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Abstract 

A thermoelectric generation (TEG) system has the weakness of relatively low thermoelectric conversion efficiency 
caused by heterogeneous temperature distribution (HgTD). Dynamic reconfiguration is an effective technique to 
improve its overall energy efficiency under HgTD. Nevertheless, numerous combinations of electrical switches make 
dynamic reconfiguration a complex combinatorial optimization problem. This paper aims to design a novel adaptive 
coordinated seeker (ACS) based on an optimal configuration strategy for large-scale TEG systems with series–paral-
lel connected modules under HgTDs. To properly balance global exploration and local exploitation, ACS is based on 
‘divide-and-conquer’ parallel computing, which synthetically coordinates the local searching capability of tabu search 
(TS) and the global searching capability of a pelican optimization algorithm (POA) during iterations. In addition, an 
equivalent re-optimization strategy for a reconfiguration solution obtained by meta-heuristic algorithms (MhAs) is 
proposed to reduce redundant switching actions caused by the randomness of MhAs. Two case studies are carried 
out to assess the feasibility and superiority of ACS in comparison with the artificial bee colony algorithm, ant colony 
optimization, genetic algorithm, particle swarm optimization, simulated annealing algorithm, TS, and POA. Simulation 
results indicate that ACS can realize fast and stable dynamic reconfiguration of a TEG system under HgTDs. In addition, 
RTLAB platform-based hardware-in-the-loop experiments are carried out to further validate the hardware implemen-
tation feasibility.

Keywords:  Thermoelectric generation systems, Dynamic reconfiguration, Heterogeneous temperature distribution, 
Adaptive coordinated seeker
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1  Introduction
Coinciding with rapid economic growth, over the past 
few decades, global demand for electrical energy has 
increased dramatically [1–3]. However, traditional fos-
sil fuels currently acting as the main source of elec-
tricity generation, e.g., oil, coal, natural gas [4], face 
ever-increasing depletion while causing severe environ-
mental deterioration [5]. Hence, it is crucial to reform 
the current energy structure and utilization patterns. 

Renewable energy is envisaged as a revolutionary and 
promising candidate to ease the continued tension and 
pressure in the global energy crisis [6].

In addition to wind, hydro, solar, and hydrogen [7, 8], 
thermoelectric generation (TEG) also possesses remark-
able application potential and value [9] because of its 
prominent advantages of simple structure, sturdiness, 
being noiseless, long service life, etc. TEG has been 
applied in some industrial production, such as in auto-
mobile engines [10], geothermal energy exploitation 
[11], natural gas boilers [12], solar thermoelectric cooling 
systems [13], combined heat and power generation [14], 
wearable devices [15], energy-autonomous sensors [16], 
etc.

Open Access

Protection and Control of
Modern Power Systems

*Correspondence:  yangbo_ac@outlook.com

1 Faculty of Electric Power Engineering, Kunming University of Science 
and Technology, Kunming 650500, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5453-0707
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-022-00259-6&domain=pdf


Page 2 of 19Chen et al. Protection and Control of Modern Power Systems            (2022) 7:38 

However, the low energy conversion efficiency of TEG 
systems given unpredictable and ineluctable heterogene-
ous temperature distribution (HgTD) is the main obstacle 
that limits its larger scale and wider range of application 
[17]. To solve this issue, efficient thermoelectric materials 
and maximum power point tracking (MPPT) technology 
are considered as two promising solutions [18]. Unfor-
tunately, the former is hard for large-scale applications 
because of its high cost and long research process [19].

In contrast, MPPT is a more feasible and practical 
solution. Thus far, a large variety of MPPT approaches 
have been exploited and employed to capture the global 
maximum power point (GMPP) of TEG systems under 
HgTD. Perturb and observe (P&O) [20] and incremental 
conductance (INC) [21] are two of the most commonly 
used MPPT strategies because of their simple operational 
mechanisms. Nevertheless, their performance tends to 
degrade when multiple local maximum power points 
(MLMPPs) [22] appear caused by HgTD. Thus, a series 
of meta-heuristic algorithm (MhAs)-based methods have 
been proposed to find the GMPP based on their superior 
global searching ability, e.g., the fast atom search opti-
mizer (FASO) [4], interacted collective intelligence (ICI) 
[17], adaptive compass search [23], equilibrium optimizer 
(EO) [22], arithmetic optimization algorithm (AOA) [24], 
etc. In addition, a novel adaptive rapid neural optimiza-
tion approach is designed in [25] to realize an available 
approximation of duty cycle and output power curves for 
centralized TEG systems through a generalized regres-
sion neural network. This significantly reduces power 
oscillations and energy losses.

