverse stream of
system current in section BC. Generally, the occurrence
of reverse power flow in MGs can severely compromise
the performance and coordination of conventional pro-
tective relays and increase voltage stress on system com-
ponents, This must be considered when designing the
protective relays [37].

4.5 Sympathetic tripping

False/sympathetic tripping generally occurs when a relay
serves for a fault beyond its permitted zone after being
triggered by a substantial current value, which violates
the relay’s reliability. This usually happens when a DER at
a certain feeder contributes to a fault in another feeder
where both feeders are attached to the same substation.
As shown in Fig. 9, the relay Ry is supposed to respond
promptly to the fault (F). However, the increased con-
tribution of the DER during this fault may substantially
exceed the pickup value of Rj, causing R; to respond
faster than Ry, resulting in inaccurate interruption of
feeder 1 [38—40].
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IGnd ;
____________ >
Feeder 2 4

Fig. 9 False tripping (sympathetic tripping) concept

4.6 Selectivity and sensitivity

Selectivity and sensitivity are critical features of all
protective devices. Selectivity refers to the ability of the
relay to accurately detect and isolate the faulty object,
while sensitivity refers to the ability of the relay to detect
even the smallest fault and operate correctly without
altering its selectivity properties [41]. However, in MGs,
conventional overcurrent relays, in particular, have
their pickup values determined by the nominal current
and minimum fault current, both of which are greatly
influenced by the operating mode of the MGs, as well as
the size, location, and type of DERSs (i.e. inverter-based or
synchronous-based) [6, 41].

4.7 Islanding (loss of main)

Islanding or loss of main (LOM), occurs when the MG
is detached from the main grid but still feeding its local
needs via the connected DERs. Basically, LOM can occur
intentionally or unintentionally, with deliberate islanding
resulting from load shedding or maintenance activities,
while accidental islanding is caused by faults in the
main grid or the coupling breaker at the PCC, as shown
in Fig. 2. Accordingly, significant deviations in system
parameters such as voltage, frequency, and current level,
among others, occur, affecting the protective relays
and posing a risk to personnel and equipment [42, 43].
Thus the prompt detection of islanding events is crucial,
typically within 2 s [6].

4.8 Deficiency of automatic reclosers

Auto reclosers (ARs) are commonly used in radial sys-
tems to clear temporary faults by disconnecting the
downstream side of the AR due to the absence of back-
feed, as shown in Fig. 10a, as opposed to transmission
networks, which require the simultaneous seclusion of
both ends of the faulted line to clear the fault [44]. MGs,
in turn, operate similarly to transmission networks in
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that the fault is fed from both sides, namely the main
utility and the DER, as shown in Fig. 10b, making the
single-side interruption through the AR ineffective [14,
45]. Consequently, the prompt disconnection of the DER
is crucial to revert to the radial configuration; otherwise,
the temporary fault will be replaced by a permanent one,
which reduces the AR functionality. The early disconnec-
tion of DER in the dead-time of AR as depicted in Fig. 11
is needed for proper operation [44].

In Fig. 11, the waveforms depict the operation of AR
in Fig. 10b during the fault (F), where Fig. 11a represents
the response of AR during the fault, while Fig. 11b, ¢

A
L
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Fig. 11 AR response to the fault (F) in Fig. 10b
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reflect the circuit current and connectivity status of both
the grid and DER, respectively. Figure 11 clarifies that the
fault is initiated at (t¢) and it takes until (t,) for the AR to
detach the utility side, to consider the breaker separation
time and arc extinguishing, at which point the recloser
begins its dead time (tg g..q)- However, the fault is still
back-fed from the DER, which is disconnected at (tgg.)
to completely clear the fault for a period (tierruption)-
After that, the AR only reconnects the utility side to start
the reclaim time at (t.,,) to see whether the temporary
fault is cleared or still powered by the main grid, while
the DER remains isolated until the system is completely
healed.

4.9 Asynchronous reclosing

Asynchronous reclosing is a normally expected activity
when linking two active regions, as depicted in Fig. 10b,
typically following fault events or MG islanding. Conse-
quently, synchronization checking is indispensable when
attaching active areas, to avoid harming the DERs and
connected devices. It does this by preventing the parallel
operation of multiple sources before synchronization [45,
46]. In most cases, after islanding, the detached region
may witness frequency variation due to the mismatch of
active power (ie. Y. generation, Pper < Y load, Pjgaq),
causing it to run asynchronously with the utility grid. Fig-
ure 12 demonstrates a MG that initially operates in grid-
connected mode at frequency f,, before being entirely
separated at (tg,nq), and then the islanded area frequency
falls by Af, forcing it to operate asynchronously at fre-
quency f;. Thereby, synchronization factors must be con-
firmed preceding the reconnection with the main grid, to
avert multi-phase faults and deleterious consequences on
facilities of both sides, notably rotating machinery, etc.
[44].
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Main Grid
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I I equivalent
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Fig. 12 Asynchronous reclosing of main grid and MG
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4.9.1 Loss of coordination

Generally, relays are properly coordinated so the
primary relay operates faster than the backup relay for
a specific fault in order to maintain system reliability.
Consequently, the operating time of the backup relay for
the same fault must exceed that of the primary relay by a
time slot known as "coordinating time interval (CTI) as
in (9)," which varies from 0.2 to 0.5 s [47-49]:

thackup — tprimary = CTI )

where thackup and tprimary are the backup and primary
relay operating times, respectively.

As aforementioned, the participation of DERs in the
system, particularly those that are synchronous-based,

OCR, CRe
3, N feeem  foeew .
3 %
5 2
9—0 Original
0, coordination time
P —_

Time

Reduced
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=5 [Without DER]
s[,J
. [With DER] %‘5
~L Y

v
'
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'
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'
'
'
'
'
:

Increase of fault
current

”
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Fig. 13 Coordination relationship between relays
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boosts the fault current magnitude and may also change
its direction. This impedes the coordination proto-
col among overcurrent relays (OCRs). Accordingly,
the operating time of inverse-characteristics-featured
OCRs declines as the fault current increases. Thus, the
minimum CTI margin cannot be fulfilled, compromis-
ing coordination between primary and backup relays.
Figure 13 [47, 48] depicts the effect of increased fault
current due to DER integration on both the operating
and coordination timings. As observed, as the fault
current increases, the primary relay may be unable to
coordinate with the backup relays because of the reduc-
tion of the coordinating time (below the marginal CTT).
Furthermore, if this current goes beyond the primary
relay rating, it will malfunction and may even be dam-
aged [47].

4.9.2 DER-interface transformer

Besides the challenges discussed in the preceding
paragraphs, there are others already noted from tradi-
tional power systems, such as those caused by wind-
ing connections of transformers (Yg, Y, and A) [32].
Although direct integration of DERs into power sys-
tems is attainable, they are commonly interfaced via
power transformers to guarantee insulation coordina-
tion and the security of the associated facilities [50].
Consequently, this requires a precise selection of wind-
ing arrangements to limit their impact on the fault cur-
rent path during ground faults, insulation coordination,
triple-harmonics circulation, resonance events (i.e.,

Table 3 Winding configurations of interface transformers and associated protection challenges

Configuration Advantages Disadvantages

HV LV (DER-side)

(utility-

side)

Yo Ye Low ferroresonance sensibility in cable-fed applications Permits circulation of triplen-harmonics (zero-sequence) on

System voltages in HV and LV sides are in-phase Mitigates

TOV after ground faults on both sides

A Yo Prevents the DER to feed ground faults in the utility zone
and vice versa.
Blocks triplen-harmonics at DER side to flow in utility

Ye A Blocks triplen-harmonics at DER side to flow in utility

Prevents the utility to feed ground faults in the DER zone

No TOV at utility side due to ground faults

both sides

Has an effect on relay coordination

Permits the DER to feed ground faults in the utility zone and
vice versa, which increases damage

Ungrounded side expose utility to TOV during ground faults
Permits circulation of triplen-harmonics (zero-sequence) at

DER side

Highly sensitive to ferroresonance in cable-fed applications

Permits circulation of triplen-harmonics from utility which
heating-up the transformer

Participates in utility ground faults increasing the damage
level

Increases possibility of sympathetic tripping towards adjacent
ground faults due to the transformer contribution
Ground-relays settings are dependent on the existence of
the transformer in service to keep proper coordination and
sensitivity of relays
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ferroresonance), overvoltage incidents (i.e., temporary
overvoltages (TOV)), etc. Table 3 highlights the upsides
and downsides of three typical winding connections
from the protection standpoint [51-55].

5 Proposed techniques for protecting Ac-MGs

As previously stated, traditional protection schemes are
inadequate for effectively protecting AC-MGs becaiuse of
the significant variations in short circuit levels depending
on the operating mode, DER type, etc. As a result, various
strategies have been proposed in the literature to address
these limitations. This section will review the advantages
and disadvantages of some proposed approaches for pro-
tecting AC-MGs in a comparative framework. A sche-
matic categorization of some strategies is provided in
Fig. 14 to help in the readability and comprehension of
this manuscript.

5.1 Traditional approaches

Traditional protection schemes have been successfully
used in conventional power grids, but the integration
of DERs has presented new challenges that can affect
the reliability and functionality of these approaches. As
a result, various strategies have been proposed in the
literature to improve the philosophy and technology of
traditional relays. This section briefly overviews some of
these methods and summarizes their features in Table 4.

