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Abstract 

The development of distributed renewable energy, such as photovoltaic power and wind power generation, makes 
the energy system cleaner, and is of great significance in reducing carbon emissions. However, weather can affect 
distributed renewable energy power generation, and the uncertainty of output brings challenges to uncertainty 
planning for distributed renewable energy. Energy systems with high penetration of distributed renewable energy 
involve the high-dimensional, nonlinear dynamics of large-scale complex systems, and the optimal solution of the 
uncertainty model is a difficult problem. From the perspective of statistical machine learning, the theory of planning 
of distributed renewable energy systems under uncertainty is reviewed and some key technologies are put forward 
for applying advanced artificial intelligence to distributed renewable power uncertainty planning.
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1  Introduction
In the context of the rapid development of renewable 
energy power generation, photovoltaic (PV) and wind 
power (WP) outputs fluctuate greatly and have strong 
randomness. This bring a series of problems in control-
ling, scheduling and planning. To address the random-
ness of distributed renewable energy (DRE), artificial 
intelligence (AI) has moved to the mainstream of renew-
able energy forecasting and prediction [1], while energy 
storage can also address the uncertainty of renewable 
energy systems [2]. Frequency control is one of the keys 
to WP integration [3], while multi-objective optimization 
is always a problem in a power grid with WP generation 
[4].

This paper is concerned with the influence of uncertain 
DRE output on traditional renewable energy network 

(REN) planning. Developing planning methods suit-
able for large-scale grid-connected renewable energy 
has important engineering significance. However, the 
main theoretical problem of uncertainty planning is how 
to deal with uncertainty as the uncertainty of the source 
side leads to complex and changeable operating scenarios 
of REN. This brings challenges to the planning of DRE. 
In the literature, there are three major planning meth-
ods: (a) deterministic, (b) robust, and (c) probabilistic 
planning.

In terms of deterministic planning, daily typical load 
curves in spring, summer, autumn and winter play 
important roles in power grid planning. The operat-
ing scenarios are divided into typical-day scenarios and 
extreme scenarios [5], and multi-stage planning is car-
ried out with the scenarios. In [6], multi-stage planning is 
divided into different time stages, and each stage includes 
different scenarios. A multi-objective planning model is 
presented in [7], which analyzes uncertainty using sce-
narios, and deterministic power flow (DPF) is carried 
out for each scenario. In essence, the above studies are 
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scenario planning methods based on knowledge-driven 
schemes, and the effectiveness depends on whether the 
selected typical load curves can represent the load profile 
over the whole planning period. The fewer the number of 
operating scenarios, the more accurate the determinis-
tic method can be. As new energy sources and demand 
response loads are widely integrated into REN, the 
uncertain disturbances on both power supply and load 
are becoming stronger, making the operation of energy 
systems increasingly complicated. The traditional typ-
ical-day method of spring, summer, autumn and winter 
is no longer suitable as it cannot cope with the complex-
ity of the operating scenarios in REN. Since the effective 
refined operation scenarios cannot be passed to the plan-
ning decision-makers, it is difficult to ensure the accuracy 
and safety of REN uncertainty planning. Reference [8] 
proposes a distribution-free scenario generation method 
based on generative adversarial networks (GAN), which 
can be deliberately modified according to statistical char-
acteristics for power system planning and operation. The 
conditional variational automatic encoder method is 
used to simulate the refined random scenarios of renew-
able energy, while the simulation of complex operation 
scenarios based on data-driven theory has become the 
core of energy network uncertainty planning [9].

In terms of robust planning, interval power flow and 
interval optimization are the keys to its success. The 
idea of interval flow is to get the solution scheme of the 
interval range of the state variables based on mathemati-
cal planning with uncertain injection power as a feasible 
region [10]. To avoid nonlinear planning, a linear approx-
imation is a feasible scheme to realize interval optimi-
zation [11]. It has benn proved that the interior point 
method can solve the nonlinear planning models [12]. In 
essence, the above studies use a planning method based 
on extreme condition scenarios, and the effectiveness 
depends on whether the selected extreme condition sce-
narios can represent the boundaries of the state variables 
over the whole planning period. Robust planning can be 
used for dispatching, and uncertainty planning is suitable 
for power grid planning. In addition, robust planning can 
ensure operational safety, while uncertainty planning can 
balance the needs between economy and safety.

In terms of probabilistic planning, it is well known that 
the classical way of solving the uncertainty problem is to 
use probability, and probabilistic power flow (PPF) may 
be one of the key issues. Both the Gaussian process emu-
lator and Bayesian inference are the basic theories of PPF 
calculation [13]. When planning the best placement of 
electric vehicle (EV) charging stations and wind turbines, 
uncertainty planning should be involved in the planning 
framework [14]. An uncertainty planning model consid-
ering different operational constraints in multi-periods is 

presented in [15], and the planning model solves uncer-
tain dual dynamic integer planning. Few studies exist 
on how to apply PPF to uncertainty planning, while 
researchers focus on how to enhance the calculation 
accuracy and efficiency of PPF. As PPF is largely absent 
in probabilistic planning, the framework combining 
PPF and probabilistic planning is a problem worthy of 
discussion.

In terms of probabilistic planning, it is easy to estimate 
the probability distribution function (PDF) of renewable 
energy generation when there is randomness, so it is suit-
able to use the probability theory random method [16]. 
However, it is difficult to determine the probability distri-
bution and membership relationship of variables in many 
cases. Therefore, the interval method is more suitable 
for dealing with uncertainty. Compared with probabil-
ity theory, the interval method used in robust program-
ming finds it easier to describe various uncertain factors. 
Because it requires less data that are the upper and lower 
boundaries. The disadvantage is that interval expansion 
will occur [17]. The wider the uncertainty set is, the more 
conservative the optimal solution is in the economy.

University of California Berkeley considers statisti-
cal learning, also known as statistical machine learning 
(SML), to involve probability theory, statistics, approxi-
mation theory, convex analysis, algorithm complexity 
theory, machine learning and other disciplines [18]. The 
development of DRE planning theory has been accom-
panied by the development of SML algorithms in recent 
decades, showing a strong trend of development [19]. 
However, there is no systematic method for SML to deal 
with uncertainty planning.

REN with a high proportion of DRE generation and 
EV loads is a large-scale dynamic system with high 
dimension, is nonlinear, and has uncertain and com-
plex characteristics. Most traditional scenario analy-
sis methods are based on probabilistic models [9], 
and the model capacity is small. Digital features can 
only capture local data features, which cannot fully 
characterize the complex high-dimensional and large 
data features of renewable energy output. Thus, it is 
insufficient for solving the new energy uncertainty 
planning problem. Probability theory is model-ori-
ented and relies on rigorous mathematical derivation, 
emphasizing model interpretation. However, it has 
limitations in the face of complex high-dimensional 
data. Machine learning (ML) is algorithm-oriented 
and pays attention to the prediction results, and 
has good controllability and scalability. Deep learn-
ing (DL) is a branch of ML and is based on a neural 
network, and can effectively solve high-dimensional 
problems with a strong ability for autonomous learn-
ing, pattern recognition and optimization. However, 
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ML has poor interpretability. A general knowledge of 
probabilistic theory combined with ML, SML empha-
sizes the intelligibility, precision and uncertainty 
of models, and this is consistent with the engineer-
ing requirements of uncertain DRE planning. New 
energy planning needs to provide decision-makers 
with explanations, and SML calculation results can be 
understood and trusted [20, 21] (achieving ML under-
standing-to-human understanding).

The contributions of this paper can be summarized 
as follows.

(1)	 Uncertainty analysis of renewable energy is con-
ducted via statistical machine learning.

(2)	 Novel techniques in uncertainty modeling are illus-
trated by principle demonstration.

(3)	 Renewable energy allocation algorithms are ana-
lyzed in an uncertain environment.

(4)	 Future development trend of uncertainty theory is 
analyzed for renewable energy integration.

2 � Literature review
China actively supports regional integrated energy devel-
opment at the policy level and has promulgated a series 
of policies to promote the development of power energy 
storage, the energy Internet and other technologies to 
push the development of smart energy management. With 
the current research background, renewable energy gen-
eration, integrated energy and EV have become impor-
tant factors in regional planning. At present, many actual 
REN projects have been built in China. For example, the 
integrated energy system (IES) of Qiantang New District 
Power Supply Company, shown in Fig. 1, has built distrib-
uted clean energy services and EV services. Its power gen-
eration mainly covers PV and WP, and the load side mainly 
includes an intelligent energy storage system. Thus, the 
described research object directly targets practical systems.