It is noteworthy that the aforementioned MPPT meth-
ods are all accomplished by controlling the centralized 
TEG converter to match the impedances of the source 
and load [26]. This cannot improve the potential GMPP 
of TEG systems. To fundamentally address this issue, 
TEG system reconfiguration can be an alternative and 
effective tool. It is inspired by photovoltaic (PV) sys-
tem reconfiguration in partial shade conditions (PSC). 
Specifically, reconfiguration strategies for TEG systems 
can be divided into two types that are similar to PV sys-
tem reconfiguration [27], i.e., static and dynamic. Static 
reconfiguration disperses the temperature difference area 
by changing the physical position of TEG modules rather 
than changing electrical connection, while dynamic 
reconfiguration is capable of dynamically altering the 
electrical interconnection through switching matrices 
against various temperature variations. This method gen-
erally possesses higher flexibility and lower complexity.

To alleviate adverse effects (e.g., module mismatch, dif-
ficulty in tracking the maximum power point, extreme 
power loss, hot spots, etc. [28]) of partial shading caused 
by meteorological or geographic factors on PV systems, 

numerous intensive studies have been done to develop 
sophisticated technologies on the reconfiguration of PV 
systems. For instance, a dragonfly algorithm (DA)-based 
reconfiguration technique for PV systems is proposed in 
[29]. This is capable of achieving up to 22% output power 
improvement over conventional methods (e.g., electrical 
reconfiguration, Sudoku, etc.) under (3 × 3) and (9 × 9) 
arrays. Distinct from MhAs-based techniques, recon-
figuration mechanisms enlightened by the magic square 
puzzle are conceived in [30, 31] to substantially reduce 
mismatch loss and enhance the GMPP of PV systems. 
These can offer an appropriate shade dispersion via relo-
cation of PV modules. In addition, reference [32] applies 
reinforcement learning to the optimal reconfiguration of 
PV systems under PSC to provide frequency support for 
the power system.

However, there are not many current studies on the 
TEG system reconfiguration. In [10], a dynamic reconfig-
uration algorithm is proposed for a TEG array installed 
on vehicle radiators, one which can change intercon-
nections (series or parallel) of TEG modules. Neverthe-
less, it assumes that the temperature difference between 
the TEG modules connected in parallel in the same 
row is similar, which is not always guaranteed in large-
scale TEG systems. Reference [33] achieves TEG array 
reconfiguration via adjusting switches with wireless 
sensors. This is suitable for occasions where wiring is 
inconvenient.

Although using electrical switchgear is feasible, how 
to obtain an appropriate switch adjustment scheme is 
complicated and challenging since dynamic reconfigu-
ration of TEG systems is a nonlinear, discrete, and con-
strained optimization problem. Furthermore, traditional 
approaches, e.g., branch and bound as well as enumera-
tion methods, face the risk of combination explosion 
with increasing dimensionality. Therefore, traditional 
methods are normally not applicable to the reconfigura-
tion of large-scale TEG systems. To address the above 
limitations, a novel adaptive coordinated seeker (ACS) is 
presented here for dynamic reconfiguration of TEG sys-
tems under different HgTDs.

The major contributions of this paper can be summa-
rized as follows:

•	 Dynamic reconfiguration of TEG systems under 
HgTDs is developed based on MhAs, for the first 
time.

•	 ACS is first designed to coordinate the local search-
ing capability of a tabu search (TS) and the global 
searching capability of a pelican optimization algo-
rithm (POA). This can efficiently overcome draw-
backs of traditional MhAs that are highly randomized 
and heavily dependent on certain parameters.
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•	 An equivalent re-optimization strategy (EROS) for 
reconfiguration solutions is developed to reduce 
unnecessary switching actions.

