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Abstract 

State estimation plays a vital role in the stable operation of modern power systems, but it is vulnerable to cyber 
attacks. False data injection attacks (FDIA), one of the most common cyber attacks, can tamper with measure-
ment data and bypass the bad data detection (BDD) mechanism, leading to incorrect results of power system state 
estimation (PSSE). This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned 
convolutional networks (GECCN), which use topology information, node features and edge features. Through deep 
graph architecture, the correlation of sample data is effectively mined to establish the mapping relationship between 
the estimated values of measurements and the actual states of power systems. In addition, the edge-conditioned 
convolution operation allows processing data sets with different graph structures. Case studies are undertaken on the 
IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN. Simulation 
results show that GECCN has better detection performance than convolutional neural networks, deep neural net-
works and support vector machine. Moreover, the satisfactory detection performance obtained with the data sets of 
the IEEE 14-bus, 30-bus and 118-bus systems verifies the effective scalability of GECCN.

Keywords Power system state estimation (PSSE), Bad data detection (BDD), False data injection attacks (FDIA), Graph 
edge-conditioned convolutional networks (GECCN)

1 Introduction
With the increased access of various sensing and com-
munication devices, traditional power grids are gradu-
ally being transformed to smart grids. Comprehensive 
and detailed information of power grids can be obtained 
in real time [1]. However, due to the high dependence on 
cyber systems, there are great concerns about the reli-
ability and security of smart grids. Cyber security plays 
an increasingly important role in the operation of power 
systems [2]. In addition, the frequent cyber attacks in 

recent years have sounded the alarm for the security of 
power systems [3–5].

Data integrity attacks are one of the common forms 
of cyber attacks, and mainly hinder the normal data 
exchange of power grids by injecting false data or illegally 
tampering with data. False data injection attacks (FDIA) 
[6] are the typical attack methods. FDIA can bypass the 
bad data detection (BDD) mechanism of power system 
state estimation (PSSE) and mislead the state estimation 
results, thus it is considered to be one of the most chal-
lenging threats to the safe operation of power systems.

FDIA for PSSE was first introduced in [7], and since 
then, a lot of researches have been devoted to the detec-
tion and defense against FDIA [8, 9]. At different times, 
researchers have conducted comprehensive investiga-
tions of such cyber attacks [10–13]. Most previous cyber 
attack detection algorithms are model-based methods, 
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such as Kalman filter [14], Kullback-Leibler distance [15], 
adaptive nonparametric cumulative sum [16], etc. How-
ever, the performance of model-based methods is often 
sensitive to the parameters and a slight uncertainty of the 
parameters leads to poor detection results. Moreover, 
model-based methods need choose the threshold, which 
is difficult to set when the system is subject to dynamic 
changes or loading variations [12]. In addition, model-
based approaches fail to make good use of the increasing 
data of power grids.

Because of the continuous development of high-per-
formance computing hardware, data-driven methods 
like machine learning have been applied to researches in 
various fields [17–19]. Using the historical data accumu-
lated by power grids and the real-time data continuously 
obtained by measurement equipment, the application of 
data-driven methods to various power system scenarios 
is also emerging. Researches have been carried out on 
various scenarios for FDIA and the development of cor-
responding detection strategies. In [20], support vector 
machine (SVM) and the deviation in measurements are 
used to detect FDIA. However, the situation of sample 
imbalance, the impact of different attack intensities and 
degrees, the comparison of different models, and the 
scalability of the models are not considered. Reference 
[21] uses SVM, k-nearest neighbor, extended nearest 
neighbor models on the basis of [20] to design detectors 
for FDIA. Considering the situation of sample imbal-
ance, different attack intensities and degrees, the perfor-
mances of the three models are evaluated and compared. 
However, the scalability of the detector is still ignored in 
[21] and it is difficult to implement effectively in large-
scale data sets with imbalanced samples. Neural net-
work models have obvious advantages in dealing with 
the above problems. In [22, 23], conditional deep belief 
network model and gated recurrent unit are each used 
to perform detection of FDIA in real time. These neural 
network structures can deeply extract data information 
and improve detection accuracy. Nevertheless, in view of 
the problem of model scalability, the above two models 
are only suitable for specific data sets with a single and 
fixed structure, while they are not well adapted to data 
sets with different structures. Also, the data-driven mod-
els proposed in [20–23] force the input data into a table 
format, while the topology of power systems is not effec-
tively used.