5.1.1 Adaptive protection
Adaptive protection refers to the capability of protective
relays to adapt automatically to any changes in power
systems by updating their settings via external signals, as
depicted in Fig. 15 [56, 57].

In general, digital relays of different setting groups
are more suited to this form of protection, together
with intelligent controllers and efficient communication

(2023) 8:24
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routes for sharing regulating signals in centralized or
decentralized frameworks [58—60]. Reference [61] pro-
poses a hybrid (centralized/decentralized) scheme using
IEC 61,850-based smart electronic devices to reduce the
computational burden and capabilities of controllers,
whereas [62] employs a wide-area wireless network based
on WiMAX concepts to alleviate data transfer uncertain-
ties. In [63], a technique that relies on periodically gath-
ered information, such as MG probable configurations,
the status of circuit breakers, simulated abnormalities,
etc., is used to build a database of novel settings and com-
mands. The work in [64] suggests a strategy for optimiz-
ing the setting groups to determine the optimal pickup
value and time-dial setting (TDS) of adaptive overcur-
rent relays using non-linear programming, while [65]
employs linear programming for radial/meshed systems.
The dual simplex approach is used in [66] to optimize
both the TDS and operating time of relays by building a
look-up table (LUT) that records network currents and
relays parameters, which are all updated through a cen-
tral protection system (CPS) to meet all probable setups
and events. Reference [67] uses directional overcurrent
relays with single and dual settings that are optimized
using the interior point approach to accomplish effec-
tive relay coordination in networked MGs. In contrast,
reference [68] employs ant colony optimization to opti-
mize the operating time of primary and backup relays
while keeping their selectivity. The study in [69] outlines
an adaptive overcurrent scheme for ungrounded distri-
bution systems based on local measures and real-time
estimation of Thevenin’s system parameters. It precisely
calculates fault currents to re-configure the overcurrent
relays according to the existing topology. An adaptive
strategy based on two directional elements, i.e., overcur-
rent and undervoltage, is reported in [70]. This approach
applies an online robust optimization strategy to tackle

( Protection schemes of microgrids )

Y

I Traditional approaches I ISignal processing-based approachesl IKnowledge—based approachesl I

External helping devices I I Multiagent-based approaches I

Fig. 14 Classification of AC-MG protection techniques

Adaptive Wavelet transform- Artificial Neural . Multiagent-based
> protection > based schemes > Network-based schemes ieulteunentirniisns schemes
Differential Travelling wave- Fuzzy logic-based
> protection > based schemes > schemes STy S S
~ Dismn-ce ~ S-transform- > Decision trees-based Intelligent electronic
protection based schemes schemes devices
s Overcurrent N Hilbert-Huang- Ly Support vector
protection based schemes machine-based schemes
Overcurrent Hamonic content-
> protection > based schemes
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parameter uncertainties when tuning relays for varied
operating circumstances. The scheme is mainly based on
two essential modules, those of monitoring and protec-
tion adjustment, where the former assesses the opera-
tional state of all power sources to recognize normal/
abnormal occurrences and then communicates to the
second module to determine the right relay settings. Ref-
erence [71] suggests an adaptive distance scheme of Mho
characteristics, outperforming adaptive overcurrent and
differential strategies in terms of sensitivity and selectiv-
ity when using real-time data from phasor measurement
units (PMUs).

5.1.2 Differential protection

Differential protection is a unit/pilot scheme that works
whenever the difference between two or more compa-
rable electrical values surpasses a certain threshold. Fig-
ure 16 depicts a current-differential protection scheme in
which system currents at both ends of the protected line
are measured and then compared through the differential
relay to investigate abnormalities within the protected
area [72, 73]. Generally, differential protection schemes
provide a better degree of selectivity and sensitivity, while
their reliance on data communication between the ends
of the protected equipment supports them in protecting

Protected zone

CB2 CT2

2
=
m

CT; CB;

Protected line

Differential relay
(87)
Fig. 16 Current differential protection scheme
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the MGs. In [74], a genetic algorithm is implemented to
optimize the number of relays and their zones to identify
MG faults, using current differential protection. Refer-
ence [75] recommends a differential scheme based on
sequence components (positive, negative, and zero) and
data mining concepts to adjust relay settings to handle
low fault currents caused by high impedance faults and/
or inverter-based DERs, while the study in [76] employs
only positive-sequence current as a differential feature.

Reference [77] suggests a fault detection scheme based
on the differential negative-sequence impedance angle
between both ends of the protected line for identifying
low and high impedance asymmetric faults as shown
in Fig. 17. In contrast, reference [78] employs the posi-
tive-sequence impedance angle to detect all fault types,
symmetric and asymmetric, while [79] uses positive-
sequence voltage angles at protected line terminals. The
work in [80] proposes a differential scheme based on
instantaneous power differences between protected line
terminals using a fuzzy algorithm with Hilbert space the-
ory to recognize fault occurrences.

A data-mining-based differential methodology for MGs
is given in [81]. It uses a discrete Fourier transform (DFT)
to extract some distinctive differential features (e.g., rate
of change of frequency, voltage, active power, reactive
power, power angle difference, negative sequence voltage,
and negative sequence current) for data-mining models
that decide fault events. Similarly, the study in [82] uses
the Hilbert—Huang transform (HHT) and machine learn-
ing algorithms, where the HHT is used instead of the
DFT to compute the differential features from current
measures to be fed into machine learning algorithms to
define the fault instances. Reference [83] presents a dif-
ferential energy-based protection approach that uses a
time—frequency transform (S-transform) to estimate the
spectral energy contents of fault currents at both ends of
the protected line, whereas [84] uses then HHT instead
of the S-transform. Both [83] and [84] employ differen-
tial energy to identify fault events and the predefined

CT,CB, CB; CT,

Protected line

[ -veseq. )
i impedance i
& :\calculation/;
Differential relay
87

Fig. 17 Negative-sequence impedance angle differential protection
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threshold value is adapted to match all probable modes of
MGs and fault scenarios [83, 84].

5.1.3 Distance protection

Distance protection is a highly selective scheme for
power systems. one that detects fault incidences based
on the measured impedance at the relay point [85, 86].
In such approaches, the currents and voltages of the pro-
tected line at one or both ends are recorded to compute
the apparent impedance to the relay, as described in (2).
This is then compared to the preset settings to detect the
fault [10, 30]. Distance relays have diverse characteris-
tics and different patterns on the R/X diagram, such as
impedance, resistance, mho, reactance, quadrilateral,
and blinders. For time-settings, each distance relay typi-
cally covers six/seven zones, including one instantane-
ous zone and up to five/six time-delayed zones [18, 86].
Figure 18 shows the time settings for different distance
relays in the depicted system, with R as an example hav-
ing three settings: an instantaneous setting (zonelg12)),
and two time-delayed settings with different time delays
and reaches (zone2(ri2) and zone3ri2). R3z is shown
with three time-setting zones: instantaneous and two
time-delayed ones, while Rz is depicted with only an
instantaneous and a time-delayed zone. It is worth men-
tioning that the number of actual zones and associated
time delays are defined according to design and technical
requirements.

The study in [87] proposes a distance-based protection
technique for inverter-based MGs using high-frequency
current/voltage signals. This method employs the ability of
controllers of inverter-based DERs to generate harmonic
currents of different orders (/). Accordingly, fundamental
and superimposed harmonic currents stream together
in the circuit once a fault is initiated. Given that only the
inverter-based DER can supply harmonic current, the
remaining system components are modeled as passive
elements in the h-harmonic domain, mimicking a
conventional system. This eliminates the effect of the
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Fig. 18 Zone settings of distance relay
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infeed current of multiple sources in addition to fault
resistance when compared to system reactance that is
magnified by the harmonic order (%) [88]. Another scheme
in [89] addresses sympathetic tripping and blindness
concerns, where a distance-based protection strategy
characterized by two features is suggested: directionality
and adaptability of the trip area. However, it neglects the
coordination philosophy and the impact of high impedance
faults and DER infeed percentage on the relay reaches.
Reference [90] develops a mho-characteristic distance
relay in which the time-distance settings are upgraded
to be reliant on the infeed percentage of DERs (adaptive
logic) rather than their absolute values by considering
a counterbalancing factor for DER infeed. In [91], an
impedance-based technique based on the m-line model
is proposed to derive a quadratic equation as a function
of fault distance. Once a fault has occurred, all lines are
eligible for fault location, and thus an iterative procedure
is used to examine all lines to track the fault based on the
estimated distance. This provides a valid location if it is not
greater than the length of the investigated line; otherwise,
another section is then evaluated. Reference [92] develops
a fault detection technique for MGs based on monitoring
the changes in magnitude and phase difference of bus
admittances to consider the protection of bus loads, not
only interconnecting lines [92, 93].