•	 The practical and specific performance of an ACS is 
comprehensively evaluated under two typical scenar-
ios, i.e., symmetrical and asymmetrical, via compari-
son with seven typical MhAs, i.e., artificial bee colony 
(ABC) algorithm, ant colony optimization (ACO), 
genetic algorithm (GA), particle swarm optimization 
(PSO), simulated annealing (SA) algorithm, TS, and 
POA.

The rest of this paper is structured as follows: TEG 
system modeling under HgTD is established in Sect.  2, 
while Sect.  3 introduces the optimization framework of 
the ACS. In Sect.  4, the execution process of TEG sys-
tem reconfiguration and EROS are provided, respectively. 
Case studies, statistical analysis, and hardware-in-the-
loop experiments are carried out in Sect. 5. Finally, main 
findings and conclusions are drawn in Sect. 6.

2 � TEG system modelling
2.1 � TEG module modelling
As illustrated in Fig.  1, a TEG module consists of two 
main components packaged together, i.e., two ceramic 
plates located on the cold and hot sides, respectively, 
while multiple thermoelectric couple units are connected 
in series with conductive metal strips between them. The 
thermoelectric couple unit is a fundamental and crucial 
element for a TEG module.

In general, the equivalent circuit of a TEG module is 
modeled as a voltage source Voc connected with a series 
resistance RTEG [4]. Here, the open-circuit voltage Voc 
(V) is directly determined by the temperature difference 
between the two ceramic plates as [34]:

where nnp = 488 is the number of thermoelectric units, 
αsb is the Seeback coefficient (V/K), Ths (K) and Tcs (K) 
represent the temperature of the hot and cold sides, 
respectively.

(1)Voc = nnp · αsb ·�T = nnp · αsb(Ths − Tcs)

The relationship between αsb and Thomson coefficient 
τ (V/K) is given by [22]:

where Tav (K) is the average value of Ths and Tcs.
For practical materials, τ is not zero. Thus, αsb can be 

deduced from (2) as [4]:

where αsb0 = 210  μV/K and αsb1 = 120  μV/K. These are 
the constant portion and variation rate of αsb, respec-
tively [17, 21, 35]. T0 = 300  K denotes the temperature 
reference.

In addition, RTEG is affected by the operational tem-
perature of the TEG module [36]. This can be described 
as:

2.2 � TEG system modelling under HgTD
In general, multiple TEG modules are interconnected in 
an SP electrical connection to obtain the expected volt-
age level and power density. As shown in Fig. 2, the series 
diodes are used to avoid circulating current between dif-
ferent strings (columns) within the TEG system when 
the total voltages of different strings mismatch, while the 
bypass diodes guarantee that the string with damaged 
TEG modules still operates normally.

According to the equivalent circuit of a single TEG 
module illustrated in Fig. 1, the total voltage Voc,m and 
total internal resistance Rm at the mth string can be 
expressed as:

(2)τ = Tav · dαsb dTav

(3)αsb(Tav) = αsb0 + αsb1 ln(Tav

/

T0)

(4)RTEG(Tav) = −2.597+ 0.014Tav
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Fig. 1  Schematic of TEG and equivalent circuit of TEG module
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Fig. 2  Configuration of (N × M) TEG system with SP
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where N is the number of rows in the TEG system, βn,m 
stands for the state of the bypass diode in the nth row and 
the mth column. This is either 0 (forward conduction) 
or 1 (reverse cutoff). Voc,n,m and RTEG,n,m represent the 
open-circuit voltage and internal resistance of the TEG 
module in the nth row and the mth column, respectively.

Therefore, the mth string is equalized to a voltage 
resource Voc,m in series with an internal resistance Rm. 
Based on the Thevenin theorem, the total current Ito-

tal and total resistance Rtotal of the TEG system can be 
obtained by:

where M is the number of columns in the TEG system, 
γm represents the state of the mth series diode, which is 
determined by the terminal voltage Vt of the TEG system 
and Voc,m.