Uncertainty in source-network-load leads to com-
plex and changeable operating scenarios of REN, which 
makes the planning problem uncertain. In this paper, the 
probability model is used to describe uncertainty. Based 
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on the SML tool, the objective function and constraint 
conditions of the probabilistic planning model are estab-
lished. Section 2.1 introduces and evaluates the common 
methods of distributed renewable energy and electric 
vehicle uncertainty modeling, including probabilistic and 
ML modeling. In Sect.  2.2, the characteristics of uncer-
tainty planning methods of distributed renewable energy 
in REN and IES are analyzed, including models and solv-
ing algorithms. The planning model includes chance-
constrained, two-stage, multi-stage, distributed robust 
planning, multi-objective and bi-level models. The solv-
ing algorithm is composed of the traditional, intelligent 
and hybrid algorithms. Probability theory and ML theory 
belong in the SML category.

2.1 � Uncertainty modeling
Figure 2 depicts a high proportion of intermittent renew-
able energy, load side EV grid connection and air condi-
tioning regulation in modern REN. On the source side, 
PV and WP generation are the typical uncertain power 
sources, which are affected by changing weather condi-
tions. On the load side, the uncertainty of EV charging 
time is an important source of uncertainty. In addition to 
renewable energy and EV loads, there are a large number 
of other uncertainties in modern REN, such as air con-
ditioning loads, and the uncertainties of source and load 
spread through transmission lines, leading to power flow 

uncertainty. Therefore, source-network-load uncertainty 
makes power grid operation conditions complex and 
changeable, and the power flow presents strong uncer-
tainty, which needs to be described by probability.

2.1.1 � Distributed new energy modeling
Figure 3 shows the actual research project named "pano-
ramic viewable", a renewable energy control sub-station 
of Qilinshan wind farm in Shangyi, Hebei Province. As 
seen, Fig. 3a shows the operational status of all PV invert-
ers, and Fig. 3b, c show the voltage distribution map. In 
Fig. 3c, the red indicates a high voltage area and the blue 
indicates a low voltage area. Figure  3d and e show the 
active power distribution, while the three-dimensional 
pipeline is used to represent the active power and grid 
loss of all feeders. The thicker pipelines with brighter 
color indicate that the active power flow and active power 
loss are greater. It can be seen that the system voltage and 
power flow are greatly affected by DRE in the projects. 
Therefore, the problem studied in this paper has great 
practical significance.

With DRE generation applied widely, the output char-
acteristics of renewable energy shown in Fig.  4 fluctu-
ate greatly and have strong randomness, which together 
lead to the uncertainty and complexity of energy sys-
tem operation. IES planning characteristics have under-
gone fundamental changes, such as diversification and 
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differentiation. Therefore, it is necessary to carry out 
renewable energy modeling accurately.

In scenario generation, random distribution is intro-
duced to simulate the probability distribution of renew-
able energy. By sampling the continuous probability 
distribution of random variables, discrete sample sets 
and probability values are obtained, thereby turning the 
uncertainty problem into a certain problem. Reference 
[22] generates a set of dynamic-wind speed scenarios 
that consider wind speed fluctuations to describe the 
WP uncertainty by using a multivariate normal distri-
bution and inverse transform sampling, while a scenario 
generation method sampled from non-Gaussian and 
interdependent conditional distributions is presented in 
[23]. The quantile prediction method of solar and WP 
generators is applied in [24]. In addition, a large amount 
of empirical research has shown that the probability dis-
tribution of scenario prediction errors doesn’t follow 
any parameter density. The maximum entropy theory is 
introduced to analyze the uncertainty of WP output and 
EV loads, and a refined seasonal analysis of the complex 
operating scenarios of REN is conducted in [25]. In [26], 
a linear planning optimization model directly generates 
quantiles with different proportions, effectively generat-
ing non-parametric probability forecasts for WP gen-
eration, whereas a limited Boltzmann machine is used 
to capture the time characteristics of wind speed in 
[27]. This uses divergence and Gibbs sampling to fit the 
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probability distribution of WP scenarios. Monte Carlo 
sampling (MCS) is combined with quantile estimation 
technology to estimate the dimensions of the hybrid 
renewable energy systems [28], while in [29], MCS is pre-
sented to represent the uncertainty of PV generation. In 
many cases, Latin hypercube sampling (LHS) is consid-
ered to be an improvement on rough MCS. In [30], LHS 
is used to improve sampling efficiency and deal with the 
relevance problem of DRE generation access nodes, while 
the methods of MCS and LHS are analyzed to generate 
WP scenarios in [31].

At present, many scholars have verified that the copula 
function in statistical science is effective in the correla-
tion modeling between random variables. In [32], sce-
nario generation is generated based on the multivariate 
estimated distribution of WP in multiple regions. Pair 
copula and vine copula were first introduced to the WP 
scenario generation to discuss their temporal coupling 
[33]. The presented model can easily obtain accurate 
and sufficient WP scenarios with time and space corre-
lation. In [34], a combination of nuclear density estima-
tion and regular vine copula is also used to describe the 
spatial correlation between WP plants, whereas in [35], 
Brownian motion is combined with copula to generate 
correlated dynamic PV scenarios. In [36], a dynamic fac-
tor model is presented to generate scenarios similar to 
the statistical characteristics of the actual scenarios. For 
some DRE power plants that do not have enough histori-
cal data, multiple scenarios and a knowledge-based sce-
nario generation algorithm are presented, which capture 
the potential distribution of target wind speed with high 
precision [37].

The time series method is another emerging scenario 
generation method. The common methods used have 
been the auto-regressive moving average model and 
Markov random process. In [38], random load and gener-
ated renewable energy scenarios are considered on multi-
ple operating time scales. A double-layer WP time series 
model is presented that considers daily weather changes 
and intraday WP fluctuations [39]. The Markov chain and 
time series are used to simulate the daily typical weather 
and intraday WP scenarios of each typical weather state, 
and then are integrated into a complete WP time series. 
An inhomogeneous Markov chain is also presented to 
depict the characteristics of diurnal and seasonal changes 
in wind speed [40]. Both models presented in the above 
two references have good ergodicity and consistency. In 
[41], an auto-regressive moving average (ARMA) model 
is presented to grasp renewable energy spatiotemporal 
features. Based on this, [42] improves ARMA that can 
grasp the time correlation of WP scenarios. Generalized 
auto-regressive scoring models are presented to generate 
renewable energy multivariate time series scenarios in 

[43], while [44] presents state space models to generate 
renewable energy WP scenarios.

Recently, the concept of machine learning has gradually 
become the direction pursued by the random scenario 
generation of the IES. In [45], the radial basis function 
(RBF) and tabu search-based metaheuristic algorithm are 
combined to effectively capture the important features 
of the WP scenarios, while artificial neural networks are 
used to generate representative multi-dimensional DRE 
scenarios based on historical time series values [46]. 
Reference [47] adopts stacked autoencoders to improve 
the precision of WP scenario generation, whereas for 
reducing the prediction error in scenario generation, the 
concept of a generative confrontation network is pre-
sented in [48]. This was first used to generate continuous 
sequences in the field of artificial intelligence. In [49], an 
unsupervised scenario generation method of GANs is 
presented to capture the dynamic characteristics of DRE 
generation. However, the method has some problems 
such as vanishing gradients, difficulty in training, and 
lack of diversity in generated scenario samples. Therefore, 
Wasserstein distance is used instead of JS distance on the 
basis of GANs, and Wasserstein-GAN is used to train 
DRE scenarios. This effectively solves the above problems 
[50]. The scenario generation ability of GANs is further 
improved by adding Lipschitz constraints on the discrim-
inator network [51], whereas in [52], a Bayesian formula 
is introduced into a genetic neural network to realize 
semi-supervised learning. Reference [53] applies this 
method to DRE scenario generation. Even intentionally 
mixing PV and WP scenarios, this method can identify 
and generate different scenarios at the same time, so as to 
better represent the DRE generation process. Sequence 
generation is used for the network to capture temporal 
correlations. It adopts a long and short-term memory 
structure and uses GAN combined with reinforcement 
learning [54]. In the work of [55], GAN based on two 
interconnected deep neural networks is used to gener-
ate real WP and PV power distributions with completely 
diverse behaviors. It also explains how to use labeled data 
in the training process to generate the required scenarios 
based on different interest conditions.

Research on accurate renewable energy uncertainty 
modeling has been carried out to a considerable extent, 
while scenario analysis methods provide an effective 
way to deal with DRE uncertainty modeling. Table  1 
shows the characteristics of scenario analysis methods 
based on probability models, time series methods and AI 
algorithms.