Graph neural networks have attracted great atten-
tion in the field of deep learning in recent years. They 
have achieved excellent performance in graph structure 
data such as citation recommendation, link prediction, 
protein structure inference, chemical molecular prop-
erty classification, etc [24, 25]. A variety of well-known 

types have been derived, such as graph convolutional 
networks (GCN) [26, 27], graph attention networks 
[28], etc. However, the commonly used graph neu-
ral network models such as GCN do not make full 
use of edge features, where graphs may carry a lot of 
additional information. These models only use binary 
adjacency matrices to indicate whether there are con-
nections between nodes. In order to utilize edge 
features, reference [29] introduces dynamic edge-con-
ditioned filters [30] in convolutional neural networks 
on graphs. These can also process graphs of different 
sizes and connectivity.

Similar to general non-Euclidean structures such as 
transportation networks and social networks, power 
systems can also be abstracted into graphs composed 
of nodes and edges. The methods based on GCN have 
been explored in several fields of smart grids [31, 32]. 
Nevertheless, to the best of our knowledge, the applica-
tion in the field of FDIA is still in its infancy.

This paper proposes a detection method for FDIA 
based on graph edge-conditioned convolutional net-
works (GECCN) [29], which incorporates dynamic 
edge-conditioned filters [30] into the convolution oper-
ation of the graph structure. Case studies are mainly 
carried out on the IEEE 14-bus system to demonstrate 
the effectiveness and validity of the GECCN model. The 
main contributions of this paper are as follows. 

(1) A detection framework based on GECCN is pro-
posed for FDIA, which takes advantages of the 
GCN model by considering the information of sys-
tem topology structure and node features, and also 
makes up for the drawback of GCN which fails to 
employ the edge feature information of power sys-
tems.

(2) The edge-conditioned convolution (ECC) operation 
is employed in GECCN to improve the adaptation 
to the data sets which contain different topology 
structures of power systems, thus enhancing the 
scalability of the detection framework.

(3) The detection performance of the GECCN model 
is investigated and compared with commonly used 
data-driven models under different attack intensi-
ties and degrees.

The rest of this paper is organized as follows. In Sect. 2, 
the basic concepts, including PSSE, BDD and FDIA, 
are briefly introduced. ECC operation, the structure of 
GECCN model and the proposed detection framework 
for FDIA are elaborated in Sect. 3. Section 4 gives the 
case studies and simulation results, and finally, Sect. 5 
concludes the paper.
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2  False data injection attacks against state 
estimation

In this section, the PSSE and BDD mechanisms are first 
introduced. Then, the construction method of FDIA in 
the case of state estimation is given.

2.1  Power system state estimation
State estimation is a process to estimate the state vari-
ables of power systems by eliminating inaccuracies and 
errors from meter measurements. The results of state 
estimation are typically used in security assessment, 
such as contingency analysis, preventive control, secu-
rity constrained optimal power flow, etc [33].

In order to simplify the calculation process of obtain-
ing the system estimated states, this paper consid-
ers the linear form of state estimation, which can be 
expressed as

where z = (z1, z2, ..., zm)
⊤ ∈ R

m represents the meter 
measurements, x = (x1, x2, ..., xn)

⊤ ∈ R
n represents the 

system state variables, and e = (e1, e2, ..., em)
⊤ ∈ R

m rep-
resents the measurement errors which are often assumed 
to be additive white Gaussian noise with variance σ 2 (i.e., 
ei ∼ N(0, σ 2

i ), i = 1, 2, ...,m ). H ∈ R
m×n is the measure-

ment Jacobian matrix, which is determined by grid topol-
ogy and line parameters. Note that the number of valid 
measurements m should be greater than the number of 
system state variables n to ensure system observability 
(i.e., m > n).

The weighted least squares (WLS) method is one of 
the most commonly used algorithms for state estimation. 
The WLS method minimizes the objective function J (x) , 
as

and the estimated state variables x̂ are computed by

where R is a diagonal matrix composed of variances of 
the measurement errors (i.e., Rii = σ 2

i ).

2.2  Bad data detection
Measurements may contain bad data for various rea-
sons. In addition to noises caused by finite accuracy of 
the meters and the telecommunication medium, bad data 
may also be introduced by equipment failure, wrong con-
nections, and communication system interference, etc. 
BDD is intended to detect, identify and eliminate bad 
measurements [33].

(1)z = Hx + e

(2)min J (x) = (z −Hx)⊤R−1(z −Hx)

(3)x̂ = (H⊤
R
−1

H)−1
H

⊤
R
−1

z

The largest normalized residual (LNR) test is widely 
used in BDD, and is formalized as

where r = z −Hx̂ represents the measurement resid-
ual vector, S = I −H(G−1

H
⊤
R
−1) represents the 

residual sensitivity matrix, I is the identity matrix, and 
G = H

⊤
R
−1

H is the gain matrix.
Find k such that rnork  is the largest among all 

rnori ∈ rnor, i = 1, 2, ...,m . If rnork ≥ τ , where τ is a chosen 
identification threshold, the estimated state variables are 
considered to be affected by bad data, otherwise they are 
trustworthy.