A voltage vector [V0, V1, V2, …, Vk, …, VK] 
(1 ≤ K ≤ M) is acquired by sorting the unique values of 
[V0, Voc,1, Voc,2, …, Voc,m, …, Voc,M] in ascending order, 
while V0 = 0  V. According to the maximum power 
transfer theorem [37], the maximum output power 
Pmax,k (1 ≤ k ≤ K) can be written when Vt falls into the 
interval of (Vk-1, Vk], as:

where K stands for the conductive number of TEG 
strings.

Hence, the potential GMPP of a TEG system under 
HgTD can be calculated by Eq. (11) and approached by 
the aforementioned MPPT techniques.

(5)Voc,m =

N
∑

n=1

(βn,m · Voc,n,m)

(6)Rm =

N
∑

n=1

(βn,m · RTEG,n,m)

(7)Itotal =

M
∑

m=1

(γm · Voc,m

/

Rm)

(8)Rtotal = 1

/

M
∑

m=1

(γm
/

Rm)

(9)γm =

{

1, ifVoc,m > Vt

0, otherwise

(10)Pmax,k = (0.5Itotal)
2Rtotal

(11)
PGMPP = max(Pmax,1,Pmax,2, ...,Pmax,k , ...,Pmax,K )

3 � Design of adaptive coordinated seeker
3.1 � Tabu search
The TS [38, 39] developed by F. Glover is a widely applied 
and representative algorithm in combinatorial optimiza-
tion. It has powerful local searching capability. Its fun-
damental principle is demonstrated in Table 1, in which 
neighbourhood structure is defined as the interchange of 
any two TEG modules within the same row of the TEG 
system.

3.2 � Pelican optimization algorithm (POA)
The swarm-based POA mimics the hunting process of 
the pelican [40], and has the merits of simple structure 
and easy implementation. POA contains two principal 
phases, i.e., moving towards prey and winging on the 
water surface, as described by (12) and (13), respectively. 
It should be noted that results are discretized using inte-
ger coding with an ascending rule [41], which makes 
POA applicable to the dynamic reconfiguration of TEG 
systems.

where xi(it) and xi(it + 1) indicate the status of the ith 
pelican in the itth and (it + 1)th iteration, respectively. 
xp represents a randomly selected prey from remaining 

(12)

xi(it + 1) =

{

xi(it)+ r1 · (xp − I · xi(it)), if Fp > Fi
xi(it)+ r1 · (xi(it)− xp), otherwise

(13)
xi(it + 1) = xi(it)+ 0.2(1− it

/

It) · (2r2 − 1) · xi(it)

Table 1  The basic framework of single execution process for TS
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pelicans, while r1 and r2 are both random values distrib-
uted in the interval of [0, 1]. It stands for the maximum 
iteration, while Fp and Fi are objective function values of 
xp and xi(it), respectively.

3.3 � Adaptive coordinated seeker
Based on the idea of parallelism, the entire population is 
divided equally and randomly into two subpopulations to 
execute different operations separately. All individuals for 
the first subpopulation perform algorithm #1 in Table 1. 
The neighbourhood size of each individual is adaptively 
adjusted according to its objective function value, as indi-
cated in (14). Therefore, the drawback of traditional TS 
with heavy dependence on starting solution and search 
efficiency can be effectively lessened.

where NSj is the neighbourhood size of the jth individual, 
with j = 1, 2, …, NoSP. NS0 is the initial neighbourhood 
size of each individual, and NoSP stands for the individ-
ual number per subpopulation, which is equal to NP/2.

For the second subpopulation, two different operations 
can be selected with the same probability, i.e., the discre-
tized POA and TS without tabu. In addition, similar to 
the first subpopulation, the concept of neighbourhood 
search with adaptive adjustment is used for each individ-
ual of the second subpopulation.

To ensure communication between the two subpopu-
lations, the top 20% of the row vectors with the largest 
difference between the optimal individuals of the two 
subpopulations are swapped in order after certain itera-
tions (0.04It). For instance, the differences between the 
rows for the two solutions in Fig. 3 are 2/3 and 1, respec-
tively. An effective updating mechanism [40] is adopted 
during the optimization of ACS to obtain a better solu-
tion. The overall ACS implementation procedure for 
the TEG system dynamic reconfiguration is provided in 
Fig. 4.