2.1.2 � Electric vehicle load modeling
More active devices and adjustable loads will be intro-
duced into future intelligent energy systems, and the 



Page 7 of 27Fu et al. Protection and Control of Modern Power Systems            (2022) 7:41 	

Ta
bl

e 
1 

Th
e 

in
du

ct
io

n 
an

d 
ev

al
ua

tio
n 

of
 n

ew
 e

ne
rg

y 
un

ce
rt

ai
nt

y 
m

od
el

in
g 

m
et

ho
ds

M
et

ho
d

Re
fe

re
nc

es
Ch

ar
ac

te
ri

st
ic

Ev
al

ua
tio

n

Pa
ra

m
et

er
 p

ro
ba

bi
lit

y 
pr

ed
ic

tio
n

[2
2–

24
]

Th
e 

pr
em

is
e 

is
 th

at
 th

e 
kn

ow
n 

da
ta

 c
on

fo
rm

 to
 a

 c
er

ta
in

 p
ro

ba
bi

lit
y 

m
od

el
; h

yp
ot

he
si

s 
te

st
in

g 
is

 re
qu

ire
d

Th
e 

as
su

m
pt

io
ns

 o
f t

he
 p

ro
ba

bi
lit

y 
m

od
el

 a
nd

 th
e 

de
te

rm
in

at
io

n 
of

 th
e 

re
le

va
nt

 p
ar

am
et

er
s 

aff
ec

t t
he

 p
re

ci
si

on
 o

f t
he

 g
en

er
at

ed
 

sc
en

ar
io

s.

N
on

pa
ra

m
et

ric
 p

ro
ba

bi
lit

y 
pr

ed
ic

tio
n

[2
6,

 2
7,

 5
6]

D
on

’t 
ne

ed
 g

lo
ba

l p
ar

am
et

er
 a

ss
um

pt
io

n;
 s

im
pl

e 
ca

lc
ul

at
io

n 
an

d 
w

id
e 

ap
pl

ic
ab

ili
ty

U
na

bl
e 

to
 p

ro
ce

ss
 m

as
si

ve
 s

am
pl

e 
da

ta
. A

nd
 s

om
e 

da
ta

 s
ui

ta
bl

e 
fo

r 
pa

ra
m

et
er

 e
st

im
at

io
n 

m
ay

 lo
se

 s
om

e 
sc

en
ar

io
 c

ha
ra

ct
er

is
tic

s.

M
C

S 
sa

m
pl

in
g

[2
8,

 2
9,

 5
7]

C
lo

se
 to

 th
e 

ac
tu

al
 s

am
pl

e
Th

e 
ac

cu
ra

cy
 is

 lo
w

 w
he

n 
th

e 
sa

m
pl

e 
is

 s
m

al
l, 

an
d 

th
e 

effi
ci

en
cy

 is
 

lo
w

 w
he

n 
th

e 
sa

m
pl

e 
is

 la
rg

e.

LH
S 

sa
m

pl
in

g
[3

0,
 3

1]
Su

ita
bl

e 
fo

r u
ni

fo
rm

 s
am

pl
in

g 
in

 m
ul

ti-
di

m
en

si
on

al
 s

pa
ce

 a
nd

 s
m

al
l 

sa
m

pl
es

; h
ig

h 
sa

m
pl

in
g 

effi
ci

en
cy

Th
e 

co
rr

el
at

io
n 

co
effi

ci
en

t m
at

rix
 (C

C
M

) o
f r

an
do

m
 v

ar
ia

bl
es

 is
 

re
qu

ire
d 

as
 in

pu
t p

ar
am

et
er

s, 
bu

t C
C

M
 is

 d
iffi

cu
lt 

to
 e

xt
ra

ct
.

Co
pu

la
 a

nd
 it

s 
im

pr
ov

em
en

t
[3

2–
34

, 3
6,

 3
7,

 5
8]

Th
e 

co
rr

el
at

io
n 

ch
ar

ac
te

ris
tic

s 
of

 w
ea

th
er

 s
en

si
tiv

e 
fa

ct
or

s 
ar

e 
ca

pt
ur

ed
It 

is
 d

iffi
cu

lt 
to

 p
ro

ce
ss

 h
ig

h-
di

m
en

si
on

al
 a

nd
 c

om
pl

ex
 s

ce
na

rio
 

sa
m

pl
es

.

A
ut

o 
re

gr
es

si
ve

 m
ov

in
g 

A
ve

ra
ge

[3
8,

 4
0,

 5
9]

U
se

 th
e 

m
ea

n 
va

ria
nc

e 
no

rm
al

iz
at

io
n 

m
et

ho
d 

to
 p

re
pr

oc
es

s 
th

e 
da

ta
, w

hi
ch

 is
 s

im
pl

e
Pr

on
e 

to
 o

ve
r-

fit
tin

g 
an

d 
pa

tt
er

n 
re

co
gn

iti
on

 e
rr

or
s; 

in
su

ffi
ci

en
t d

at
a 

di
ve

rs
ity

.

M
ar

ko
v 

st
oc

ha
st

ic
 p

ro
ce

ss
[4

1,
 4

4]
Th

e 
da

ily
 c

yc
le

 a
nd

 s
ea

so
na

l c
ha

ng
e 

ch
ar

ac
te

ris
tic

s 
of

 s
ce

na
rio

s 
ar

e 
co

ns
id

er
ed

; t
he

 s
co

pe
 o

f a
pp

lic
at

io
n 

is
 w

id
e

D
ue

 to
 th

e 
la

ck
 o

f m
em

or
y,

 o
nl

y 
sh

or
t-

te
rm

 a
ut

oc
or

re
la

tio
n 

ch
ar

ac
te

r-
is

tic
s 

ar
e 

re
ta

in
ed

.

Ra
di

al
 b

as
is

 fu
nc

tio
n

[4
5]

Th
e 

re
su

lts
 o

f fi
tt

in
g 

th
e 

ac
tu

al
 s

ce
na

rio
s 

ar
e 

of
 h

ig
h 

ac
cu

ra
cy

W
he

n 
th

e 
sa

m
pl

e 
si

ze
 is

 la
rg

e,
 th

er
e 

ar
e 

m
an

y 
hi

dd
en

 la
ye

rs
 a

nd
 

th
e 

ne
tw

or
k 

st
ru

ct
ur

e 
is

 c
om

pl
ex

, r
es

ul
tin

g 
in

 lo
w

 c
om

pu
ta

tio
na

l 
effi

ci
en

cy
.

A
rt

ifi
ci

al
 n

eu
ra

l n
et

w
or

ks
[4

6]
Th

e 
tr

ai
ni

ng
 p

ro
ce

ss
 is

 s
ta

bl
e 

an
d 

th
e 

co
nv

er
ge

nc
e 

ra
te

 is
 fa

st
Th

e 
ne

ur
al

 n
et

w
or

k 
de

si
gn

 is
 c

om
pl

ex
; t

he
 in

te
rp

re
ta

tio
n 

ab
ili

ty
 is

 
w

ea
k;

 m
ac

hi
ne

 le
ar

ni
ng

 fe
at

ur
e 

se
le

ct
io

n 
w

ill
 h

av
e 

a 
gr

ea
t i

m
pa

ct
 o

n 
th

e 
fit

tin
g 

eff
ec

t.

G
A

N
s 

an
d 

its
 im

pr
ov

em
en

ts
[4

8,
 5

5,
 6

0,
 6

1,
 

62
, 6

3]
H

ig
h 

ac
cu

ra
cy

 in
 p

ro
ce

ss
in

g 
hi

gh
-d

im
en

si
on

al
 s

am
pl

es
; n

o 
ne

ed
 to

 
m

an
ua

lly
 la

be
l d

at
a;

 c
ap

tu
re

 c
or

re
la

tio
n 

fe
at

ur
es

G
A

N
s 

ha
ve

 th
e 

pr
ob

le
m

 o
f m

od
e 

co
lla

ps
e 

an
d 

w
ea

k 
in

te
rp

re
ta

bi
lit

y.

Va
ria

tio
na

l a
ut

om
at

ic
 e

nc
od

er
[4

7]
Th

e 
m

at
he

m
at

ic
al

 p
ro

of
 is

 c
le

ar
; t

he
 in

te
rp

re
ta

bi
lit

y 
is

 s
tr

on
g;

 th
e 

lo
ng

-t
er

m
 a

nd
 s

ho
rt

-t
er

m
 c

ha
ra

ct
er

is
tic

s 
ca

n 
be

 c
ap

tu
re

d
It 

is
 a

lm
os

t i
m

po
ss

ib
le

 to
 c

ha
ra

ct
er

iz
e 

th
e 

co
rr

el
at

io
n 

of
 s

ce
na

rio
 

hi
st

or
ic

al
 d

at
a.