2.3  False data injection attacks
In FDIA, the attackers can hack into a subset of meters 
and send changed readings to force the state estimator 
to obtain false estimated state variables [7]. Specifically, 
they intend to mislead the operator to consider a com-
promised x̂att = x̂ + c as the current estimated state 
variables, where c  = 0 is the deviation vector of the esti-
mated state variables before and after the attack.

To achieve this goal, the attacker changes the received 
measurements z at the control center to zatt = z + a , 
where zatt is the compromised measurement vector, and 
a is the injected attack vector. The vector of the false esti-
mated state variables x̂att obtained from (3) is

To bypass the BDD mechanism, the attackers deliberately 
design the attacker vector a that satisfies a = Hc , and the 
false measurement residual vector ratt is the same as the 
normal measurement residual vector r , as shown below

Therefore, rnoratt = rnor , and this well-designed unobserv-
able FDIA can tamper with measurement data without 
being detected.

3  The graph edge‑conditioned convolutional 
network detection framework

In this section, ECC operation is first introduced, then 
the overall structure of GECCN is presented and finally 
the proposed detection framework is given.

(4)r
nor = |r|√

RiiSii

(5)
x̂att = (H⊤

R
−1

H)−1
H

⊤
R
−1

zatt

= (H⊤
R
−1

H)−1
H

⊤
R
−1(z + a)

= x̂ + (H⊤
R
−1

H)−1
H

⊤
R
−1

a.

(6)

ratt = zatt −Hx̂att

= z + a −Hx̂ −H(H⊤
R
−1

H)−1
H

⊤
R
−1

a

= z +Hc −Hx̂ −H(H⊤
R
−1

H)−1
H

⊤
R
−1

Hc

= z +Hc −Hx̂ −Hc = r.
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3.1  Edge‑conditioned convolution
In power systems, buses and transmission lines can 
be regarded as nodes and edges in the graph, respec-
tively. An undirected graph G = (V , E) is considered, 
where V is a set of nodes with |V| = p and E ⊆ V × V 
is a set of edges with |E | = q . l ∈ {0, 1, ..., lmax} is the 
layer index of the feed-forward networks. The nodes 
and edges in the graph have corresponding fea-
tures, that is, there are functions X l : V �→ R

dl and 
L : E �→ R

s to assign features to each node and each 
edge. These two functions can be regarded as matrices 
X ∈ R

p×dl and L ∈ R
q×s ( L ∈ R

p×p×s ), where X 0 is one 
of the inputs. The neighborhood of node i is defined 
as N (i) = {j; (j, i) ∈ E} ∪ {i} , which contains all adja-
cent nodes and i itself. The filtered signal X l(i) ∈ R

dl 
at node i is normally calculated as a weighted sum of 
signals X l−1(j) ∈ R

dl−1 in its neighborhood, j ∈ N (i) . 
This commutative aggregation can solve the problem of 
undefined vertex ordering and varying neighborhood 
sizes, but it smooths out structural information. In 
order to retain the structural information, each filtering 
weight is proposed to be conditioned on the respective 
edge feature [30]. The method is to define a filter-gen-
erating network F l : Rs �→ R

dl×dl−1 , and the given edge 
feature L(j, i) outputs the edge-specific weight matrix 
�l

ji ∈ R
dl×dl−1 [29].

As shown in Fig.  1, the neighborhood of bus 1 in 
the IEEE 14-bus system is taken as an example to 
illustrate ECC. According to the system topology, 
N (1) = {2; 5; 1} and edge features include L(1, 1) , 
L(2, 1) , L(5, 1) . The feature X l(1) on bus 1 in the lth net-
work layer is computed as a weighted sum of features 
X l−1(·) on the set of its predecessor nodes. The specific 
weight matrices are dynamically generated by the fil-
ter-generating network F l based on the corresponding 
edge features L(·).

The form of ECC operation is given as

where bl is the learnable bias and wl is the learnable 
network weights. Note that bl and wl are model param-
eters updated only during training. The filter-generating 
network F l is parameterized by wl and it can be imple-
mented with any differentiable architecture, where multi-
layer perceptrons are used by default. The edge-specific 
weight matrix �l

ji contains dynamically generated param-
eters for an edge feature in a particular input graph.

3.2  The configuration of graph edge‑conditioned 
convolutional networks for FDIA

The GECCN model used for detection is shown in 
Fig.  2. The input includes node features X  and edge 
features L . The adjacency matrix used to represent 
the graph structure is included in L . The output is the 
probability of the sample being subject to FDIA.