5.1.4 Overcurrent-based protection

Overcurrent relays are among the most effective devices in
conventional networks. They are, however, prone to various
challenges in MGs depending on the operating modes
of the MGs, DERs technologies, etc., all of which affect
the amount and/or direction of short circuit current, and
may mislead overcurrent relays with conventional settings
[94, 95]. Accordingly, the concepts of adaptive relaying, in
which relay parameters are upgraded dynamically based on
network conditions and fault current level, are employed in
MGs. In [96], another philosophy is discussed based on a
composite acceleration coefficient and a beetle antennae
search optimization approach. The suggested scheme
not only improves the protection coordination but also
significantly boosts the operating speed of the relay. In this
scheme, a distinct factor (Ky;) depending on system voltage
and measured impedance during fault is embedded into
the operating time formula of an inverse-time over current
relay (ITOCR), to accelerate its response, as described
in (10). Then, the beetle antennae search algorithm is
employed to enhance the coordination framework and
further parameters i.e., pickup settings, TDS, and shape
coefficients of relay curves.
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(10)
where t,, is the relay operating time, A represents a
constant coefficient, TDS reflects the time dial setting,
a is the ITOCR curve shape coefficient, while I¢ and I,
indicate fault and pickup currents, respectively.

Reference [97] adopts overcurrent and overload
protection schemes for islanded MGs that depend on
voltage-controlled DERs. Since the DER terminal voltage
drops once the fault occurs, the voltage controller
raises this voltage value to a specific amount, causing
the current to reach a higher level that activates the
overcurrent relay, whereas overload protection restricts
the DER output to a safe limit when a larger demand is
desired.

In the context of the aforementioned overcurrent-
based protection methods, reverse power flow in MGs
owing to fault events remains problematic. A directional
overcurrent relay (DOR) offers a robust option for such
issues by upgrading the tripping philosophy of typical
overcurrent relays to consider both the magnitude and
direction of the fault current before releasing any trip
commands [98, 99]. In [100] a dual-setting directional
overcurrent relay-based intelligent protection scheme is
described for islanded MGs. This technique uses voltage
and current measurements to compute the transient
energy caused by the fault event, and its sign is used
as a directional indicator, ensuring a precise direction
independent of network topology. The consequences
of DER plug-and-play, high-impedance faults, and
insufficient power production due to DER shutdowns
are then evaluated. In [101], a combination of single-and
dual-setting DORSs is used to protect the mesh-configured
MGs, where a particle swarm algorithm is employed to
define the optimal number of dual-setting DORs and
their settings to reduce the operating time of all relays.
In contrast, reference [102] only employs single-setting
(traditional) DOR to protect islanded and grid-connected
MGs. To address the non-linearity of the protection
coordination problem, a genetic algorithm is used to
determine relay parameters such as the time multiplier,
plug-setting multiplier, and relay curve coefficients. A
novel directional overcurrent approach based on the
harmonic current injection ability of converter-based
DERs is suggested in [103]. The operational signal in this
scheme uses the system actual current for grid-connected
mode or with synchronous-based DERs, whereas the
harmonic current is employed for islanded mode with
inverter-based DERs. This current decoupling makes
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coordination among primary and backup relays easier
for both modes of operation. The directional element, in
turn, is based on a normalized harmonic current factor
instead of current/voltage phase angles.

5.1.5 Voltage-based protection
Voltage dip is typically induced by faults, overloading,
or large motor startup, whereas overvoltage events
are caused by lightning, capacitor energization, large-
loads switching off, ferroresonance, insulation failures,
etc. The integration of DERs impacts the voltage level
because of reversal power flow, generation-load imbal-
ance, etc. Accordingly, overvoltage and undervoltage
relays are implemented in MGs [18]. In [104], a robust
technique is developed for detecting internal and exter-
nal failures based on transforming the DER terminal
voltage using the dg reference frame into DC values.
Consequently, fault occurrences may be identified
smoothly when the terminal dg voltages are compared
to predefined reference values, as illustrated in Fig. 19.
The study in [105] uses a short-time Fourier
Transform to assess voltage depression events by
extracting some distinguishing features, typically nine
for symmetrical faults and another six for asymmetrical
faults. All features are then used as input variables to
a decision tree algorithm to distinguish real faults
from other normal conditions such as overloading,
capacitor switching, etc. An improved scheme based
on voltage synchrophasors from PMUs is discussed
in [106], in which two fault detection indices are
estimated from voltage phasors at each busbar. One
index is based on differential active and reactive
power (AP and AQ), voltage magnitude, and phase
changes (AV and A9), while the other relies on different
sensitivity coefficients (AP/AV), (AP/A3S), (AQ/AV),
and (AQ/A3), and then both coefficients are compared
with the threshold values for detecting a disturbance.
However, most voltage-based protection schemes
are only applicable for particular topologies of MGs
because of their limitations with high impedance
faults, distinguishing momentary from permanent
voltage depression events, as well as complicated data
processing in large grids, e.g., Park transformation,

Vagrery \

Vi \ <& > |
9 ?C Dis tur banc e| Relay

> @_} dete ction command
V, ;

| |
\ AT ;

Relay/

Fig. 19 Voltage disturbance detection based on abc-dq (Park’s)
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etc. Therefore, MGs commonly implement voltage-
based relays as backup protection devices [72, 86, and
107]. Table 4 presents the previously examined works
in a comparative context, indicating the publication
year and the number of citations per document. It also
refers to the generation technique of DERs. These can
be synchronous or inverter-based. In addition, the
relay type and essential data for executing the proposed
protection methods are recorded, as well as the major
aspects of each technique.

5.2 Signal processing-based approaches

As a result of the significant changes in system
parameters due to fault incidents, system output signal
patterns are correlated to such failures and their features.
Thus, signal-processing-based fault detection algorithms
can be adopted for both traditional and MG systems.
In such strategies, some distinguishing characteristics
are extracted from system signals to be processed using
various signal-processing schemes, such as Wavelet
transform (WT), traveling waves (TWs), Stockwell
transform (ST), etc., to define the fault situations [98].
This section briefly discusses some of these techniques,
with features summarized in Table 5

5.2.1 Wavelet transform-based schemes

Unlike the Fourier transform or short-time Fourier
transform, WT is a signal processing tool that analyses
non-stationary signals into the time—frequency domain
using an adjustable data window for better resolution.
Wavelets have been employed in various fields, such as
data compression, transient analysis, image processing,
time—frequency spectrum estimation, etc. [98, 108].
In power engineering, WT has been used to identify
fault events by capturing the transient components
holding fault data from the system disturbance signals.
Consequently, the extracted transients are then broken
into a sequence of wavelets, each of which refers to a
time-domain signal covering a particular frequency band
with certain information [109].

Reference [110] employs discrete WT and decision
trees to detect high-impedance faults in MGs. In this
strategy, fault currents are pre-processed using discrete
WT to reveal some discriminating time—frequency
information, which is then used to train the decision
tree to identify high-impedance faults from normal
conditions. Another scheme suggested in [111] uses
an integration of both WT and data mining (decision
tree) to detect and classify the faults. Fault current
signals at relay locations are decomposed using WT to
derive basic features such as mean, standard deviation,
entropy, change in energy, etc.,, to train the decision
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tree to detect all possible failures. The fault current
sequence components are also analyzed using the WT
to extract different properties to train the decision tree
to classify the fault type. In [112], voltage and current
total harmonic distortion indices are extracted using
WT to train a random forest (RF) classifier, a data
mining method, and reactive and active power negative-
sequence components to identify and categorize fault
occurrences. In this scheme, the RF classifier is subjected
to a diversified input dataset for efficient training by
varying fault type, location, resistance, inception timings,
as well as capacitor switching and load fluctuation events.
The work in [113] combines Park’s transformation and
WT to detect faults in MGs. This method converts
system voltages or currents to the dg0 reference frame
before being processed using WT to extract the required
parameters for fault detection.

5.2.2 Travelling wave-based schemes
After a fault occurrence in power lines, electromagnetic
waves are produced at the defect point, propagating
in both directions at nearly the speed of light, provid-
ing high-speed communication of fault data at line end/
ends for later analysis. In general, TWs-based detection
schemes can either use the naturally generated signals
at the fault location or those externally injected after
fault inception to recognize fault events. Figure 20 dem-
onstrates the traveling waves with different timings of
reflection and refraction on the lattice diagram [30, 114].
The study in [115] employs TWs to detect single line-
to-ground (SLG) faults in MGs based on the polarities
of initially recorded current and voltage waves at line
terminals. Forward-oriented relays are then operated
with a specific coordinating time dependent on their
position to isolate the fault, similar to directional
overcurrent protection. Reference [116], in turn,
proposes a high-speed fault detection approach for
inverter-based MGs using current TWs following fault
incidence. The approach considers wave magnitude
and timing and polarity data to eliminate magnitude
inaccuracies induced by fault location, type, resistance,
and initiation time. In [117], a TW-based scheme
is suggested for detecting faults in MGs using local
measurements and some exchanged data with adjacent
protection devices. This scheme detects internal faults
based on the extracted data from fault current traveling
waves using WT.