Page 8 of 27Fu et al. Protection and Control of Modern Power Systems            (2022) 7:41 

EV charging loads are the most typical uncertain loads. 
The load-side uncertainty caused by the characteristics 
of EV and the grouping characteristics of drivers’ social 
networks, increases the operating pressure on the power 
grid. As shown in Fig.  5, grid connection of EV brings 
uncertainty to REN, with not only the uncertain grid 
connection time but also the random grid node. Among 
them, electric taxis are more uncertain and more difficult 
to predict than private cars and buses. Moreover, dur-
ing the peak charging period of EV, the charging loads 
increase sharply, and thus the local peak loads increase 
significantly. During the low-peak charging period, many 
EVs discharge power in reverse to the grid, which is filled 
with excess power load. The power in both periods may 
be higher than the equipment capacity of REN under tra-
ditional planning, resulting in local blocking and paraly-
sis of the power grid in severe cases.

The EV charging load uncertainty models are based on 
the premise of realizing the charging stations’ scientific 
planning in REN, and probability statistics are one of the 
key methods. Probability is the mathematics of uncer-
tainty. It uses the actual historical data to simulate the 
PDF of the initial EV charging time and state of charge 
(SOC), and then models the charging loads by random 
sampling methods. In [64], MCS is used to fit the charg-
ing load distribution of each EV. The model assumes that 

the EV relevant parameters obey the above distribution, 
e.g., leaving home in the morning to stop charging and 
returning home at night to start charging. Reference [65] 
takes load samples by MCS and estimates the total aver-
age weight by a discrete probability formula, while [66] 
first selects whether the EV is V2G through roulette, 
then generates random numbers, and finally uses MCS to 
produce massive random scenarios. Reference [67] dis-
cretizes EV charging duration and charging-start time, 
and obtains joint uncertainty by Cartesian product. In 
addition to the commonly used probability distribution 
function, the spherical simplex unscented transformation 
(UT) is used to approximate the probability distribution 
in [68]. The point set σ can accurately represent the sta-
tistical information required by random variables. In [69], 
the charging pull-out time of the electric taxi is affected 
by the initial charging time and duration. Considering the 
disadvantages of MCS with more samples and long calcu-
lation time, LHS is presented. LHS is used to simulate the 
EV charging loads, and the EV relevant parameters obey 
the general probability distribution [70]. In [71], a combi-
nation of LHS and K-means is used to model the uncer-
tain scenarios of EV charging loads, and the EV relevant 
parameters obey a truncated Gaussian distribution.

The above references, except [67], assume that the 
EV parameters are independent of each other, and the 

Fig. 5  Spatial and temporal uncertainty of EV load
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relationships between parameters are not considered. 
The copula is a function to describe the dependency 
between variables, and can create a multivariate distribu-
tion of data. Multivariate t-copula [72–74], Gaussian cop-
ula [75] and Archimedes copula [76] are used to describe 
the dependence between the EV starting time, arrival 
time and vehicle distance, to model the driving mode 
more accurately. In addition, a 3-dim kernel density esti-
mation (KDE) is considered to model the relationship 
between different variables [74]. In [77], the 3-dim KDE is 
also used to describe the uncertainty of the EV charging 
mode. Traveling is a kind of activity arrangement in time 
and space, which connects two or more places, for home 
or non-home travel purposes. First, the time and space 
probabilities are obtained respectively, and then the total 
probability is calculated to obtain the travel probability 
model of the EV. In [78–81], some prediction models of 
EV charging behavior are presented based on the travel 
chain. These methods can simulate the travel behavior of 
users after constructing the travel chain according to the 
different purposes of driving, so as to analyze the driv-
ing law of users more accurately. In the above probability 
models, the EV relevant parameters are fitted to synthe-
size the relevant probability distribution from the actual 
data. However, the accuracy of the fitting results remains 
to be discussed.

Considering the temporal and spatial uncertainty 
of EV charging loads, advanced machine learning has 
been used for their uncertainty modeling. Reference 
[82] uses a non-homogeneous Markov chain to simulate 
and generate the EV usage pattern, and a fast-forward 
selection method to reduce scenarios. The EV state is 
divided into normal charging, fast charging, driving 
and parking in [83], while in public charging stations, 
the continuous-time Markov chain method is used 
to depict the uncertainty of EV charging behaviors in 
[84]. The uncertainty of passengers, charging stations, 
and public transport usually leads to the uncertainty of 
electric taxi loads. Therefore, the operational behavior 
model of electric plug-in taxis (PET) is presented based 
on environmental uncertainty [85]. In [86], regarding 
the movements of electric taxis as random walks, the 
Markov process is used to simulate the distribution of 
charging demand in static space, while in [87], the ran-
dom forest (RF) method based on a regression tree is 
used to predict the driving characteristics of each EV, 
so as to obtain the travel mode data set of the EV. From 
the measured charging information and big data min-
ing technology, the EV charging behavior model is pre-
sented based on RF and principal component analysis 
(PCA), which captures the EV with different charging 
characteristics based on a data-driven model [88]. The 

gradient boosting model (GBM) is used to simulate 
the SOC state at the end of a plug-in EV (PEV) daily 
schedule [89], and in [90], a generalized regression neu-
ral network (GRNN) is used to realize power predic-
tion. This can effectively describe the uncertainty on EV 
charging loads. DL has also received extensive attention 
in solving uncertainty problems. A back propagation 
(BP) neural network is presented to forecast EV charg-
ing loads in [91], while a convolutional neural network 
(CNN) is used to reduce the impact of uncertainty on 
EV charging demand accuracy in [92]. In [93], a method 
combining a CNN and a deep belief network (DBN) is 
presented to describe the uncertainty of EV charging 
demand. With the wide application of computer tech-
nology and social networks, multi-agent technology has 
been developed. Based on multi-agent technology, a 
spatiotemporal EV charging demand simulation model 
considering passenger travel demand is constructed 
[94], where the travel demand of passengers, taxi deci-
sion-making process and taxi queuing process are man-
aged by a multi-agent. Reference [95] uses multi-agent 
and multi-step Q-learning methods to describe the 
uncertainty of electric taxi charging loads on time and 
space scales. As the above data-driven methods only 
need to collect real data without the need to obey vari-
ous distributions, the correlation between the starting 
time, arrival time, vehicle distance and other parame-
ters of EV can be retained to ensure accuracy.

As shown in Table  2, uncertainty modeling methods 
for EV charging loads can be divided into two types: 
probability statistics theory and machine learning. There 
are six methods in probability statistics: UT, MCS, LHS, 
copula, 3-dim KDE and the travel chain model. These 
methods approximate PDF through the actual historical 
data of EV parameters, and thus the planning results are 
greatly influenced by the accuracy of the PDF. Moreo-
ver, the relationship between the EV parameters would 
be ignored if only MCS or LHS were used. Therefore, 
MCS or LHS needs to be used together with methods 
that describe correlation, such as copula and 3-dim KDE. 
Machine learning methods mainly include the Markov 
chain model, RBF, GBM, RF, DL and multi-agent tech-
nology. These methods consider the temporal and EV 
spatial characteristics, and do not require the parameters 
of EVs to obey various distributions. However, the accu-
racy of the results depends on the adjustment of param-
eters and the extraction of features. In addition, from the 
perspective of the types of EVs, electric taxis have char-
acteristics such as weak regularity of driving routes and 
diverse selection of charging stations, which are more 
uncertain than traditional private electric cars. Thus, the 
uncertainty modeling of electric taxis is more difficult.
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2.1.3 � Summary
The uncertainty of renewable energy power generation 
is very significant, and is the main source of uncer-
tainty in REN planning. EV policies are being promoted 
all over the world, and it has become a trend for EVs 
to replace fuel vehicles. Consequently, EV loads have 
become the leading factor of load uncertainty. With the 
background of low-carbon goals, renewable energy and 
EV loads have the most prominent impact on power 
systems. Uncertainty modeling theory has been ana-
lyzed in detail for renewable and EV loads in the pre-
vious sections. On the load side, air conditioning load 
is another important uncertainty factor. Because of the 
variations in weather and electricity price, the air con-
ditioning load is always in a disordered operation state. 
The air conditioning load is sensitive to outdoor tem-
perature and is related to residents’ needs and habits. 
When the outdoor temperature changes, the air con-
ditioning load will also change, and thus, the variation 
in outdoor temperature leads to an uncertainty of air 
conditioning load. Moreover, the behavior of residents 
is random and disordered, as the indoor temperature 
set point can randomly vary from 16 to 30  °C, so the 
air conditioning load is uncertain even in the same 
weather conditions [96]. The demand side response 
under different electricity price policies will increase 
the difficulty of analyzing the randomness of resi-
dents’ behavior. In addition, network parameter uncer-
tainty is also a source of uncertainty in REN, such as 

the parameter uncertainty of resistance, reactance or 
capacitance [97].