(14)NSj =

{

NS0 + NoSP − 1, for best individual
NS0 − 1, otherwise

As the discretized POA has strong global search ability, 
it can effectively avoid the problem of premature conver-
gence. In contrast, the mutation mechanism is employed 
in [42] to improve the PSO for parameter optimization of 
a transient stability prediction model, which can ensure 
population diversity. TS is biased to local exploitation, 
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Fig. 4  The overall implementation procedure of dynamic 
reconfiguration for a TEG system via ACS

Table 2  The procedure of EROS for reconfiguration solution
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which can reasonably prevent ACS from blind search. 
Similarly, reference [43] constructs the memetic algo-
rithm using a binary differential evolution algorithm and 
TS to extract optimal feature subsets for transient stabil-
ity assessment of the power system. This can retain valid 
information to the greatest extent.

4 � Dynamic reconfiguration of TEG system via ACS
4.1 � Coding and switching matrix
For dynamic reconfiguration, each solution represents 
one arrangement mode while variables are the column 
serial number of each module in the TEG system, and 
the change of module locations is achieved by switching 
matrices. As shown in Fig. 2, reconfiguration within the 
same column has no impact for PGMPP as the TEG mod-
ules in the same column are connected in series. There-
fore, consecutive integer coding from 1 to M (column 
serial number of modules) is only adopted separately 
for each row of the TEG system. For instance, the initial 
solution and a possible solution, and their correspond-
ing configuration of the switching matrices are shown in 
Fig. 3 for a (2 × 3) TEG system.

4.2 � Objective function and constraints
Dynamic reconfiguration of the TEG system aims to 
maximize its potential GMPP, while a high-quality solu-
tion corresponds to a high potential GMPP. Therefore, 
the objective function is designed as:

where X means the feasible solution space and x* repre-
sents the optimal solution.

Moreover, dynamic reconfiguration is performed 
between different TEG modules in the same row. 
Thus, a feasible solution x should satisfy the following 
constraints:

where x(n,m) is the variable value of the nth row and the 
mth column in the feasible solution x.

4.3 � Equivalent re‑optimization of reconfiguration solution
Reconfiguration solutions obtained by various MhAs 
may not be in an optimal form under the same PGMPP 
because of the inherent randomness of MhAs and the 
non-uniqueness of the solution. For example, assuming 
that the temperature conditions for modules (1,2) and 
(1,3) in Fig.  3 are identical, the two modules are com-
pletely equivalent according to (1) and (4). Thus, the 

(15)x∗ = argmax
x∗∈X

PGMPP

(16)







x(n,m) ∈ {1, 2, ...,M}
M
�

m=1

x(n,m) = {1, 2, ...,M}

switching states for modules (1,2) and (1,3) of the possi-
ble solution can also be consistent with the initial states. 
However, if the operation is performed directly follow-
ing the possible solution, unnecessary switching actions 
will be caused. Therefore equivalent re-optimization for 
reconfiguration solutions obtained by various MhAs is 
essential and meaningful based on the temperature dis-
tribution of the TEG system. Its detailed procedure is 
tabulated in Table 2.

4.4 � Implementation process of dynamic reconfiguration 
for TEG system using ACS

Figure 4 explicitly demonstrates the overall implementa-
tion procedure of dynamic reconfiguration for the TEG 
system using ACS. rand stands for a random value dis-
tributed in the interval of [0, 1]. It is worth noting that 
the initial arrangement of the TEG system needs to be 
included in the population during random initialization 
to ensure an effective optimization. Additionally, a basic 
precondition for this work is that the operating tempera-
tures of each module in the TEG system can be collected 
by measuring devices.