5.2.3 S-transform based schemes

S-transform is a time-frequency representation of
non-stationary signals that combines the positives of
short-time Fourier transform and WT for a satisfactory
time—frequency distribution. The S-transform can be
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Table 5 Distinctive features of investigated signal processing-based protection schemes

References Year Citation DER Required measures Method Features
[110] 2016 20 Synchronous and inverter  Fault current WT and decision tree Twelve statistical features
based such as: mean, standard

deviation, energy, entropy,
etc,, are extracted from fault
current decomposition to
train the decision tree

High impedance faults are
detectable

Requires offline training, and
high computational burden

[111] 2016 260 Inverter based Actual and sequence WT and decision tree Nine features are used for
components of fault fault detection, while fifteen
current for fault classification

70% of input data are used
for training, remaining 30%
for testing

High computational burden
due to required trainings
Low-impedance faults are
only used for training

[112] 2021 10 Synchronous and inverter  Voltage and current data WT and random forest Random forest is used as a
based data mining tool to accurately

process a large input
database, unlike the decision
tree.
75% of input data are used
for training, the remaining for
testing
Considers DERs outages and
fault initiation periods
Robust against measurement
noise
Requires high capability
software for training

[113] 2017 35 Synchronous and inverter  Voltage or current data WT and park'’s The d-q voltages/currents
based transformation feed wavelet model
Not preferable for high-

impedance faults

High sampling frequency,
and low accuracy

Large time response for data
processing

Detection signal is delayed to
distinguish false faults

[115] 2019 19 Not reported Voltage and current waves  TWs Fault is detected based on
traveling waves polarities
Considers zero-sequence
voltage to avoid false
detection
Considers fault inception
time, type, and resistance
Applicable for SLG faults in
non-effectively grounded
systems

[116] 2014 123 Inverter based Fault current wave TWs Low-bandwidth
communication is employed
for high-speed operation
Stable during normal
transients i.e. motor starting
Considers traveling wave
amplitude, timing, and
polarity for accurate
detection
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References Year

Citation DER

Required measures

Method

Features

[117]

[121]

[122]

[123]

[126]

(82]

[127]

[128]

2017

2022

2021

2014

2021

2018

2008

2016

5

144

120

13

Synchronous and inverter
based

Synchronous and inverter
based

Inverter based

Synchronous and inverter
based

Synchronous and inverter
based

Synchronous and inverter
based

Inverter based

Inverter based

Local currents and fault
current wave

Currents at both ends of
line

Current and voltage data

Currents at both ends of
line

Currents at both ends of
line

Current measurements

Voltage data

Harmonic current (5th
harmonic)

TWs

S-transform-based
differential current

S-transform-based distance
relay

S-transform and decision
tree

Hilbert-Huang transform

Hilbert-Huang transform

Harmonic content-based

Harmonic content-based

Detect fault based on WT

of the traveling wave, while
zone classification relies on
wave signs

Applicable for close-in faults
Stable during switching
transients and external
abnormalities

Varied threshold value with
the operating mode and
fault impedance, i.e. high
impedance fault.

High impedance faults are
detectable

Robust against measurement
noise

Fault energy is used as a fault
indicator, while distance relay
defines trip timings.

Low computational burden
High impedance faults are
addressed

Low computational burden
Fast response (1-1.5) cycle
Requires offline training

Low required time for fault
detection and classification
processes

Limited to fault impedance
larger than 1000 Q
Self-adaptive threshold: large
in normal conditions and
decreases with faults

Three distinctive differential
features are used: phase
current energy, standard
deviation of phase current,
and zero-sequence current
energy

Applicable for high-
impedance faults

Machine learning model uses
70% of input data for training,
remaining 30% for testing
Offline training is needed

THD value is dependent on
network configuration
Individual values of THD are
used to classify fault type
Applicable only for identical
DERs

High impedance faults are
not investigated

Inverter-based DER injects
harmonic currents

Not applicable for high-
impedance faults

Inaccurate in a harmonic rich
system
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References Year Citation DER

Required measures

Method Features

[129] 2022 1 Inverter based

[130] 2018 4 Inverter based

Multiple Harmonic
components

Vloltage and current data
Harmonic current

Harmonic content-based Multiple harmonics injection
ameliorates sensitivity
Reliable and low-cost due to
communication-free protocol
Injected harmonic
component has a magnitude
of 10% of fault current

Each inverter injects a distinct
harmonic content

Detects high-impedance
faults

Harmonic content-based Optimized coordination
settings using Particle Swarm
Optimization

Only low-impedance faults
are verified

Avoids resonance conditions
when selecting the injected
harmonic

Travelling wave
Bus 2

°T

Bus 1

 Fault Point

t

Tl

Reflected wave =------- Refracted wave

Fig. 20 TW-based protection approaches

considered as a phase-corrected WT, thereby offering
more precise data on the local features of a signal in the
time—frequency domain [118-120]. In [121], a protection
scheme is suggested for radial/meshed MGs using differ-
ential protection and S-transform concepts. The differen-
tial currents of protected line terminals and differential
fault energy (Eqi) are calculated as:

L = Ix — Iy (11)

Egirt = (Lag)* (12)

where 14 is the differential current between line (x—y)
terminals, and I, and I, are currents at bus (x) and bus
(y), respectively. The S-transform is applied to the

IMFs HHT

Inputsighial o e D e e e Time-frequency domain

Fig. 21 HHT schematic

differential energy, E 4 to define the peak value of the
resultant curve, which is then compared to a specified
threshold to identify fault situations. The S-transform
is also considered in [122] to enhance the functionality
of distance protection-based schemes in MGs. In this
incorporated module, fault current energy is estimated
using the S-transform to define a fault detection indicator,
namely S-energy, which is almost flat under normal
conditions but increases during disturbances. Voltage
and current samples are then employed to identify fault
directionality to trigger the distance relay. This defines
the zone settings and related time delays. Work in [123]
discusses a hybrid S-transform and data mining-based
protection scheme. In this strategy, fault currents at both
ends of the protected feeder are processed using the
S-transform to reveal some differential features between
both terminals, such as median, mean, energy, standard
deviation, etc., to train the decision tree model and to
detect and classify faults in MGs regardless of their
operating mode.

5.2.4 Hilbert-Huang-based schemes
The Hilbert-Huang transform (HHT) is a time—fre-
quency-based approach for processing nonlinear and
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non-stationary time-series data based on two subsequent
algorithms: Empirical mode decomposition (EMD) and
Hilbert spectral analysis (HSA), where the first algorithm,
EMD, processes the input signal of mixed frequencies to
extract a set of finite components, namely intrinsic mode
functions (IMFs), which are then used to compute the
instantaneous frequency signal through HSA, as illus-
trated in Fig. 21 [124, 125].

In power systems, voltage and current signals
are applied to EMD to retrieve the intrinsic mode
functions. HSA then processes the instantaneous
magnitude, phase angle, frequency, etc., to determine
fault incidents [48]. A self-adaptive scheme for
identifying and categorizing faults in MGs is proposed
in [126]. HHT decomposes fault currents at protected
line terminals to extract the instantaneous differential
phase, which is compared to a pre-defined threshold to
decide the fault, whereas the zero-sequence component
of fault current is employed to categorize the fault type.
Another strategy discussed in [82] uses a combination
of both HHT and machine learning to detect the
faults in MGs. Fault current signals are pre-processed
by HHT to capture fault detection features such as
standard deviation, change in energy, etc., to feed a
support vector machine, a machine learning model, to
decide fault conditions.

5.2.5 Harmonic content-based schemes

The integration of inverter-based DERs has raised
harmonic levels in MGs. Accordingly, different strategies
for protecting MGs based on harmonics analysis have
been recently proposed. In [127], the total harmonic
distortion (THD) of terminal voltages of inverter-
based DERs is used to identify faults when exceeding
a predefined threshold value., as THD is almost null
(THD ~ 0) under normal conditions and increases
under fault situations because of contributions from
the fault current. Also, the THD values of each phase,
besides their fundamental frequency, are employed to
classify fault types. Injected fifth-harmonic current is
employed in [128] to define faults in MGs, in which the
injected component activates related digital relays to
decide the fault event when it surpasses a specified value,
overcoming the insensitivity of traditional relays to low
fault currents in islanded MGs. In contrast, reference
[129] suggests a communication-free protection scheme
based on injecting multiple harmonics to recognize faults
in grid-connected and islanded modes. Once the fault
is detected, all the inverter-based DERs reduce their
current contribution and deliberately inject a particular
harmonic component to trigger the protective relays.
The study in [130] proposes a combined protection
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scheme based on harmonics injection and machine
learning to detect and isolate faults. In this approach, the
output signals of DERs, i.e., voltages and currents, are
decomposed using a support vector machine (SVM), a
machine learning model, to extract some distinct features
to decide fault occurrence. From this the DERs with the
lowest voltages, closest to the fault, inject high-frequency
currents to enable the harmonic-based relays to operate
in coordination. As a summary, Table 5 compares the
previously analyzed publications in terms of publication
year and citations of each work. Also, it refers to the
DER types, the main measurements for implementing
the offered strategy, besides the distinct objects of each
technique.

5.3 Knowledge-based approaches

Artificial intelligence and machine learning-based
protection strategies (e.g., artificial neural network
(ANN), Fuzzy logic (FL), genetic algorithm (GA), decision
tree (DT), support vector machine (SVM), Random forest
(RF), Naive Bayes algorithm) have been widely used in
protecting MGs to address the challenges of network
complexities and data uncertainties. Essentially, these
techniques need a wide range of data, such as system
measurement (voltage, current, frequency, power, etc.),
the status of breakers, protective devices profile, ambient
conditions, and so on [35, 46]. Nevertheless, such
techniques’ performance and processing time should
be considered for rapid and reliable fault detection
and categorization [98]. Some of these techniques are
briefly described below, while Table 6 illustrates the key
elements of the methodologies investigated.