2.2 � Uncertainty planning modeling
As shown in Fig.  6, the uncertainty of DRE makes IES 
operating scenarios complex and changeable, and the 
calculation burden of planning solutions caused by 
uncertainty increases greatly. The number of power flow 
calculations is the number of solutions traversed in the 
solution process and the number of operating scenarios. 
This multiplication makes the number of calculations 
increase explosively, while more decision variables and 
stronger uncertainty make the complexity of the solution 
process greater, in company with the increased grid con-
nection capacity of renewable energy.

2.2.1 � Distributed renewable energy planning in REN
Compared with traditional power supply, DRE power 
supplies have lower pollution emission, higher power 
supply efficiency, and are more flexible and convenient. 
On the basis of the known load prediction results and 
REN operating conditions, determining the installation 
location and configuration capacity of DRE supply can 
optimize the economy and reliability of REN in the whole 
planning period, thus improving power quality, economy 
and reliability.

To get the optimal configuration scheme of DRE, plant 
propagation and water cycle algorithms are presented 
in [98], while the power factors of DRE generators are 

Table 2  The classification of EV loads uncertainty modeling methods

References Types of EVs Modeling methods

Probability statistics Machine learning

MCS LHS UT Copula 3-Dim KDE Travel chain Markov chain RBF GBM RF DL Multi-agent 
technology

[64–67] Private √

[68] Private √

[69] Taxi √

[71] Private √

[70] Taxi √

[72–76] Private √

[77] Private √

[78–81] Private √

[82–84] Private √

[85, 86] Taxi √

[87, 88] Private √

[89] Private √

[90] Private √

[91–93] Private √

[94, 95] Taxi √
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also optimized to reduce power losses. A methodology 
is presented to find the optimal size, location and tech-
nology of distributed new energy generator units con-
sidering economic, technical, and environmental issues 
simultaneously, using multi-objective particle swarm 
optimization and fuzzy decision-making techniques to 
find the optimal solution [99]. In [100], a fuzzy multi cri-
teria decision making approach is used to sort the load 
points and locations/feeder sections, and particle swarm 
optimization (PSO) is used to evaluate the optimal size 
and position of distributed new energy generators. To 
get the best configuration of DRE, reference [101] over-
comes the shortcomings of the previous algorithms and 
presents the multi-leader PSO solution algorithm, while 
a distributional robust optimization model is presented, 
also known as a data-driven model in [102]. In addition, 
whale optimization algorithms are used to calculate the 
optimal layout and size of a multi-objective DRE genera-
tor set, which improves voltage distribution and mini-
mizes power losses and operating costs [103].

To solve the large-scale and complex DRE supply 
optimization configuration problem with multiple con-
straints, many optimization models have been presented 
from different perspectives. In [104, 105], bi-layer plan-
ning models are presented to allocate more DRE, which 
generate power system operating scenarios in different 

periods by using the multi-state models of renewable 
energy and loads. In [106], a bi-level planning method is 
also presented to achieve optimal distribution of hybrid 
distribution transformers. This integrates distribution 
and control issues. The method achieves an optimal dis-
tribution in a dynamic environment, reducing invest-
ment costs and improving voltage curves. Given the DRE 
power output intermittence and the load uncertainty, 
a bi-level planning approach is presented to achieve an 
integrated optimal decision at the upper level and com-
prehensively considers the benefits of DRE [107]. A 
multi-objective distributed generation planning model 
is established with the objective functions of minimizing 
both the annual total cost and the risk [108], while a risk-
based multi-objective optimal allocation model is pre-
sented to optimize the placement and configuration of 
distributed new energy generators, to provide a reliable 
and cost-effective system [109]. The collaborative plan-
ning of PV and energy storage is realized in [110].

For the problem of optimal long-term distribution of 
DRE, uncertainty two-stage planning models are estab-
lished [111, 112]. The formerly determined investment 
variables of DRE, before the scenarios, are known in the 
first stage, while the maintenance problem is solved, one 
that depended on scenario variables after the scenarios 
become known in the second stage. The latter also puts 
forward the solution to the problem of the scenario gen-
eration process, develops and launchs a general frame-
work, as open-source DRE optimization of distribution. 
A two-stage stochastic programming model is presented 
that considers the uncertainty of renewable distributed 
generator sets, demand and energy prices in [113], while 
in [114], a two-stage stochastic programming model is 
developed to optimally determine the layout and size of 
PV modules in a distribution system, where the uncer-
tainties of solar irradiance and load are modeled in finite 
scenarios to minimize installation and network operating 
costs while meeting the necessary operating constraints. 
This model can effectively reduce the cost of system 
operation. A novel multi-stage planning method is pre-
sented in [115], one which takes into account operational 
changeability and randomness introduced by emission 
price and demand growth of intermittent power gen-
eration sources through probabilistic and uncertainty 
methods.

For these models, various optimization algorithms are 
proposed. A comprehensive solution algorithm for opti-
mal position setting and output power of DRE supply 
is presented, one which is suitable for all possible load 
changes of distributed generator sets, and uses a lightning 
search algorithm to find the optimal allocation of DRE 
generator units [116]. In [117], a multi-objective symbi-
ont search method is presented to get the best placement 
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of DRE, whereas a linearized load flow method is used 
to find the optimal allocation of DRE generator units in 
[118]. Reference [119] combines PSO with voltage and 
reactive power control of the DRE supply, and adjusts the 
voltage amplitude within the allowable range to get the 
optimal capacity and location of DRE. In [120], a chance-
constrained uncertainty planning model is introduced in 
the optimal placement of PV, and uses the combination 
of PSO and SVM algorithms to quickly obtain the opti-
mal scheme. A sustainable unit planning method is pre-
sented for a distribution system, which tries to optimize 
a multi-objective index and uses Tabu Search [121]. An 
improved AI optimization algorithm-based ecosystem 
and a hybrid grey wolf metaheuristic algorithm are pre-
sented in [122] to get the best configuration of DRE to 
minimize the power loss of REN, while an evolutionary 
algorithm-based approach is used to solve optimization 
problems that can reduce the impact of the environmen-
tal system and the total cost [123].

2.2.2 � Planning of DRE in the IES
With the correlation and coupling of ever increasing 
renewable energy and different types of loads, the uncer-
tainty of energy and loads in the IES becomes increas-
ingly prominent. This poses a great challenge to the 
planning and regulation of the IES. An adequately coor-
dinated operation method of IES can ensure the sup-
ply and demand balance, and further promote the safe, 
economic, flexible and efficient operation of the energy 
Internet. However, it will affect the operation of the IES.

In practical application, uncertainty planning meth-
ods of DRE and loads have been applied. A column gen-
eration and sharing algorithm is presented to solve the 
computational burden of large capacity and multi-stage 
uncertainty mixed-integer planning model in [124], while 
a new congestion control method is developed to enable 
flexible DRE to participate in solving transmission system 
operator congestion problems, and to use the sequen-
tial least squares method for solving the optimization 
problem [125]. In [126], k-means clustering is used to 
extract typical scenarios, and considers changes in sun-
shine, wind speed, and power demand to adjust the scale 
of the DRE. An iterative bi-layer planning model is pre-
sented to deal with the nonlinear and nonconvex state 
space of the systems [127], while a combination of the 
hybrid big bang-big crunch solution algorithm and PSO 
is presented to obtain higher precision in the optimiza-
tion performance of a high-dimensional function [128]. 
In [129], distributed algorithms for multiple/single stor-
ages are used to realize the coordinated allocation of DRE 
without the need of a central coordinator. The modified 
Quasi-oppositional chaotic Selfish-herd optimization 
algorithm in [130], with the advantages of both chaotic 