The network configuration can be described as 
[ECC(32) – Acti(tanh) – BN]×l – GSP – FC(1) – 
Acti(sigmoid). ECC(32) denotes an edge-conditioned 
convolutional layer with 32 output channels, where 
Conv represents the convolution operation and the 
filter-generating network F  is configured as FC(16) – 
Acti(tanh) – FC(32). The specific operational form of 
ECC has been shown in (7). Acti(tanh/sigmoid) denotes 
a tanh/sigmoid activation function to increase nonlin-
earity. BN denotes the batch normalization layer, which 
is used to accelerate learning convergence. [ECC – Acti 
– BN] is defined as a block, and l is the layer index 
defined above and can be used to represent the num-
ber of blocks, which will be determined in Sect.  4.2.1. 
GSP denotes the global sum pooling layer, which pools 
a graph by computing the sum of its node features. 
FC(16/32/1) is the fully-connected layer with 16/32/1 
output channels.

(7)

X l(i) = 1

|N (i)|
j∈N (i)

F l(L(j, i);wl)X l−1(j)+ bl

= 1

|N (i)|
j∈N (i)

�l
jiX

l−1(j)+ bl

Fig. 1 Illustration of ECC on bus 1 of the IEEE 14-bus system Fig. 2 Structure of GECCN



Page 5 of 12Chen et al. Protection and Control of Modern Power Systems            (2023) 8:16  

3.3  The proposed detection framework
The proposed detection framework for FDIA is 
depicted in Fig. 3. The black boxes and characters rep-
resent the normal state estimation process, as shown 
in Sects. 2.1 and 2.2. The red box and characters repre-
sent the process of FDIA for PSSE, which is illustrated 
in Sect.  2.3. The main process of data generation is to 
collect measurements and combine them with the net-
work topology to realize PSSE. Then, BDD is performed 
to detect and delete the unqualified data. Finally, a valid 
data set of estimated measurements is obtained, which 
contains normal data (label 0) and compromised data 
(label 1). The blue box and characters represent the 
GECCN-based FDIA detection framework. The spe-
cific process is to divide the valid data set into training 
and testing sets in the ratio of 4:1. The training set is 
used for GECCN model training. After training, the 
testing set is used for model evaluation, and the detec-
tion performance is tested using evaluation indicators. 
The specific evaluation indicators will be described in 
Sect. 4.1.2.

4  Case studies
In this section, the performance of the proposed detec-
tion framework for FDIA based on the GECCN model 
is evaluated. Data generation and simulation settings 
are first introduced, and then the effectiveness of the 
detection framework is verified by 4 case studies.

4.1  Data generation and simulation settings
4.1.1  Data generation
The test data in this paper are generated by simulation 
using the MATGRID toolkit [34]. The data set contains 
normal samples labeled 0 and compromised samples 
labeled 1. The values of each sample are the estimated 
values of measurements after PSSE and BDD.

The data of normal state estimation are generated 
as follows. First, each sample should determine the 
operating point by setting, for each load, a random 
value between 80% and 120% of the initial value. After 
obtaining a set of different operating points, power flow 
is performed and the corresponding exact solutions are 
corrupted by the additive white Gaussian noises with 
specific variances to form the measurements z required 
for state estimation. Since the measurements are 
assumed to be obtained based on supervisory control 
and data acquisition (SCADA), all variances are set to 
0.01. Then, PSSE and BDD are performed. The thresh-
old τ in BDD is set to 3.0 in accordance to [33]. Finally, 
the corresponding valid estimated measurements ẑ can 
be obtained.

For the generation of compromised data, the above 
process of normal PSSE needs to be performed first. 
Then, the H matrix is extracted according to Sect.  2.3, 
and the state variable deviation vector c is determined by 
attack intensities and degrees. The attack intensities are 
set to 3 types with standard deviation σ = 0.01, 0.1, 1 of 
normal distribution, representing low, medium, and high 
attack intensities. It can be expressed as ai = 0.01/0.1/1 , 
where ai is the specific value of the standard deviation. 
The attack degrees are defined as γi , where i represents 
the number of compromised buses. It can be expressed 
as γi = Randperm(n, i) , where the Randperm(n,  i) func-
tion returns a vector containing i unique integers ran-
domly selected from 1 to n. In general, the value of n 
is the number of system buses and i is the number of 
compromised buses. The specific form of the devia-
tion vector is expressed as c(γi) = Normrnd(0, ai, [1, i]) , 
where the Normrnd(0,  ai,  [1,  i]) function generates i 
random values of normal distribution with mean 0 and 
standard deviation ai, and then fills in the correspond-
ing bus. Taking the IEEE 14-bus system as an exam-
ple, the attack intensity is randomly set to medium 
intensity, that is, ai = 0.1 , and the attack degree is ran-
domly set to γ3 , that is, 3 randomly selected buses 
are subject to FDIA. Run the Randperm(n,  i) func-
tion, if γ3 = Randperm(14, 3) = [2, 6, 11] , it means 
that the corresponding bus will suffer from medium-
intensity attacks, and c can be randomly generated as 
c = [0,−0.121, 0, 0, 0, 0.072, 0, 0, 0, 0, 0.163, 0, 0, 0]⊤ . After 
that, the attack vector a = Hc is formed and injected into 
the measurements z ( zatt = z + a ). After PSSE and BDD, Fig. 3 Detection framework for FDIA