5.3.1 Artificial Neural Network-based schemes

Reference [131] uses a combination of discrete WT and
deep neural networks to detect and categorize faults in
MGs. Initially, system currents are pre-processed using
WT to extract some evaluation metrics, which are then
employed as inputs to three neural networks to detect,
classify and locate the faults. The study in [132] suggests
an adaptive protection scheme based on overcurrent and
distance relays, with their settings upgraded using a com-
bined ANN and SVM model. Once the fault is detected,
system measurements are directly transmitted to the
ANN model to validate the fault occurrence, and if con-
firmed, the SVM model is then applied to pinpoint the
fault and update the relay settings. In [133], a protection
scheme is proposed for autonomous MGs using ANN
and transient monitoring functions (TMFs), where the
fault is identified based on TMF values of the current
waveform, while ANN is then employed to categorize the
fault type.
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Table 6 Distinctive features of investigated knowledge-based protection schemes

References Year Citation DER Required measures Method Features
[131] 2017 216 Synchronous and inverter  Current data ANN with WT Robust against measurement
based noise and uncertainty

High computational burden
due to training process
Accuracy varies with system
configuration

[132] 2019 74 Synchronous and inverter  Voltage and current signals  ANN-SVM-based Adaptive. Self-learning, and
based overcurrent and distance self-training
protection High computational burden

Complex implementation
High accuracy

[133] 2019 13 Inverter based Current data ANN Uses TMF to discern
temporary/permanent faults.
Improves auto-recloser
functionality by
discriminating permanent/
transient failures.
Requires less computing time
Online training is feasible

[134] 2018 14 Inverter based Current data Fuzzy logic Two Fuzzy logic models for
firstly deciding operating
mode, and then detecting/
classifying internal faults of

Response time is about 0.25
- 1cycle

Simple and feasible
implementation

Robust against DERs outages
and load variation

[135] 2015 33 Synchronous and inverter  Current data Fuzzy logic and decision High computational burden
based tree due to decision tree training

Large number of extracted
features
Response time is about 2.25
cycle
High impedance faults are
detectable

[136] 2018 46 Inverter based Voltage and current signals  Type-2 Fuzzy logic Addresses data uncertainties
Identifies fault and its
direction
Low computational burden
No need for training

[139] 2018 18 Inverter based Voltage and current signals  Bagged decision tree Considers changes in
load, generation, and fault
resistance
Applicable for high
impedance faults
Robust against data noise
Large dataset for tree training
High computational burden
due to training

[141] 2017 20 Synchronous and inverter  Voltage and current signals  SVM and WT Considers changes in fault

based resistance, location, and
initiation timing
High computational burden
due to training process
Applicable for high
impedance faults
Fault classification accuracy
nears 95.5%
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5.3.2 Fuzzylogic-based schemes

The study in [134] proposes an intelligent FL-based
protection scheme for detecting and classifying faults for
MGs. This scheme initially decides the operating mode
of the MG through the phase angle of positive-sequence
current and FL, thereby confirming the islanding mode
for utility faults (external faults) or grid-connected
mode for MG internal faults. Subsequently, both the
fundamental and zero-sequence currents are provided
as inputs to the proposed fuzzy model to identify and
classify the fault in the MG. In [135], DTs and FL are
integrated to provide a relaying scheme for MGs. One
cycle of the fault current, directly after fault inception, is
processed using the S-transform to extract some distinct
parameters to train the DT, whose outputs are used
as inputs to the fuzzy model for the final fault decision
(detection and classification). In this scheme, fuzzy rules
are employed to relax DTs’ crisp (sharp) logic. In [136],
a type-2 Fuzzy logic (T2FL) is employed to address the
data uncertainties for providing a reliable protection
scheme. In this scheme, voltage and current signals are
pre-processed to provide required inputs to the T2FL
module, which contains two T2FL subsystems, one for
detecting/classifying faults and the other for identifying
the fault direction concerning the relay.

5.3.3 Decision trees-based schemes

DT is a supervised machine learning algorithm used
for the regression and classification of large amounts of
data. As seen in Fig. 22, decision trees are hierarchically
organized, comprising three types of nodes (a root node,
internal nodes, and leaf nodes), that are connected by
branches. A decision tree often begins with a basic node
(root node), then branches into many outcomes, each of
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Fig. 22 Decision tree representation
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which leads to other nodes (internal nodes), which divide
into further alternatives until reaching terminating con-
ditions (leaf nodes). Essentially, the branching process is
executed by selecting the attribute that maximizes the
information gain factor or lowering the Gini impurity
factor, as detailed in [137, 138].

In power systems, voltage and current signals
are usually processed using time—frequency signal
processing tools to extract associated characteristics
to fault occurrences, which are subsequently used for
training the DT for fault detection/classification. In
[110, 111], WT is integrated with DT to detect/classify
faults in MGs, where distinct features, i.e., mean,
standard deviation, change in entropy, and change in
energy, are used to train the tree, while [123] employs
the S-transform for feature extraction. Reference [105],
in turn, employs the short-time Fourier transform to
capture the distinguishing features related to voltage
dip following fault conditions to train the tree. In [139],
wavelet and short-time Fourier transforms are combined
to extract the features from voltage and current data,
thereby training a bagged decision tree that reduces the
overfitting and variance of a normal decision tree.

5.3.4 Support vector machine-based schemes

An SVM is a supervised machine learning algorithm that
can be applied for classification, pattern recognition, and
regression purposes. In an SVM, various features (data-
sets) are classified and segregated by an iteratively gener-
ated hyperplane; to maximize the margin between these
classes, as illustrated in Fig. 23 [140]. This philosophy is

Clasg (A)

SUPPOIT VeCtOI’s

Fig. 23 Support vector machine representation
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commonly used in power systems, where fault-related
characteristics (classes) are captured when processing
voltage and current signals to train the SVM classifier to
find abnormalities. In [82], HHT is used to gather fault
distinguishing characteristics, such as standard devia-
tion, change in energy, mean, median, etc., in order to
train the SVM model to determine fault occurrences,
whereas [141] uses WT for features extraction. Voltage
and current samples are wavelet-transformed to generate
the training data for the SVM-based protection strategy.
Table 6 highlights the distinct elements of the discussed
studies within the knowledge-based techniques category,
presenting the input data for each study and examining
DER type in the same manner as in Tables 4 and 5.

5.4 Multiagent-based approaches

A typical multiagent-based protection scheme combines
many intelligent agents with linking communication
networks, where each agent is supposed to perform a
defined task. Smart agents in power systems are required
to receive and transmit information/commands in an
integrated manner to achieve global goals, i.e., protec-
tion of MGs [142]. In this case, the multi-agent protec-
tion scheme generally comprises three layers of different
responsibilities in a hierarchal configuration, as shown
in Fig. 24, namely, the equipment, substation and system
layers [107, 143]. In such a configuration, the equipment
layer, which is the bottom layer, includes measurement
(CT and VT agents), performer (CB agents), and pro-
tector agents, etc. Initially, system state variables, i.e.,
voltage and current signals, are collected through the
measurement agents to be analyzed using the protector
agents. The protector agents then transfer their analysis
and calculations to the management agents in the substa-
tion (middle) layer through the regional agent to decide
fault existence, type, and location, thereby updating relay
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Fig. 24 Multiagent-based protection scheme
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settings, and then activating performer agents in the low-
est layer to either open or close required CBs. Meanwhile,
evaluation agents in the upper layer scrutinize and assess
the modifications for further improvements or upgrades
[144, 145]. In [146-149], the deployment of multiagent-
based protection methods in MGs is examined for fault
detection, relay configuration updates, and maintaining
adequate coordination, though high impedance faults
and communication failures offer significant restrictions
in the use of such strategies.

5.5 External helping devices

As previously stated, MGs pose significant issues to
traditional relaying systems, owing to short circuit
capacity variations with operating mode and generating
philosophy of DERs, whether synchronous or inverter-
based. Therefore, some advocate the use of external
devices to ameliorate the problems of effectiveness of
conventional relays in MGs. Such devices include fault
current limiters, energy storage systems, and intelligent
electronic devices. The following section briefly explains
the operational philosophies and constraints of their
implementation.

5.5.1 Fault current limiters

Fault current limiters (FCLs) are series installed devices
to restrict and minimize the fault current contribution
from DERs or the main grid to a tolerable level, nearly
3-5 times the rated current [150]. Basically, FCL has
a low impedance value under normal conditions that
does not affect power flow or quality indices. However,
this value drastically increases during faults [151,
152]. FCLs are generally classified into two main types:
superconductor and solid state FCLs, which are further
subdivided into distinct sub-types as detailed in [58,
153]. According to the literature, FCL installation in MGs
has challenging concerns regarding the location, sizing,
and tuning of parameters, concerns which necessitate
a rigorous study to reveal the optimum solutions,
technically and economically [45, 46].