linear search and quasi-opposition based learning sup-
ported, is a faster search process than normal uncer-
tain search. In [131], PSO is improved based on the 
map-reduce, which reduces the particle search range of 
a single evolutionary algorithm with a faster calculation 
speed. Multi Agent-Hierarchical Task Network (HTN) 
adopts a heuristic search strategy based on depth-first in 
[132], and compared with the classic HTN algorithm, it 
has higher quality and efficiency, better convergence and 
adaptability in solving complex problems. Based on the 
PSO algorithm, an iterative three-stage planning model is 
used to get the optimal price of non-utility DRE contribu-
tions in different operation conditions [133]. To optimize 
the solution, the multi-objective PSO algorithm is used 
in [134], and proves that the comprehensive benefit of 
multi-objective optimization is better than that of single 
economic optimization system. In [135], the augmented 
epsilon constraint method is used to find the Pareto opti-
mality region to analyse a complex mixed integer linear 
programming model. The developed multi-objective 
optimization method in [136] adopts the strength Pareto 
evolutionary algorithm 2 technique to promote and dis-
tribute the benefits of distributed new energy, and is 
expected to promote the update of current power indus-
try regulatory proposals. An iterative constraint-based 
search method is presented to optimize the microgrid 
DRE configuration [137], while an improved teaching–
learning optimization algorithm is used to enhance the 
performance of the algorithm in global search [138]. Lim-
ited by the non-analytical mapping between uncertainty 
planning strategies, an iterative bi-layer optimization 
algorithm is presented to deal with the problem in [139], 
while [140] uses a genetic algorithm on a mixed-integer 
linear planning model and gives the approximate optimal 
solution with accurate power flow. The harmony search 
algorithm and the firefly algorithm are combined in 
[141], and the solution results are of higher quality, have 
better convergence characteristics, and higher computa-
tional efficiency. An improved PSO is presented to over-
come an inherent tendency [142].

Reference [143] presents a multi-temporal scale opera-
tion planning model covering the upper, middle and 
lower levels, where the upper model optimizes the whole 
distributed IES of the previous day, the middle model 
optimizes each community in the daytime, and the lower 
model sets the power consumption of every community 
real-time adjustment. A multi-energy micro-grid optimal 
design mixed-integer linear planning model is established 
to achieve optimal scheduling in [144], while an uncertain 
two-stage planning model is proposed in [145], where the 
first stage gets the virtual power plant configuration deci-
sion and the second stage deals with renewable energy 
power generator and storage. The integrated system tool 
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is presented in [146], where a customer adoption model 
(CAM) optimizes dynamic model-in-the-loop, and real-
izes distributed energy scheduling optimization in power 
grid transactions. Based on the mixed-integer linear 
planning model, the role of DRE in the dynamic micro-
grid is used to improve the recovery ability of REN under 
extreme climate events in [147], while a mixed-integer 
nonlinear model of an island microgrid is established, 
which uses PDF to describe the uncertainty of DRE [148].

2.2.3 � Summary
From different perspectives, many have used a variety of 
algorithms to model and solve the DRE planning prob-
lem in IES. Various classical mathematical, machine 
learning and intelligent algorithms have been adopted or 
improved to simulate and constrain a variety of uncertain 
factors of distributed resources, so as to solve the mode-
ling, planning and configuration of distributed resources. 
Table  3 summarizes the common uncertainty planning 
models of renewable energy, while Table 4 compares the 
characteristics of the specific solution algorithms from 
the literature. The advantages and disadvantages of the 
traditional algorithms and intelligent algorithms are ana-
lyzed as follows:

(1)	 Common traditional solution algorithms include 
the interior point method [149], and algorithms 
such as the sequential least squares [125], iterative 
bi-layer optimization [127, 139], augmented epsi-
lon constraint [135] and constraint-based iterative 
search algorithms [137]. Such algorithms gener-
ally require the first or second order gradient of 
the objective function to the control variable. The 
structure and parameters are fixed in the process 
of the solution, and the computational complexity 
and convergence can be proved by means of the 
analysis. In theory, a global optimal solution can be 
obtained quickly. However, these algorithms require 
the objective function to be derivable and continu-
ous. This limits their application in large-scale non-
linear and uncertain planning problems.

(2)	 The intelligent solution algorithms are generally 
heuristic. The algorithms are independent of deriv-
atives, without assumptions and approximations. 
They have a certain randomness and can jump 
out of the local optimum. In addition, their inher-
ent parallelism helps to deal with complex plan-
ning problems in a discontinuous, non-smooth 
and highly nonlinear solution space, showing good 
robustness, convergence characteristics and opti-
mization ability. The main disadvantage is that the 
optimal solution relies on continuous parameter 

adjustment experiments and experience, resulting 
in high computational complexity and slow conver-
gence rate. In addition, finding the global optimal 
solution cannot be guaranteed.

3 � Advanced technology
The authors have conducted a series of studies in the 
uncertainty planning and inquiry field. In 2015, the sup-
port vector machine (SVM), a popular machine learning 
theory, was used to calculate power flow approximately 
and quickly [120], while in 2016, an analytic statistics 
method was presented in [151] to estimate and reduce 
the power loss in REN uncertainty planning. In 2017, 
the combination of information theory and probability 
theory was studied to analyze and solve the uncertainty 
problem of a power grid [152], whereas in 2018, a new 
data-driven approach was used to analyze how uncer-
tain power flows affect power grid reliability [153]. In 
the 2020s, the theories of unsupervised dimensionality 
reduction, probability inequality and statistical estima-
tion have been combined to deal with the uncertainty 
planning problem in distribution systems [96], and it was 
found that the above theories belong to the theoretical 
system of SML.

This section presents the primary advanced SML tech-
nologies for uncertainty planning. In Sect.  3.1, a Bayes-
ian generative adversarial network (Bayesian GAN) and 
semi-supervised algorithm are presented for renewable 
energy output scenario generation. This is the core of 
REN refined planning decision calculation. Section  3.2 
presents information entropy theory for the uncertainty 
measurement of REN probabilistic power flow calculation 
results. This is an indispensable part of the constraint con-
dition set in the uncertainty planning model. In Sect. 3.3, 
the economy of typical scenarios and the small probabil-
ity of extreme scenarios for renewable energy uncertainty 
planning modeling are presented. The Bayesian GAN 
and semi-supervised algorithm in Sect.  3.1, information 
entropy in Sect.  3.2 and small probability calculation in 
Sect. 3.3 all belong to the SML technologies.

3.1 � Uncertainty modeling of new energy output
3.1.1 � Scenario generation
The key to random scenario simulation is to learn the 
probability distribution. To analyze the characteristics of 
various DRE sources, SML is applied to study the uncer-
tainty research of DRE. GAN combined with the Bayes-
ian formula can use historical data to train and generate 
renewable energy operating scenarios in unsupervised 
and semi-supervised learning methods.
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The structure of the Bayesian GAN Is shown in Fig.  7. 
Bayesian formula probabilistic reasoning is introduced to set 
the weight parameters of the discriminator network (DN) 
and generator network (GN) iteratively sampled from the 
conditional posterior distribution. The update is as follows:

where xi is the training sample, X is the new test sam-
ple, θd and θg are the weight parameters of DN and GN, 
respectively. σd and σg are the respective hyper param-
eters of the weight parameters of DN and GN, p{θd |σd } 

(1)

p θd znoisej ,X , θg ∝

Nd

i=1

DN (xi; θd)

×

m

i=1

1− DN GN znoisej ; θg ; θd

× p{θd |σd }

(2)

p
�

θg

�

�

�
znoisej , θd

�

∝





Ng
�

i=1

�

DN
�

GN
�

znoisej ; θg

�

; θd

��





× p
�

θg
�

�σg
�

and p
{

θg
∣

∣σg
}

 are the respective prior distributions of 
the weight parameters of DN and GN, Nd and Ng are the 
numbers of input samples of DN and GN, respectively.