Page 6 of 12Chen et al. Protection and Control of Modern Power Systems            (2023) 8:16 

the estimated values of the compromised measurements 
ẑatt are obtained.

In summary, the pseudocode for data generation is 
illustrated in Algorithm 1.

A normal sample and a compromised sample from the 
data set are randomly selected for analysis. These two 
samples have the same initial operating point. Defin-
ing res1 as the residual between estimated and measure-
ment values, and res2 as the residual between estimated 
and real values. The comparison of res1 (red bar) and res2 
(blue bar) under normal and compromised samples is 
presented in Fig. 4.

For the PSSE of the IEEE 14-bus system, the number of 
feature indices is 54, including 40 active power flows of 
the transmission lines and 14 active power injections of 
the buses. For the compromised sample, using the exam-
ple mentioned above, the attack intensity is medium and 
the attack targets are buses {2, 6, 11} . From Fig. 4a, it can 
be seen that with a normal sample, res1 and res2 are not 
very different. The mean absolute error (MAE) of each 

feature index is around 0.1 p.u.. However, from Fig. 4b, it 
can be seen that with a compromised sample, res2 of sev-
eral feature indices are significantly larger than the corre-
sponding res1 . In other words, the deviation between the 
estimated values and real values is large, while the devia-
tion between the estimated values and measurement val-
ues is too small to be detected by the BDD mechanism. 
This is clearly harmful to power systems.

4.1.2  Simulation settings
Simulation settings include parameter settings and evalu-
ation index determination.

Parameter settings are first introduced. The proposed 
model is built on the Spektral toolkit [35], which is a 
Python library for graph deep learning based on Tensor-
flow and Keras. The batch size of the entire simulation is 
set to 32, and the value of epoch is set to 100. The Adam 
optimizer with a default learning rate 0.001 is used, which 
is considered to be one of the most popular optimizers in 
deep learning. For the loss function, since it is essentially a 
supervised binary classification problem, the binary cross-
entropy loss function is chosen. All the simulations are run 
on an I7-7700 CPU and an Nvidia GeForce RTX 2080.

For the evaluation indices of the experimental results, 
accuracy (Acc), precision (Pre), recall (Reca) and F1 score 

Fig. 4 Comparison under a normal sample and b compromised 
sample
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( F1 ) are chosen. The definitions of true positive (TP), 
false positive (FP), false negative (FN) and true negative 
(TN) are shown in Table 1. In the simulations, the FDIA 
sample is determined as positive (label 1) and the normal 
sample is determined as negative (label 0).

The four indices are defined as 

 where Acc indicates the overall effectiveness of a clas-
sifier, and Pre denotes class agreement of the data labels 
with the positive labels given by the classifier and higher 
Pre value means higher detection accuracy. Reca repre-
sents the effectiveness of a classifier to identify positive 
labels, and F1 shows the relationship between the positive 
labels of data and those given by the classifier, the value 
of which is expected to be as high as possible.

4.2  Performance evaluation of GECCN
4.2.1  Determination of the number of blocks in the proposed 

GECCN model
In this case, the optimal number of blocks in the GECCN 
model based on the IEEE 14-bus system is determined 
first. As mentioned in Sect. 3.2, a block contains the ECC 
layer, tanh activation and BN layer. Block(l) means there 
are l blocks stacked. In the tests, 7 scenarios are set, from 
1 block to 7 blocks, to determine the optimal number.

From Algorithm 1, normal and compromised samples 
are generated. The number of normal samples is set to 
50000. For the compromised samples, since the number 
of samples is much smaller than that of normal samples, 
the ratio of 1:10 is considered and thus 5000 FDIA sam-
ples are generated. Among them, the attack intensity is 
selected by a random function at three different intensi-
ties, and the attack target is also set by a random func-
tion. Thus, a total of 55000 valid samples are obtained, 

(8a)Acc = TP+ TN

TP+ TN+ FP+ FN

(8b)Pre = TP

TP+ FP

(8c)Reca = TP

TP+ FN

(8d)F1 =
2 · Pre · Reca
Pre+ Reca

= 2 · TP
2 · TP+ FN+ FP

which are divided into training and testing sets in a 4:1 
ratio.