5.5.2 Energy storage systems

As aforementioned, the broad integration of inverter-
based DERs has influenced the performance of tradi-
tional relays, particularly in islanded operating modes,
because of the lowered short circuit levels, which typi-
cally are less than double the rated currents. Accordingly,
some advocate connecting additional capacity, such as
energy storage devices, during fault events in order to
support and boost the short circuit level to a sensible and
traceable level by traditional relays [35, 98]. Nevertheless,
adopting these devices incurs extra expense, besides the



Page 26 of 40

(2023) 8:24

Sheta et al. Protection and Control of Modern Power Systems

s)ney
aouepadwl ybiH
spow bunelado
AQ pasuanyu|
sY3d
SEHIeBENENT]
JO UoINQLIUOD
JUSLIND }NB} MO

S)ney
aouepadwl ybiH
spow bunelado
AQ paouanyu|
sY3d
paseg-Ia1IaAUl
JO UonNQLIUOD
JUSLND 3NB} MO
JU1IND 3|Ney Jo
MOJ [eUONDRIIPIg

SJUDAD [BWIOU pue Jjney ul Bes
96©1|0A JO UORRUIWLIDSIP 1NdWIQ
uoBINBYUOD W3SAS pue

apow bunesado Ag pasuanyul
synej aouepadwi ybiH

Siua4ind
JO MO} |PUOIIDIIPIC SISSIPPY
sjduis

15020 MO
sjduis

uondeIXd
SjuauOdwod [eIUSWERPUNS
Bulwnsuod awil|

si91oweled aul| uo spuadsg
SIUSLIND Pasyul pue ‘A31|Igepeo|
SaUI| ‘9OUPISISaI Ny 0} S101I3

syney
[_UIRIXS AABSY UO UOJ1RAIIDR 35|
yo1ews|w

JO UOI1RINIES SIDWIOJSURI} JUSLIND
2IN1dNISLAU

UOIIBDIUNWIWOD sauiNbay

(Sy{u1] UoIIEDIUNUIWIOD

pUE '$J3]|0J1U0D ‘sAejai [e)bIp)
$1502 uoneuawWR|dwi ybiH
saibojodol parejnwiis

Jo aseqgeiep abny e spasN
2In3oNJIseul
UOoMIeDIUNWIWOD salinbay

1502 MO
sjduis

(9549A31/pIeMIOY)

uonDAUIP 3Ney pue anjea dnypid
91 yum uosuiedwod spnyubew
1U31IND UO Paseq uolsidap duj

anjea dnyoid
9Y1 yum uosuiedwod spnyubew
1U31IND UO Paseq uolsidap duj

uonejuswa|dul aidwig
JUSWINSeaW [BIO] UO paseq

SUETRINE]

[euoneindwod ybiy pue sjdwis
syney sduepadwi ybiy s10919g
AYAIISUDS pue A1ADS|9S YDBIH

SUI|JO JO SUIJUO

paie|nd[ed aq ued sdnolb bumas
sjeubis [eulaixe

eIA parepdn aie sbumas Aejay
SUOIIPUOD pue sabueyd

Aue 01 A||ed1rewoine 1depy

S1|neJ 9pId3p 01 SUOSLedwod
|9A9] 9beyjoA Uo spuadag

|euondaig

[euonipel|

uonedo| si
pue yney Ajnuspr aouepadudi sy |
uonedo|

Ae|2J 1B JUSWSINSEIW JUSLIND
/26P1j0A UO paseq pauyap S| ujod
1)ne} 01 duepaduwil uaseddy

A)j1oey payoajoud
JO sjeujullay Indinoandul 3e
saniuenb |esuyds|e saedwod

SHIOMDUIRLY PZI|RIIUSIIP

10 pazijenuad ul pakojdwa

90 U $13||0J1U0D 1Ub| |91y
‘SuoleINBbYuUod JuIYIP

3|puey 01 sAeja4 [EUBIP Ul PaPN[DUl
2Je sbumas dnoib pauyspaid

uonoajoid abeyjop

U01199104d 1USLINJISAQ

uonoayold adxueisig

uond104d [eURIAKIA

uonoazold aandepy sayoeoidde jeuonipel|

STETE |

SIS

uondudsap uonesado AWIYdS UodIN0Id

SON-DV J0J SaWayds uondaiold Jo Alewwing £ ajqel



Page 27 of 40

(2023) 8:24

Sheta et al. Protection and Control of Modern Power Systems

puelsiapun 03 3nNdyig
uaping |euoneindwod ybiH
AIOWSW 310W SSWNSUOD)

aseqeiep
[[BUIS JOJ PR1IWI| pue BUMUYISAQ
asiou Ag pasuanyu|

usping [euoneindwod ybiH
A1oWaW 210W SIWNSUOD

uoneinbyuod
YJomiau 01 Juspuadag
Aoeindoe moT

2lem1jos Aujigeded ybiy salinbay
puiuren

10} e1EP JO 9BURI-IPIM SAIINbIY
Buluresy buunp buiwnsuod awi|

(WES

4ol DlUOWIey e Ul 91eInddeu|
s3nej o>uepadw ybiH

S43Q JO |99

uolensuad pue uoneinbyuod
3I0MIDU 01 Juspuadaq

21em1jos Alljigeded ybry salinbay
asiou sjeubis Aq paioedw|
uoneyuswa|dwi 1502 ybiH
Sjlspow

Bujules| uonesyissed spasN

a1emyyos Aljigeded ybiy saunbay
3siou sjeubis Aq paroedw|
uoneuawa|dul 1503 YybiH
s|opow

Buiules| uonesyissed spasN

SI9pJ0d3)

1ney Jo a1es buldwes ybiy
SAISUdXD IO
uoneluswa|dwi xa|dwod
sjeJale)|

0} aNp suUo23Yal palinbal un

21eMyos Aljigeded ybiy saunbay
asiou sjeubis Aq paioedw|
uonejusws|dul 1503 ybiH
s|apowl

Buluies| UONEIYISSE|D SPIIN

uoleLieA elep Jsurebe a|gels
Bumysano ou

sny1 ‘sanljiqeded uonezle|nbay

sanjea
P3SSIW PUB SI3I|INO S3|pueH
uopeziensip 1ea)d

dseib 01 Ase3

S311UIP1I9DUN B1EP SISSIPPY
Bulule Jo aduUasqy
9|dwis pue 1se4

uoneluswa|dwi
9|qIsea) pue adwisg
S9I1UIRLIDDUN B1BP SISSAUPPY

urewop Aouanbaij-laybiy
9Y1 Ul SYJOMISU [PUONIPRIL SOIWI
sjduis

puissadoid
[eUBIS 10} MOPUIM e1eP 3]gRISN(PY
21235 pue a|gepuada

puissadoid
[eubis 1oy MopuIM e1ep 3|geISN(pY
2In23s pue ajgepuads

P1EP }IOMIDU JO JUSpUSdapUy|
A>eindoe ybiH

puissadoid
[eubis 1oy mopuim elep a|geisnipy
24n29s pue s|gepuadaq

Sa1Ijeullouge apIdap
01 bululell 1o} e1ep salinbal |opow
uolssaibal pue uonedyIsse|d

Ssalljewlouqe apdIp
03 bujuies 10} e1ep sainbas ppow
uolissa16a1 pue uonRedYIsseD

S}nej apIdap
01 [9pow Azzny Buisn passado.d
9B S1UD1IND/S9DBYOA WISAS

S)|Nej auyap 0}
sBululei) SUIYO JOJ SNILIS SISMeIq
‘K103s1y sKejaui ‘s|eubis waisAs

SY3Q Paseq-1a1anu]
03 anp sabeyjon/siua1nd Indino
JO 1US3U0D DjuoWLIRY UO spuada(

anjea
ploysaiyi e yum paleduwlod aq
01 erep 1ndut Jo jeubis Aouanbaly
snoauejurISUl saINAWIOD

1ey3 yoeoidde Buissadold

[eubis Aousnbaij—swi v

UOIIRDYIIUSPI }N.Y JYNy
10§ $24N183) P1e|1 }|NE) 1DRIIXD
0} utewop Aduanba—auwil o)
pawlosuel) aJe sjeubls WalsAs

S1|neJ 18 saABM D11aubeW01d9)9
pasnpul JO SisAjeue UO paseq

UO[1eDYIIUSPI 3N.Y JSY1IN
10} S2IN183) Pale|al }Ney 10RIIXD
03 ulewop Aduanbaij—awiy o1l
paWLIOSURIL 218 S|eubls WS1SAS

aulydew JooaA uoddng

$92.1 UOISIDa(]