Combining the Bayesian formula for the edge process-
ing of noise znoisej  , a simple Monte Carlo method can be 
used to marginalize:

The same can be obtained:

It is worth noting that when (3) and (4) are regarded as 
functions of noise znoisej  , the distribution of 

p
{

θg

∣

∣

∣znoisej , θd

}

 and p
{

θd

∣

∣

∣znoisej ,X , θg

}

 should be broad, 

(3)

p
{

θg |θd
}

=

∫

p
{

θg

∣

∣

∣znoisej , θd

}

dz

=

∫

p
{

θg

∣

∣

∣znoisej , θd

}

p
{

znoisej |θd

}

dz

≈
1

J

J
∑

j=1

p
{

θg

∣

∣

∣znoisej , θd

}

(4)p
{

θd
∣

∣θg
}

≈
1

J

J
∑

j=1

p
{

θd

∣

∣

∣znoisej ,X , θg

}

Table 4  The induction and evaluation of DRE uncertainty planning solution algorithms

Classification Algorithm References Characteristic

Traditional algorithm Sequential least squares [125] Minimize the sum of error squares

Iterative bi-layer optimization algorithm [127, 139] Nonlinear and non-convex function and constraints

Augmented epsilon constraint algorithm [135] The most used algorithm for multi-objective optimiza-
tion

Constraint-based iterative search algorithm [137] Based on maximum reliability and minimum cost, the 
optimal solution result is moderate

Intelligent algorithm Improved PSO algorithm based on map-reduce [131] Reduce the particle search scope of a single evolutionary 
algorithm

Multi-objective PSO algorithm [134] Use random selection and adaptive grid method

Strength Pareto evolutionary algorithm 2 [136] Use a set of chromosome number chain solutions. 
Higher fitness value

Improve teaching optimization algorithm [138] Enhances the performance of the solution algorithm in 
global search

Improved PSO algorithm [142] Overcome the inherent trend of local traps in particle 
swarm optimization

Hybrid algorithm Column generation and sharing algorithm [124] Reduce the computational burden of the long-term 
planning uncertainty model

Hybrid big bang-big collision algorithm [128] Higher precision in the optimization performance of the 
high-dimensional function

Algorithm based on consensus and gradient strategy [129] It’s proved that the distributed energy coordination prob-
lem can be modified into a convex equivalence problem

Quasi-opposite chaos selfish herd optimization algo-
rithm

[130] Combine the chaotic linear search and quasi-opposi-
tional learning to have a faster solution

Genetic algorithm [140] Higher precision of optimal solution

Harmony search algorithm and firefly algorithm 
combination

[141] High quality, good convergence characteristic and less 
iterative process
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because znoisej  is used to generate the candidate sample 
data. Therefore, each of the simple Monte Carlo sums 
usually makes a reasonable contribution to the total mar-
ginal posterior estimate. Through iterative sampling, the 
candidate sample data can be obtained from the approxi-
mate posterior of θg and θd in the extreme case.

Figure 8 depicts the comparison between the data gen-
erated by Bayesian GAN and GAN, and the original data 
from 3 × 3 identical WP stations, where the abscissa rep-
resents the time sampling point, and the ordinate repre-
sents the power generation of each station. The difference 
between the real scenarios and the generated scenarios of 
multiple sites can be found in the figure. In general, the 
quality accuracy of renewable energy output scenarios 
generated by Bayesian GAN is higher than that of GAN. 
At the same time, this technology improves traditional 
GAN with the expressiveness of Bayesian formula prob-
abilistic reasoning. The mathematical proof is clear and 
the interpretability is good, which prove the effectiveness 
of SML in realizing the uncertainty modeling of renew-
able energy output.

3.1.2 � Typical scenario generation
For the IES uncertainty planning problem, PPF is cal-
culated by using all the data of the large complex 

high-dimensional scenarios. The more decision variables 
and calculations there are, the more complex renew-
able energy planning is, and the more difficult to solve. 
In addition, the amount of information passed to the 
IES planning in most scenarios is not completely used 
by decision-makers, and the value density is low. There-
fore, it is meaningful to effectively extract and use the 
key information of the large complex high-dimensional 
scenarios.

Typical scenario generation is to generate scenarios 
with similar statistical, correlation and shape charac-
teristics to the original scenarios, and the Wasserstein 
distance metric is adopted here. Suppose pa(x) is a con-
tinuous PDF of one-dimensional random variable x, then 
Zt is used to calculate the corresponding probability ptd 
as:

(5)
Zt
∫

−∞

pa(x)
1/(1+h)dx =

2t − 1

2T

∞
∫

−∞

pa(x)
1/(1+h)dx

(6)ptd =

Zt+Zt+1
2

∫

Zt+Zt−1
2

pa(x)dx, t = 1, . . . ,T

Fig. 7  New energy scenario generation structure framework based on Bayesian GAN
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In the optimal quantile theory presented in [154], 
the total of ptd calculated is not equal to 1. For IES, 
the energy variable always changes in an interval with 
upper and lower limits, so the following two different 
variable boundary approximation formulas are more 
consistent with the discretization of IES variables [155]:

As shown in Figs.  9 and 10, discretization of con-
tinuous variables is achieved through the Wasserstein 
distance. The PDF distributions represent the actual 
scenarios of CHP and GAS. Comparing PDF distribu-
tion shapes and discrete scenarios, one can see that the 
Wasserstein distance metric method is effective and 
accurate. Figure 11 achieves clustering by unsupervised 
learning k-means (Euclidean distance). They all refine 
complex operating scenarios into typical scenarios in 
engineering. The number of typical scenarios is small, 
and are used for planning modeling. The calculation 

(7)p0d =

Z0+Z1
2

∫

−∞

pa(x)dx

(8)ptd =

∞
∫

Zt+Zt+1
2

pa(x)dx

Fig. 8  WP simulation results using Bayesian GAN and GAN

Fig. 9  Typical scenario set for the CHP based on the Wasserstein 
distance

Fig. 10  Typical scenario set for the Gas based on the Wasserstein 
distance
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efficiency is high, while the accuracy of the plan-
ning results is close to the planning accuracy of com-
plex operating scenarios, which meets the engineering 
needs.

3.1.3 � Semi‑supervised learning algorithm
As shown in Fig. 12 and listed in Table 5, the conclusion 
is that semi-supervised learning is more suitable than 
unsupervised learning for the typical operating scenario 
for generation of REN with renewable energy. Because 
power grid regulatory personnel require knowledge of Fig. 11  Typical scenario set for the WP based on the K-means

Typical 
scenario 

extraction

Outsourcing 
electricity

Transformer 
substation

Cogeneration unit

Fuel gas Gas fired boiler

Electrical 
load

Cooling load

Heating 
load

Wind power 
generation

Electrical vehicle

Electric energy flow
Cold energy flow
Heat energy flow

Low efficiency
and high dimension

High efficiency 
and low dimension

Seeds+k means

Class label

Digital 
features

Electric refrigeration 
air conditioner

Fig. 12  Typical scenario extraction based on semi-supervised learning

Table 5  Typical scenario generation methods comparison

Method Characteristic

Wasserstein distance (1) High accuracy.

(2) Able to generate extreme scenarios.

(3) It can only handle a single continuous variable, that is, a weather correla-
tion.

K-means This method can handle multiple continuous variables.

Semi-supervised learning (1) Able to generate multivariate typical scenarios.

(2) Use the data features of a small number of samples as markers to retain the 
probability features of all state variables for PPF in massive scenarios.

(3) Ensure the calculation accuracy of uncertainty planning.
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the power flow of the grid, it needs to calculate the net-
work power flow concerned with renewable energy 
power generation. The typical scenario extraction of 
renewable energy power generation based on unsu-
pervised learning is not as good as the semi-supervised 
learning method considering renewable energy output x 
and grid state variable y.

3.2 � Uncertainty modeling of power flow
As shown in Fig.  13, PPF can reflect the influence of 
system operation caused by random changes in various 
factors in the power system. It can comprehensively con-
sider the uncertain situations of variable changes such as 
power system network topology, component parameters, 
node load values, generator output, etc. At the same 
time, it can also analyze the randomness of PV, WP, EV 
charging loads and thermal loads caused by tempera-
ture change, wind speed fluctuation, and solar radiation 
change and travel behavior. The above can contribute to 
discovering the frail segments in REN and provide valu-
able information to the planning and dispatching depart-
ments to help them make decisions.

The uncertainty of power load and thermal load in net-
works will affect each other’s energy networks through 
thermoelectric coupling. Figure  14 shows the bivari-
ate copula function distribution of electrical load and 
thermal load. The larger the PDF value, the stronger the 
correlation.

Information entropy is perceived as the uncertainty 
of a random event or a measure of the amount of infor-
mation. Greater information entropy indicates greater 
uncertainty, and greater uncertainty indicates greater 
complexity. The entropy H(x) can be expressed as:

where xk is the kth random variable.
As shown in Figs.  15, 16 and 17, information entropy 

is used to depict the strength of uncertainty. This paper 
sets three different scenarios with information entropy of 
[3.676, 7.015, 6.31]. In Fig. 15, CHP output characteristics 
are affected by uncertain variation of thermal load, and 
the entropies are in the area of 3.6. In Figs. 16 and 17, the 
uncertainties of the IES heating network and electricity 
network are jointly affected by PV, WP, EV charging loads 

(9)H(x) = −

M
∑

k=1

p(xk) log2 p(xk)

Fig. 13  PPF calculation process: the influence of PV, WP, EV load and 
thermal load on IES operation

Fig. 14  Correlation between electrical load and thermal load

Fig. 15  CHP power outputs under different uncertainty
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and thermal loads. However, it can be seen that when the 
information entropy increases, that is, when the influenc-
ing factors increase, the entropies of scenarios II and III 
do not become larger. Therefore, it can be concluded that 
when more types and higher proportions of uncertain 
energies access the grid, the uncertainty of the IES overall 
operation will not increase.