The results of various evaluation indices for each 
scenario are presented in Table  2. It can be seen that 
Acc and Pre are basically above 99%. When there are 3 
blocks, the value of Acc is the highest, reaching 99.5%, 
whereas when there are 2 blocks, Pre reaches the highest 
value. Reca remains at around 90% and reaches a high-
est value of 94.5122% when l = 3 . Compared with Pre, 
Reca should have more attention paid, because its value 
is related to the size of FN in the confusion matrix. As 
FN represents the number of compromised samples mis-
judged as normal samples, it is expected to be as small 
as possible, so as to obtain a larger value of Reca. The 
value of F1 is largely maintained between 94% and 97%, 
and it is an important evaluation index in an imbalanced 
sample data set. When the number of blocks is 3, F1 has 
a maximum value of 97.1279%. It can be seen that when 
3 blocks are stacked, Acc, Reca, and F1 all reach the high-
est values, while the corresponding value of Pre is only 
0.0011% lower than the maximum value of Pre. The value 
of Pre is related to FP, and FP represents the number of 
normal samples misjudged as compromised samples. The 
influence of FP is not that great compared to FN. In sum-
mary, 3 blocks are chosen as the final number of layers 
for the subsequent case studies.

The dimension reduction and visualization operations 
are intended to be performed on the output of the inter-
mediate layers of the proposed model, which consists of 
3 blocks (each block contains [ECC – Acti(tanh) – BN]) 
and 1 GSP layer. The output visualization is depicted in 
Fig. 5. The operation is to first reduce high-dimensional 
data to 20 dimensions using principal component analy-
sis (PCA) followed by t-SNE to 2d-space. In Fig. 5, label 
0 (blue dots) represents normal samples and label 1 
(orange dots) represents compromised samples. It can 
be seen that after each intermediate layer, the cluster-
ing effect of the two types of samples in the new feature 
space becomes more and more obvious, i.e., one is that 
the boundary of different types is increasingly clear, and 

Table 1 Confusion Matrix for Binary Classification

Data class Classified as positive Classified as negative

Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

Table 2 Results of Different Numbers of Blocks

Block(l) Acc Pre Reca F1

Block(1) 0.989636 0.990011 0.894684 0.939937

Block(2) 0.992455 0.998937 0.919765 0.957718

Block(3) 0.995000 0.998926 0.945122 0.971279
Block(4) 0.992636 0.998907 0.919517 0.957569

Block(5) 0.992273 0.998913 0.916251 0.955798

Block(6) 0.992182 0.998891 0.913793 0.954449

Block(7) 0.991818 0.993443 0.915408 0.952830
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the other is that the samples of the same type are gradu-
ally aggregated together.

4.2.2  Detection performance under different attack 
intensities and degrees

In this case, the GECCN model is used to evaluate the 
detection performance under different attack intensities 
and degrees in the IEEE 14-bus system. As mentioned 
in Sect.  4.1.1, three different intensities are set, and the 
attack degrees refer to the number of non-zero values in 
the vector c . For the IEEE 14-bus system, up to 14 dif-
ferent attack degrees can be set, that is, 1 to 14 points 
are randomly selected from the vector c to fill in the cor-
responding non-zero values of attack intensity. Attack 
degrees are defined as γi , where i ranges from 1 to 14 
in the IEEE 14-bus system. A larger value of i means a 
deeper attack degree.

Since the number of attack simulation scenarios is the 
attack intensities × attack degrees, there are a total of 
3× 14 = 42 simulation scenarios for model performance 
evaluation. The number of compromised samples in each 
scenario is set to 5000, and the number of normal sam-
ples is set to 50000. Mixing normal samples and com-
promised samples, the data set of each scenario will be 
divided into training and testing sets in the same 4:1 ratio 
for model training and testing. The results are presented 
in Table 3.

It can be seen that under different attack intensities and 
degrees, Acc and Pre are basically above 99%. Reca and F1 
of low attack intensity initially increase and then slightly 
decrease as the attack degree deepens. The Reca values of 
medium and high attack intensities are basically 1 after 

the attack degrees are deeper than γ2 , that is, the number 
of compromised samples misjudged as normal samples 
is 0, which shows excellent performance. The F1 values 
of medium and high attack intensities basically show 
upward trends with the increase of attack degree, and are 
higher than 99% when the attack degree is deeper than γ2.