2160] Azzn4

SIOMIBN [BINSN [BIDLILY

S1USIUOD DIUOWIRH

BuenH-uaq|iH

wiiojsuelil-g

WIOjsuell 19|9ABAN

sayoeosdde paseg-abpajmou)

sayoeoidde
paseq-buissadold eubis

STIETTEY|

SIIBI

uondudsap uonerddo

aWayYdS uonI01d

(panunuod) £ ajqey



Page 28 of 40

(2023) 8:24

Sheta et al. Protection and Control of Modern Power Systems

AUARISUSS pUE AdBINDDE MO

1502 YbIH

siayissepd buiules| 01

PRUIGUIOD USYM Bulunsuod swi|
SUO[ILDIUNWILIOD 3|gel|al Saiinbay

SawaYds
uono319p bulpue|s SPIaN

SY3Q PISEG-ISLSAUL YUM

SOPOW PapUE|S| IO} 3|GeUNS IO
51500 dUeUURW

pue uoliejjeisul ybiy

suonelwl|

Pa1e1D0SSe pue UO0(139|9s 9dA|
Buun s1a19uwieled ‘'UONEIO)|
‘9715 J1ay1 buip.iebal sebus|ieyd
150 9dueUSIURW

pue uoliejjeisul ybiy

uoneyuswa|dwi ajdwis

uoneluswa|dwi Ase3
a|dwis

asuodsal 1se

sjduis

SUIDISAS 9[BIS-||PWIS O} PaIWI]
synej aouepadwi ybiH
SUOIIBDIUNUIUIOD 3|gel[a) salinbay

s1ney apidsp
01 SUOI}BD0] JUSJDYIP 18 PaIoUOW
dJe e3ep JULIND pue 6.1 oA

sAejal AQ 9|qISUSS 97 01
Ayoeded 31n2115 1oys ay3 poddns
01 papinoid si 9bei03s [euonppy

1Ua1IND 3Ny

Jwi| 03 2duepadul] Sa1ISS B SHIsU|
puelsIapun 01 Ase3

3|qIxay pue ‘a|qeljas ‘s|dwis
dWBYDS pPaseq-siakeT

SDIA9P D1U0IID3D JUHI||21U|

SWI21SAS abrI01S ADIau]

SI23WI| 1USAIND 3Ney

wa)sAs/uoneisgns
/Auawdinba :sanyjigisuodsal
1UJ3HIP JO sIake| 931y sasudwod

sadIA9p buldiay |eutsixy

sayoeoidde paseg-lusbeniniy

STIETEY|

SIIB

uondudsap uonesado

awdYdS Uoidl0Id

(panunuod) £ 9qel



Sheta et al. Protection and Control of Modern Power Systems

crucial needing for islanding detection technologies [35,
58].

5.5.3 Intelligent electronic devices

Microprocessor and communication technology
advances have contributed considerably to real-time
measurement using smart equipment, e.g., intelligent
electronic devices (IEDs) [154]. In a relaying system,
several IEDs are dispersed through the power system to
monitor voltage and current data, which subsequently
are fed into learning-based algorithms to identify and
diagnose fault occurrences [155].

A summary of the examined protection schemes in
this work is given in Table 7, highlighting the merits
and demerits of each scheme. In traditional approaches,
adaptive protection allows automatic adjustment of MG
relays using external signals, where several setting groups
are created in databases based on MG simulations that
take into account all conceivable changes and disruptions.
Accordingly, responsible communication channels and
controllers are essential for this scheme for safe, fast, and
reliable operation. Differential protection, in turn, offers
a sensitive and selective solution for protecting MGs,
though significant failures beyond the MG boundaries, as
well as data discrepancy at protected facility terminals on
regular occasions, limit the functionality of this scheme.
Furthermore, data transfer between system terminals
poses a problem to this method, as delayed or attacked
signals will indeed cause associated relays to malfunction.
In distance relays, voltage and current data at one or both
ends are employed to estimate the system impedance
during faults. However, significant constraints restrict the
use of these relays in MGs, such as fault resistance and
DER infeed currents, which influence the relay selection.
Adjustable distance relay settings may be a solution but
line loadability in normal instances is a limitation to
these adjustments. Traditional overcurrent relays have
many limitations in terms of fault current magnitude
and direction, limitations which may be addressed by
integrating directional features (DOR). Although DOR
addresses the issue of bidirectional current flow, the
quantity of fault current remains difficult, particularly
for islanded MGs. Some proposals use inverters’
harmonic current injection capacity as a triggering input
instead of the real current, which is only possible with
inverter-based DERs. Voltage-based relays also offer
simple and low-cost protection for MGs. However, their
application is limited because of high impedance faults
and difficulties in discriminating between normal and
abnormal events that result in system voltage reduction.
Accordingly, these relays are commonly used as backup
devices for better reliability. In signal processing-based
approaches, discriminating properties and statistical
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metrics of fault events are extracted and processed
using appropriate signal processing techniques such
as WT, S-transform, and HHT. However, this entails
employing data classification models (classifiers) to find
defects based on the extracted characteristics, which
takes more time and needs high-capability software.
Traveling waves are also included in this category, where
the investigation of induced/injected electromagnetic
waves following faults is employed to determine their
occurrences. However, the high implementation costs,
high sampling rate of fault recorders, and unwanted
reflections limit the use of TWs. This category includes
another technique based on correlated harmonics to
system voltages and currents. In the higher-frequency
domain, this technique mimics conventional networks,
but the reliance on system layout and inaccuracies in
harmonic-rich systems restrict its widespread adoption.
Knowledge and learning-based methods provide safe
and dependable frameworks for protecting MGs. In such
approaches, system signals, response patterns of relays
and breakers, extracted characteristics of fault events
via signal processing algorithms, etc., are employed for
further training and classification to determine abnormal
activity. Most of these approaches, however, are time-
consuming, necessitate a large amount of data for
training, take more memory, and so necessitate elevated
software. In multiagent-based schemes, the main
functions of MGs are restructured into several layers
with diverse responsibilities, which ease monitoring
and protection tasks. Nevertheless, such schemes have
only demonstrated their superiority in small-scale MGs,
aside from the need for robust communication channels.
Finally, several auxiliary devices to conventional relays,
such as FCLs, ESSs, and IEDs, are employed for various
purposes. However, these devices pose issues in terms of
implementation costs, installation location selection, and
necessary maintenance.

6 Real applications in MG protection

This section briefly discusses some real MG applications
in North America (the USA, Canada, and Mexico),
along with the protection systems that were actually
implemented, where the available protection scheming
data encouraged the investigation of MGs in these
countries. However, this work discusses only the
implemented schemes since most MGs in North America
are relatively new and have not, in reality, been subjected
to a large number of fault scenarios. Accordingly, the
behavior of the relaying systems under fault conditions is
not known for these MGs. In general, most MG projects
in Canada and Mexico use hydro and solar DERs,
respectively, while the USA employs solar, gas, wind,
diesel, and thermal MGs. Accordingly, in the USA and
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Mexico, the DERs are a mix of rotating machines-based
and inverter-based, in contrast to the Canadian MGs that
mainly use rotating machines-DERs [156].

6.1 Electric power board MG, Chattanooga, USA

This MG is a 12.47 kV system with a diesel generator
and 4408 solar panels (1.3 MW), which generate
backup power for the main operation building and
domestic demands, respectively. In this MG, the
lateral feeders are protected using fuses of different
ratings [156]. Schweitzer Engineering Laboratories
(SEL) protective relays (SEL-751) are installed in the
main substations to provide multiple protection and
fault-locating capabilities, monitoring, control, and
communication, all in one package [157]. Furthermore,
the 1247 kV distribution lines are outfitted with
multiple IntelliRupters to identify system failures. The
IntelliRupter is a directional overcurrent device that uses
PulseClosing technology to recognize temporary and
permanent faults, lowering potentially destructive stress
on system components with each reclosing activity, as
opposed to traditional autoreclosers [158].

6.2 Santa Rita Jail MG, Dublin, USA

The Santa Rita Jail MG is equipped with a 1.2 MW PV
system, a 1 MW fuel cell, 2x1.2 MW emergency diesel
generators, 5X2.3 kW wind turbine generators, and
a 2 MW/4 MWh-ESS [159], which provides power to
around 4000 inmates [156]. This MG is connected to the
main grid through a static switch, which allows for quick
isolation of the MG. To identify islanding occurrences,
traditional over/under voltage and over/under
frequency relays are used while coordinated with MG
DERs following an islanding. Furthermore, directional
overcurrent relays are installed to detect fault events
within the MG (internal faults) [160]. Nonetheless, the
protection frame in this MG lacks selective coordination
toward islanded MG failures, which means that a defect
in the islanded MG trips the whole zone [156, 160].

6.3 lllinois Institute of Technology MG, Chicago, USA

The Illinois Tech MG is a campus MG that is fed through
two identical substations, 12.47/4.16 kV, offering
additional reliability in case of a feeder loss [156]. This
MG, which has a peak capacity of 12 MW, is mainly
composed of several DERs: a 300 kW PV system, an
8 MW gas turbine, a 500 kWh ESS, an 8 kW wind
turbine, and a 4 MW emergency generation [160]. In
terms of the protection strategy, this MG implements a
4-level hierarchical scheme using differential protection.
The following points briefly outline the basic function of
each level [156, 160].
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— Loads protection level (LPL): It mainly comprises
directional overcurrent relays to protect against load
faults. Over/under voltage and over/under frequency
relays are also employed to allow load shedding and
other control strategies.

— Transmission lines (loop) protection level (TLPL):
Differential protection is employed at this level to
identify faults in the M@ lines using communication-
assisted relays. This level protects the LPL from
breaker failure and offers backup protection.

— Feeders protection level (FPL): This upper level
employs adaptive overcurrent relays in coordination
with LPL and TLPL to handle fault current variations
with different modes of the MG. It also offers a
backup protection frame for both LPL and TLPL
levels.