5 � Case studies
To validate the dynamic reconfiguration performance of 
ACS for the TEG systems under various HgTDs, two typ-
ical scenarios are developed, i.e., symmetrical (15 × 15) 
and asymmetrical configuration (20 × 15). Furthermore, 
four typical temperature distributions are studied for 
each configuration, including diagonal, outer, inner, and 
random [28]. Seven conventional MhAs, e.g., ABC [44], 
ACO [45], GA [28], PSO [28], SA [41], TS [38, 39], and 
POA [40], are used for comparison with ACS. For a fair 
comparison, NP and It are uniformly set as (NP = 30, 
It = 500) and (NP = 30, It = 1000) under symmetrical 
and asymmetrical scenarios, respectively. All algorithms 
are independently executed 50 times to obtain the sta-
tistical results, while all simulations are executed in the 
MATLAB/Simulink 2019b environment with a personal 
computer with Intel(R) Core(TM) i5 CPU at 2.9 GHz and 
16 GB of RAM, and ode45 (Dormand-Prince) with vari-
able step chosen as the solver.

5.1 � Symmetrical configuration
Figures 5 and 6 illustrate the initial and optimal tempera-
ture distributions acquired by ACS in a symmetrical TEG 
system (15 × 15) under four different scenarios. Boxplots of 
the maximum output power obtained by eight algorithms 
under the four different scenarios of the (15 × 15) TEG sys-
tem are shown in Fig. 7. This reveals the statistical distri-
bution of the maximum output power for each algorithm 
in 50 runs. Clearly ACS can obtain the highest average 
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Fig. 5  Initial temperature distribution (°C) of four different scenarios for (15 × 15) TEG system: a, b diagonal, c, d outer, e, f inner, g, h random
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Fig. 6  Temperature distribution (°C) of four different scenarios for (15 × 15) optimized by ACS: a, b diagonal, c, d outer, e, f inner, g, h random
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value of the maximum output power of the TEG system. In 
particular, the distribution range of the maximum output 
power acquired from ACS is the smallest in the outer, inner, 
and random conditions. Thus, it can be seen that ACS has 
superior performance in terms of convergence stability and 
expectation of the maximum output power.

Figure 8 draws the convergence curves of various algo-
rithms for the four different TEG systems, where ACS 
can converge within 350 iterations along with optimum 
output power under the four conditions. As depicted in 
Fig. 8b, c, although ABC has a faster convergence speed 
in the early iterations, it falls into a local optimum solu-
tion in the late stages, which further proves the superior 
global searching capability of ACS.

The power-voltage (P–V) and current–voltage (I–V) 
curves of the TEG systems before and after optimiza-
tion using ACS are shown in Fig.  9. It can be seen that 
the potential GMPPs of the TEG systems are notably 
enhanced by 3.4%, 4.5%, 2.7%, and 22.8% via ACS under 
diagonal, outer, inner, and random scenarios, respec-
tively. In addition, the total voltage difference between 
the different strings in the TEG system is significant 
when the temperature is regionally and intensively dis-
tributed as shown in Fig.  5. Hence, MLMPPs phenom-
ena are inevitably induced because of the presence of 
series diodes [4, 22, 23]. More specifically, the voltage 
discrepancy among different strings will be decreased on 
account of uniform temperature distributions in the row 
direction obtained by ACS as in Fig. 6, and thus MLMPPs 
phenomena of P–V curves are significantly reduced, as 
shown in Fig. 9.

5.2 � Asymmetrical configuration
To further validate the superiority of ACS under various 
HgTDs, an asymmetrical TEG configuration (20 × 15) 
is designed and comprehensively evaluated. The initial 
and optimized temperature distributions based on ACS 
are shown in Figs. 10 and 11, respectively. It can be easily 
seen that temperatures in Fig.  11 are uniformly distrib-
uted in the row direction under all tested HgTDs.

As delineated in Fig. 12, the distribution of the output 
power generated from 50 independent reconfigurations 
of the (20 × 15) TEG system by ACS is more centralized 
than others, where the acquired lower and upper bounds 
of output power are higher.