The numbers of FP and FN in the simulation are 
depicted in Fig.  6. It can be seen from Fig.  6a that 

Table 3 Detection Results of Different Attack Intensities and Attack Degrees

Attack Low attack intensity Medium attack intensity High attack intensity

 Degrees Acc Pre Reca F1 Acc Pre Reca F1 Acc Pre Reca F1

γ1 0.9918 0.9955 0.9109 0.9513 0.9941 0.9938 0.9418 0.9671 0.9940 0.9926 0.9408 0.9660

γ2 0.9976 0.9916 0.9813 0.9864 0.9995 0.9939 1.0000 0.9969 0.9995 0.9951 0.9990 0.9971

γ3 0.9992 0.9931 0.9980 0.9955 0.9995 0.9939 1.0000 0.9970 0.9998 0.9980 1.0000 0.9990

γ4 0.9989 0.9886 0.9990 0.9938 0.9990 0.9888 1.0000 0.9944 0.9994 0.9927 1.0000 0.9964

γ5 0.9993 0.9941 0.9980 0.9961 0.9993 0.9921 1.0000 0.9960 0.9994 0.9930 1.0000 0.9965

γ6 0.9993 0.9939 0.9980 0.9960 0.9995 0.9940 1.0000 0.9970 0.9993 0.9918 1.0000 0.9959

γ7 0.9992 0.9924 0.9990 0.9957 0.9998 0.9980 1.0000 0.9990 0.9992 0.9913 1.0000 0.9956

γ8 0.9993 0.9922 1.0000 0.9961 0.9997 0.9971 1.0000 0.9985 0.9994 0.9928 1.0000 0.9964

γ9 0.9993 0.9942 0.9981 0.9961 0.9995 0.9937 1.0000 0.9968 0.9995 0.9941 1.0000 0.9971

γ10 0.9993 0.9930 0.9990 0.9960 0.9996 0.9961 1.0000 0.9980 0.9998 0.9980 1.0000 0.9990

γ11 0.9993 0.9916 1.0000 0.9958 0.9995 0.9941 1.0000 0.9970 0.9993 0.9919 1.0000 0.9959

γ12 0.9984 0.9937 0.9875 0.9906 0.9997 0.9969 1.0000 0.9985 0.9993 0.9923 1.0000 0.9961

γ13 0.9982 0.9927 0.9866 0.9896 0.9995 0.9937 1.0000 0.9968 0.9992 0.9912 1.0000 0.9956

γ14 0.9979 0.9937 0.9824 0.9880 0.9995 0.9949 1.0000 0.9974 0.9994 0.9930 1.0000 0.9965

Fig. 5 Output visualization of the intermediate layers
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different attack intensities and degrees have little 
impact on FP, with the number of FP being lower than 
15 in each scenario. FP refers to the number of normal 
samples that are misjudged to be compromised sam-
ples. This does not cause great harm to the systems in 
actual situations since in any case compromised sam-
ples need to be further checked and eliminated. From 
Fig.  6b, FN is largely maintained at 0 when the attack 
degree is deeper than γ2 under medium and high attack 
intensities, that is, the values of Reca in Table 3 are 1. 
For low attack intensity, FN gradually decreases as the 
attack degree deepens, and then slightly increases after 
γ12 . It is estimated that the attack intensity is relatively 
low and the attack degrees cover almost the entire 
system. In other words, most values are only slightly 
increased, causing the detection model to misjudge 
compromised samples to be the normal samples with 
relatively high initial operating points.

In summary, the detection of FDIA under low attack 
intensity is more difficult than that under medium and 
high intensities. The values of the four types of evalua-
tion indices generally show an upward trend as the attack 
degree deepens. The overall mean of Acc is 99.88%, Pre 
is 99.36%, Reca is 99.33%, and F1 is 99.33%. It can be con-
cluded that the proposed GECCN model has excellent 

detection performance under different attack intensities 
and degrees.

4.2.3  Detection performance compared with other methods
In this case, the GECCN model is compared with convo-
lutional neural networks (CNN), deep neural networks 
(DNN) and support vector machine (SVM) models under 
different attack intensities and degrees. F1 is selected as 
the evaluation index.