— MG protection level (MPL): The MPL consists of
over/under voltage, over/under frequency, and
overcurrent relays, to mainly protect the entire MG
against utility failures. In addition, it offers a backup
scheme for all the lower levels (LPL, TLPL, and FPL)
in the connected mode.

6.4 Borrego Springs MG, California, USA

This MG was constructed primarily to provide energy
to around 2800 clients since the community of Borrego
Springs was experiencing power outages owing to
environmental and technical issues [161]. The MG is
fed from the utility through a 69/12 kV substation and
comprises 2x 1.8 MW diesel generators, a 700 kW PV
system, and 500 kW/1500 kWh ESS. Overcurrent relays
are mainly employed for protecting the MG. However, the
limited fault current during islanded mode has promoted
the deployment of voltage-restrained OCRs [156]. This
scheme adjusts the OCR settings (pickup value and TDS)
dependent on system voltage, enabling the OCR to detect
low fault currents. Nevertheless, the coordination with
the relays of fixed settings is challenging [162].

6.5 Guasimas del Metate, and Tierra Blanca del Picacho
MGs, Mexico

Guaésimas del Metate and Tierra Blanca del Picacho are
two rural areas in Mexico that have been electrified by
two identical MGs, each of which can power around
52 homes. Each MG is driven only by a PV system of
45.9 kW, while both MGs operate only in islanded mode,
since the connection to the main grid is neither practical
nor economical for such regions [163]. In these MGs,
the employment of traditional overcurrent relays is
unworkable because of the small fault current of the PV
system in the islanded mode. Therefore, the inverter’s
self-protection is regarded as the primary protection,
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while undervoltage, voltage balance, and volts-hertz
protection are implemented as back-up protections
against MG faults and inverter failures [156, 163].

6.6 British Columbia Hydro MG, Canada

This MG is located in Boston Bar, Canada, and comprises
two sets of hydropower generators each rated at
2x%3.5 MW, which are connected to a 4.16/25 kV bus
when synchronized [164]. The MG is connected to the
utility via a 25/69 kV substation, and has a peak load of
3 MVA [160]. The MG employs adaptive overcurrent
protection to modify the settings according to the
operating mode. In addition, a payable telephone line is
used for communication purposes within the MG, such
as monitoring system breakers and communicating relay
settings for adaptive schemes [164].

6.7 British Columbia Institute of Technology MG, Canada
This is a research and educational campus MG located
in Burnaby, Canada. It contains 2x5 kW wind turbines,
250 kW steam turbines, 300 kW PV systems, and 550 kW
ESS [156]. The MG employs a communication-aided fault
diagnosis framework, using differential protection to
identify faults and abnormalities within the MG for grid-
connected and autonomous modes [160].

To sum up, the pie charts in Fig. 25 show the percent-
ages of protection schemes used in the North America
MG projects, where Fig. 25a represents the classical
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schemes and Fig. 25b represents the other schemes based
on [156]. According to Fig. 25a, traditional under-voltage,
inverse time overcurrent, and directional overcurrent
protection are the dominant schemes in North America,
while adaptive protection is the most prevalent noncon-
ventional strategy in these MGs, as shown in Fig. 25b.
Table 8 summarizes the main details of the described real
MGs in terms of country, voltage level, load rating, mode
of operation, types and ratings of DERs, and protection
strategy.

7 Challenges and future trends

Based on the evaluation and analysis of the discussed
schemes for protecting AC-MGs, these strategies
still face considerable challenges influencing their
performance, such as data sharing and cyber security.
Thereby, the following points may be considered for
future research and improvement in this promising
area, in order to provide reliable and practical relaying
systems.

+ Most research on AC-MGs assumes balanced
operation, but the increasing use of RESs and single-
phase roof-top solar panels have led to an increase in
system imbalance. This lead to detrimental impacts
such as increased losses, degraded voltage, greater

stress on transformers, protection equipment
malfunctions, harm to sensitive loads, elevated
neutral currents and neutral-ground voltage,

and power oscillations. Generally, the imbalance
problem in AC-MGs can be evaluated based on
the MG operation mode, either in islanded or
grid-connected mode. In islanded mode, the main
challenges are the overloading of DERs because of
overcurrent, unbalanced voltage, high circulating
current, and power oscillation. In grid-connected
mode, the key challenges are rapid fault detection,
proper synchronization, fault ride-through control,
stable ramping up of power after recovery, as well as
controlling DER power and overcurrent [165].

« The adoption of the latest trends in Al approaches
in MG-protection, such as physical-informed Al
and explainable Al, to address the limitations of tra-
ditional Al methods, such as overfitting of training
data, lack of interpretability, limited understanding
of complex systems, and reliance on large amounts
of data. Physical-informed Al enhances interpret-
ability and accuracy by incorporating physical
knowledge and constraints into Al models informed
by physical laws and principles. Common physical-
informed AI approaches include physics-based and
data-driven physics models, and physics-informed
neural networks. Explainable Al, on the other hand,
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focuses on making Al systems more transparent and
understandable to human users through techniques
such as LIME (Local Interpretable Model-Agnostic
Explanations), counterfactual explanations, and sali-
ency maps. This leads to better predictions, decision-
making, and outcomes across a range of fields and
the ability to handle uncertainty and incomplete data
[166-169].

+ In power systems, inertia refers to the stored energy
in large rotating machines such as generators and
some industrial motors. This can be tapped for a few
seconds to give the grid time to detect and respond
to system failures, thus enhancing system stability.
Conversely, AC-MGs consist mainly of inverter-
based resources, which reduce the amount of inertia
available and can result in instability and security
issues. This makes AC-MGs more vulnerable to
faults [170].

+ In MGs, it is crucial to carefully consider the type of
inverters being used, as the characteristics of current
source inverters (CSI) and voltage source inverters
(VSI) can impact the protection schemes during both
normal and abnormal conditions. CSI-based DERs
maintain a constant current flow at near-rated levels
during faults, requiring more advanced protection
schemes for fault detection. In contrast, VSI-based
DERSs significantly contribute to fault current while
maintaining constant voltage, which makes fault
detection easier [171].

+ MGs have recently emerged as a solution to
traditional network challenges, combining DERSs,
ESSs, and load management systems to improve
system reliability, promote sustainability, and reduce
toxic emissions. Meanwhile, rapid developments
in monitoring and measurement devices and
communication capabilities have resulted in the
acquisition of extensive data volumes (i.e., the status
of circuit breakers, system currents, and voltages).
Accordingly, using big data analysis tools for such
recordings enables MGs to quickly identify defects
and failures, highlighting the role of data science in
power engineering.

+ More research should be conducted on using the
internet of things (IoT), Fog, and cloud platforms
to improve system monitoring and data storage, for
reliable decisions with reasonable timing. Such plat-
forms, in turn, link all power system apparatus to
the internet, permitting data interchange with the
cloud. This online framework supports data gather-
ing, evaluation, and processing to reveal distinct pat-
terns for effective decisions. However, data security
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and privacy are challenging when using these online
platforms.

o The development of communication frameworks
to suit the needs of MG operation, control, and
protection is critical to the behavior of such grids.
Accordingly, these communication routes must have
enough bandwidth to store and process the huge
amounts of data gathered by intelligent devices in the
MG. In addition, they should support plug-and-play
applications for more flexible operation. Wired, fiber-
optic, wireless, microwave, and satellite connections
are all examples of communication methods.

o Again, communication channels are essential in
MGs for data gathering for monitoring, control,
management, and protection purposes. However,
the widespread use of these networks threatens
the security of MGs, exposing them to risky cyber-
attacks, which impact the performance of the
protective devices. These attacks may be classified
into several forms, including malware, phishing,
cryptojacking, SQL injection, DNS tunneling, denial
of service attacks, etc. Consequently, it is essential to
consider cyber security while designing protection
strategies for MGs.

+ Cloud computing adoption offers exceptional
processing power and storage capacity, particularly
in poor countries. This technology lowers hardware
costs, delivers the most recent software, optimizes
data processing timing, allows flexible data access,
and improves dependability and security. However,
cyber-attacks and losing control over sensitive
information are significant challenges when moving
to cloud computing.

8 Conclusion

This study has examined the challenges and solutions
for protecting AC microgrids (MGs). Traditional
protection techniques have been reviewed and a
comprehensive examination of reported protection
methods in the literature has been provided. The
methods were categorized into five classes: traditional,
signal processing, knowledge and learning, multi-
agent, and assisting external devices-based techniques.
The paper also examined some real MGs in North
America and identified additional challenges for future
research. It was found that adaptive and differential
protection schemes can effectively protect AC-MGs
when efficient and stable communication channels
are available. Directional overcurrent relays (DORs)
are also a possible alternative, but variations in fault
current can affect the selection of their operating
characteristics, such as pickup current and time-delay
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settings. Multi-agent systems for protecting MGs
depend on the performance of individual agents and
communication platforms. Artificial intelligence and
learning-based frameworks are suggested to address
operational concerns, but they also make the system
vulnerable to cyber-attacks, resulting in a decline in
overall performance and access to sensitive information.
In general, the protection of AC-MGs remains a crucial
challenge for ensuring the reliability and stability of
these systems, where further research and development
are necessary considering emerging challenges and
trends, so as to provide more viable and sustainable
solutions.
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