It is seen in Fig. 13 that faster convergence and higher 
output power are achieved by ACS. In contrast, other 
algorithms, particularly ACO, PSO, and POA, tend to 
suffer from worse reconfiguration solutions with inferior 
convergence rates. Based on the above analysis and dis-
cussion, it is shown that ACS can rapidly provide recon-
figuration solutions for TEG systems with high desired 
output power.
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Fig. 7  Boxplots of maximum output power obtained by eight 
algorithms under four different scenarios of a (15 × 15) TEG system: a 
diagonal, b outer, c inner, and d random
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Fig. 8  Convergence curves of eight algorithms under four different 
scenarios of (15 × 15) TEG system: a diagonal, b outer, c inner, and d 
random
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Fig. 9  Output characteristics of (15 × 15) TEG system under four 
different scenarios before and after being optimized by ACS: a 
diagonal, b outer, c inner, and d random
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Fig. 10  Initial temperature distribution (°C) of four different scenarios for (20 × 15) TEG system: a, b diagonal, c, d outer, e, f inner, g, h random
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Fig. 11  Temperature distribution (°C) of four different scenarios for (20 × 15) optimized by ACS: a, b diagonal, c, d outer, e, f inner, g, h random
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Fig. 12  Convergence curves of eight algorithms under four different 
scenarios of (20 × 15) TEG system: a diagonal, b outer, c inner, and d 
random
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Fig. 13  Convergence curves of eight algorithms under four different 
scenarios of a (20 × 15) TEG system: a diagonal, b outer, c inner, and 
d random
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Figure 14 shows the output characteristics of the TEG 
system under the four different scenarios. This indicates 
that potential GMPPs corresponding to the optimal 
solutions are respectively boosted by 164.0 W, 122.8 W, 
34.7 W, and 47.4 W, compared to those of the initial solu-
tions. The output characteristics are also significantly 
smoothed via ACS, which significantly alleviates the bur-
den and complexity of MPPT.

5.3 � Analysis and discussion for statistical results
Tables  3 and 4 provide statistical results obtained by 
the eight methods in 50 independent runs under the 
symmetrical and asymmetrical scenarios, respectively, 
where the optimal results are shown in bold. Although 
all methods can improve the output power of the TEG 
systems because of their original arrangements being 
used as the initial solutions of each method, ACS can 
harvest the highest output power and maximum aver-
age output power under all cases. In particular, in the 
symmetrical TEG system with random temperature 
distribution, the maximum output power of ACS is 
103.1%, 116.3%, 114.3%, 110.7%, 108.4%, 104.7%, and 
113.7% of that of ABC, ACO, GA, PSO, SA, TS, and 
POA, respectively. In addition, GMPPs of the opti-
mized P–V curves in Fig. 14 are 16.9 W, 23.1 W, 18.7 W, 
and 19.8  W lower than the best results obtained by 
ACS in Table  4 under the four scenarios, respectively. 
This result is mainly caused by the forward conduction 
losses on the diodes.

As illustrated in Tables  3 and 4, both ACS and TS 
can obtain reconfiguration solutions with similar 
maximum output power under two HgTDs (i.e., outer 
and inner), which indicates that they have similar per-
formance in these scenarios. However, as mentioned 
above, ACS is superior to TS in terms of convergence 
speed and stability, as displayed in Figs.  7, 8, 12, and 
13. Overall, it is evident that ACS is successfully 
applied to the dynamic reconfiguration of the TEG 
systems with high accuracy, fast convergence speed, 
and excellent stability.

Table 5 tabulates the action module number reduced 
by EROS for the optimal solution of each algorithm 
in both symmetrical and asymmetrical scenarios. It is 
apparent that EROS can noticeably reduce the num-
ber of action modules in all cases. Hence, unnecessary 
switching actions and reconfiguration costs can be 
considerably reduced.

5.4 � RTLAB based hardware‑in‑the‑loop experiments
RTLAB platform-based hardware-in-the-loop experi-
ments are carried out to further validate the hard-
ware implementation feasibility, as shown in Fig.  15, 
with a sampling frequency of 1  kHz. Figures  16 and 17 

(a)

(b)

(d)

(c)

Fig. 14  Output characteristics of (20 × 15) TEG system under four 
different scenarios before and after being optimized by ACS: a 
diagonal, b outer, c inner, and d random
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demonstrate the output characteristics of each TEG sys-
tem under various HgTDs optimized by ACS. It can be 
seen from Figs. 16 and 17 that the responses of the simu-
lation and experiment acquired by the two configurations 
under several HgTDs are largely similar.