The structure of the CNN model in this paper is con-
figured as Conv1D(5,32) × 3 – Flatten – FC(64) – FC(32) 
– Acti(tanh) – FC(1) – Acti(sigmoid). Conv1D(5,32) 
denotes 1-dimensional convolution with kernel size of 
5 and 32 output channels. There are 3 Conv1D layers 
stacked. Flatten represents the flatten layer. The structure 
of the DNN model is configured as FC(128) – FC(64) – 
FC(32) – Acti(tanh) – FC(1) – Acti(sigmoid). The struc-
ture of the SVM model uses a layer of Random Fourier 
Features with a linear layer for approximate replacement. 
The layer of the Random Fourier Features has an output 
dimension of 4096, a scale of 20 and Gaussian kernel 
initialization. The linear layer is FC(1) – Acti(sigmoid). 
The training loss of the SVM uses hinge loss. The data 
sets and parameters used in training and testing of these 
models are all consistent with those in Sects.  4.2.2 and 
4.1.2. The F1 results of different models obtained under 
different attack intensities and degrees are shown in 
Fig. 7.

It can be seen from Fig. 7 that F1 of the SVM is main-
tained between 80% and 90% under different attack inten-
sities and degrees. F1 of the DNN fluctuates greatly under 
low attack intensity, even dropping below 80% when the 
attack degree exceeds γ13 , but remains above 85% under 
medium and high attack intensities. The detection per-
formance of the DNN is comparable to that of the SVM 
under low attack intensity but is superior under medium 
and high intensities. The detection performance of the 
CNN is better than that of the DNN. F1 of the CNN 
under medium and high intensities is around 95%. The 
detection performance of the CNN is not as good as the 
SVM when the attack degree is very small or very big 
under low attack intensity. The F1 of the GECCN model is 
higher than the corresponding F1 of other models regard-
less of the attack intensity or degree, with F1 being above 
99.5% in most scenarios. Therefore, it can be concluded 
that the GECCN model has better performance in detec-
tion for FDIA than the others.

4.2.4  Scalability performance of detection framework 
on different systems

In this case, the GECCN model is applied to differ-
ent systems to test its detection performance. As 

Fig. 6 The number of a FP and b FN obtained under different attack 
intensities and degrees
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mentioned earlier, ECC can handle graphs of different 
sizes and connectivity, that is, it can be used for data 
sets with different graph structures. Data sets with a 
single topology structure and a mixed structure of dif-
ferent systems are used for testing. The performances 
of the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus sys-
tems are evaluated. Finally, data sets of these three sys-
tems are mixed together (the new data set has different 
graph structures) and the new data set is used for per-
formance evaluation. The data generation methods and 
simulation settings of the IEEE 30-bus and IEEE 118-
bus systems are the same as those of the IEEE 14-bus 
system. The test results are shown in Fig. 8.

It can be seen that in the single-structure IEEE 14-bus, 
IEEE 30-bus and IEEE 118-bus systems, Acc and Pre are 
all above 99%. As the system scale increases, Reca and F1 
gradually decrease, but they remain all above 90%. This 
is because that as the scale of the system increases, small 
attack degrees of low attack intensity will become more 
difficult to detect, which becomes easier to misjudge 
compromised samples as normal samples, resulting in 
the decline of Reca and F1 . For the detection of the mixed 
data set, Acc and Pre are both above 98%. Although Reca 
is lower than that obtained from data set with single-
structure, it is still above 87%. F1 reaches 93.33%, which is 
a satisfactory detection performance. Therefore, it can be 
concluded that the scalability performance of the detec-
tion framework on different systems is effective.

5  Conclusion
This paper has proposed a GECCN-based detection 
framework for FDIA of power systems. From the simula-
tion studies carried out mainly on the IEEE 14-bus sys-
tem under the conditions of different attack intensities 
and degrees, conclusions can be drawn as follows.

When determining the optimal number of blocks and 
verifying through the visualization of the intermediate 
layers, the GECCN model shows excellent comprehensive 
detection performance under different attack intensities 
and degrees. Under different attack intensities, the rates 
of evaluation indices generally show upward trends as the 
attack degree deepens. The overall average value of Acc 
is 99.88%, Pre is 99.36%, Reca is 99.33%, and F1 is 99.33%. 
This is due to the fact that the model makes full use of 
various information such as topology structure, node 
features and edge features of power systems. Moreover, 
the number of FP is not affected by various attack sce-
narios, and the number of FN is almost 0 under medium 
and high attack intensities. Besides, compared with the 
commonly used data-driven models such as CNN, DNN, 
and SVM, the GECCN model has better detection per-
formance and the results of the selected evaluation index 

Fig. 7 Comparisons of different models in different attack degrees 
under a low, b medium and c high attack intensities

Fig. 8 Scalability performance on different systems
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are close to 1 under various attack scenarios. In addition, 
the ECC operation of GECCN is capable of handling the 
data sets which contain different structures of the IEEE 
14-bus, IEEE 30-bus and IEEE 118-bus systems, thereby 
maintaining satisfactory detection results obtained under 
various testing systems and ensuring the scalability of the 
proposed detection framework.
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