3.3 � Uncertainty modeling of renewable energy planning
A large amount of DRE integration will bring high-
dimensional characteristics and uncertainty to REN. As 
shown in Table 6, the following conclusions are verified 
by practical engineering experience: (a) the calculation 
efficacy of probability theory is good when there are few 
random variables; (b) in the high-dimensional random 
variable modeling, the calculation efficacy is not good; 
and (c) with respect to the modeling of correlation, the 
method of the correlation coefficient is invalid. It can be 
concluded that dimensionality disaster is the difficulty of 
scientific data modeling. Modeling high-dimensional cor-
relation variables is the key to break through the accuracy 
issue of distributed power cluster uncertainty planning 
modeling, which needs to be modeled by SML technolo-
gies. The key SML technologies considered in this paper 
are shown in Fig. 18 and listed in Table 7.

The decision variables of uncertainty planning are the 
location and capacity of DRE. High dimensional correla-
tion modeling can connect deterministic decisions with 
uncertain objectives and constraints, and then the uncer-
tain planning model can be established. Distribution 
network operating scenarios can be divided into typical 
scenarios and extreme scenarios. The planning results 
need to make typical scenarios economical and maintain 
high reliability in extreme scenarios. The key scientific 
problem of typical scenario extraction of an REN is to 
realize the classification of operation data. Similar scenar-
ios are treated as one category, with an obvious effect in 
improving the efficiency of planning and arriving at solu-
tions. Small probability events in extreme scenarios are 

Fig. 16  Mass flows under different uncertainty

Fig. 17  Power flows under different uncertainty

Table 6  Analysis of random variable dimensions and simulation results in practical engineering

Method Reference and Journal Title Renewable energy dimension and 
data sources

Analysis of simulation results

Probability Theory [156] Electrical Power and Energy Systems 4 wind farms in China The PDF of WP scenarios calculated by the 
RVM-copula method are very similar to the 
empirical copula, and the correlation of 
small-scale WP scenarios is more accurately 
simulated.

Probability Theory [32] Journal of Modern Power Systems 
and Clean Energy

26 wind farms in East China The R-vine copula model is introduced to 
deal with the high-dimensional charac-
teristics and correlation of WP scenarios, 
which is more accurate and flexible than 
the Gaussian copula calculation results. 
When the scenario dimension increases, 
the accuracy of this method decreases due 
to the limitation of computational ability.

SML [55] IEEE Transactions on Power Systems 24 wind farms, 32 solar power plants 
located in the Washington from NREL

The marginal distribution of generated 
scenario by the model-free GAN network 
is closer to the actual distribution than the 
Gaussian copula. When the power fluctua-
tion of renewable energy is large and the 
spatial correlation is enhanced, the calcula-
tion accuracy of traditional probability 
theory is greatly reduced.



Page 21 of 27Fu et al. Protection and Control of Modern Power Systems            (2022) 7:41 	

the key factors affecting the reliability of REN planning. 
Therefore, how to use SML to estimate small probability 
events and realize classification is key and constitutes the 
main research area of DRE uncertainty planning.

4 � Discussion
The topic of this paper is the optimal placement method 
of DRE. A deterministic decision-making scheme should 
be given considering the uncertainty of DRE. The diffi-
culty in this field is how to model the uncertainty so that 
the deterministic planning results can meet the safety 
and economic requirements in uncertain environments.

For uncertainty modeling, Monte Carlo and machine 
learning are the two most popular and effective methods. 
When the search string ’’Monte Carlo uncertainty renew-
able energy’’ was entered on December 9, 2021, there 
were 856 publications listed by Web of Science, while 
there were 302 publications corresponding to the search 
string ’’machine learning uncertainty renewable energy’’. 
It can be concluded that both Monte Carlo and machine 
learning have received significant attention in the area of 
renewable energy.

However, there are areas that need to be further 
improved, as follows:

(a) The Monte Carlo method is based on the probability 
distribution function in DRE uncertainty simulation. The 
capacity of the probability model is small, and all infor-
mation depends on several digital characteristics, such 
as expectation, variance and correlation coefficient. The 
complex relationship of the time–space correlation of 
multiple renewable energies cannot be fully described via 
some digital characteristics. Engineering practice shows 
that the probability modeling of a single DRE is accurate, 
while multiple DRE models based on probability corre-
lation are not. Thus, probabilistic models of uncertainty 
need to be further improved to ensure the simulation 
performance of multiple DREs.

(b) There are two general uses for machine learning in 
the uncertainty modeling of DREs. The first is DRE gen-
eration prediction, and the second is stochastic scenario 
simulation of DREs. However, it is documented that a 
prediction method based on machine learning performs 
poorly when renewable energy generation fluctuates 
violently. Concerning stochastic scenario simulation of 
DREs, machine learning has weak explanatory power for 
the results. Therefore, machine learning models need to 
be further improved to ensure DRE model reliability and 
interpretability.

Below is a discussion on the development prospects of 
SML in future planning technology. It can solve large-
scale planning problems subject to high renewable 
energy penetration. High renewable energy penetration 
is one of the most prominent features of the new genera-
tion REN, in which the number of operation scenarios is 
very large, and extreme scenarios are difficult to accu-
rately predict. It is thus difficult to find a deterministic 
solution, one which can enhance the overall optimization 
under an ocean of operational scenarios and meet with a 
high probability strict constraint in each scenario.

Reference [164] considers that the probabilistic frame-
work of machine intelligence has an attractive advantage 
in dealing with uncertainty modeling. It can be concluded 
that SML is an effective tool to deal with uncertainty. 
SML combines the advantages of machine learning and 
probability theory and is one of the effective tools to deal 
with uncertainty planning. On the one hand, the power-
ful data learning ability of machine learning can be used 
to deal with high-dimensional, complex, and uncertainty 
modeling, which greatly improves calculation efficiency 
and maximizes the use of existing electricity datasets. 
On the other hand, rigorous probability theory is used 
to ensure the interpretability and precision of the solu-
tion results of the REN planning model. The planning 
results can be quantified as the probability level so that 
planners can make decisions to meet the engineering 
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requirements. Based on the above analysis, the future 
development trend of DRE and grid connection tech-
nology can be explored. This is an information solution. 
SML and other artificial intelligence technologies need to 
be further developed to reduce the impact of DRE gen-
eration uncertainty.

5 � Conclusions
Given the uncertainty planning problem of renewable 
energy, a robust planning method has been proposed in 
Chinese academia. In theory, robust planning is based 
on interval mathematics, and the idea of interval optimi-
zation is to use closed sets to express uncertainty. Solv-
ing the maximum and minimum state variables based 
on mathematical programming is essentially a planning 
method based on extreme condition scenarios, and its 
effectiveness depends on whether the selected extreme 
condition scenarios can represent the boundary of state 
variables throughout the planning period. Although the 
planning results are economically conservative, they can 
ensure the operational safety of distribution networks. 
The uncertainty optimization method, which is based on 
probability and statistics in theory, has been proposed by 
international academia. Probabilistic planning represents 
operational and security constraints at a specific expected 
confidence level so that decision-makers can see the 
relationship between risk and possible planning results. 
However, probability theory cannot fully describe the 
complex relationship of renewable energy spatial–tem-
poral correlations, so it may lead to potential safety haz-
ards hidden in the planning results. Because of the high 
proportion of renewable energy, it is increasingly difficult 
to grasp the features of power grid operation, and econ-
omy and security cannot be guaranteed by the traditional 
model-driven methods. Based on robust programming 
and probabilistic programming, distributional robust 
optimization has gradually attracted extensive attention 
by finding the decision results under the worst probabil-
ity distribution of new energy uncertain parameter. Com-
bining the advantages of both methods, the planning 
results show good performance in terms of economy and 
robustness. However, most of the distributional robust 
optimization processes need approximate transforma-
tion, and this reduces the accuracy of the results to some 
degree. SML is an effective way to solve the problem of 
uncertainty planning for DRE. In essence, it is a way to 
reduce the scope of DRE uncertainty, so that uncertainty 
planning can become closer to deterministic planning. 
This paper puts forward complex operating scenarios 
based on adversarial networks, extreme scenarios based 

on deep learning and representative scenarios based 
on semi-supervised learning. These can guarantee the 
efficiency and accuracy of uncertainty planning of dis-
tributed generation. Extreme scenarios guarantee the 
security of planning results, and representative scenarios 
guarantee the economy of planning results.
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