6 � Conclusions
In this work, a novel ACS is designed to realize an effec-
tive and efficient dynamic reconfiguration of two differ-
ent TEG systems, i.e., symmetrical and asymmetrical 
under various HgTDs. The main conclusions are:

Table 3  Statistical results obtained by each algorithm under four different scenarios of a (15 × 15) TEG system

Algorithms Indexes Scenarios

Diagonal Outer Inner Random

Initial solution Maximum output (W) 1531.1 2213.7 1692.4 1399.1

ABC Best (W) 1580.9 2311.6 1736.8 1663.7

Mean (W) 1574.1 2310.9 1736.6 1598.8

ACO Best (W) 1576.5 2309.9 1735.7 1473.9

Mean (W) 1572.9 2309.1 1735.1 1451.9

GA Best (W) 1574.6 2312.0 1737.2 1500.2

Mean (W) 1574.4 2310.8 1737.0 1458.9

PSO Best (W) 1579.2 2310.7 1736.2 1548.6

Mean (W) 1574.3 2309.8 1735.7 1486.7

SA Best (W) 1573.7 2311.3 1736.7 1582.1

Mean (W) 1573.0 2310.8 1736.5 1519.5

TS Best (W) 1581.4 2311.6 1736.9 1638.5

Mean (W) 1573.9 2311.2 1736.7 1598.0

POA Best (W) 1578.6 2310.1 1736.0 1508.1

Mean (W) 1572.9 2309.5 1735.4 1472.7

ACS Best (W) 1583.0 2312.8 1737.3 1714.9
Mean (W) 1579.1 2312.0 1737.2 1646.9

Table 4  Statistical results obtained by each algorithm in four different scenarios of a (20 × 15) TEG system

Algorithms Indexes Scenarios

Diagonal Outer Inner Random

Initial solution Maximum output (W) 2033.3 3155.2 2051.0 2312.6

ABC Best (W) 2123.0 3277.0 2084.6 2355.9

Mean (W) 2113.6 3274.1 2084.2 2354.9

ACO Best (W) 2087.6 3266.6 2082.5 2347.1

Mean (W) 2082.2 3265.2 2082.0 2346.2

GA Best (W) 2128.6 3278.3 2085.6 2360.1

Mean (W) 2115.3 3278.1 2085.3 2359.4

PSO Best (W) 2137.8 3270.6 2083.7 2352.1

Mean (W) 2106.4 3268.0 2083.0 2349.7

SA Best (W) 2118.1 3276.8 2085.0 2355.3

Mean (W) 2101.3 3274.0 2084.5 2354.0

TS Best (W) 2151.4 3278.1 2085.2 2357.7

Mean (W) 2127.4 3275.5 2084.9 2356.2

POA Best (W) 2101.6 3269.0 2083.3 2349.7

Mean (W) 2088.7 3267.4 2082.9 2348.1

ACS Best (W) 2195.9 3278.3 2085.8 2360.1
Mean (W) 2138.4 3278.3 2085.6 2360.1
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1.	 An MhA-based dynamic reconfiguration strategy 
for large-scale TEG systems is presented and accom-
plished for the first time. It aims to re-use waste heat 
generated in daily life and industrial production.

2.	 Compared with traditional MhAs, ACS is able to 
execute a reasonable equilibrium between global 
exploration and local exploitation via simultaneous 
execution of TS and discretized POA. Therefore, 
ACS can accurately and rapidly converge to optimal 
reconfiguration solutions for TEG systems under 
various HgTDs with a higher probability.

Table 5  Action modules reduced by EROS for optimal solution 
of each algorithm in symmetrical and asymmetrical

TEG systems Algorithms Scenarios

Diagonal Outer Inner Random

Symmetrical 
(15 × 15)

ABC 89 102 122 35

ACO 96 102 115 59

GA 103 102 120 53

PSO 104 110 116 57

SA 103 105 126 85

TS 97 104 120 88

POA 100 104 111 62

ACS 95 98 114 19

Asymmetrical 
(20 × 15)

ABC 127 42 187 164

ACO 126 162 167 142

GA 114 168 169 142

PSO 132 180 180 145

SA 129 183 192 149

TS 120 145 164 138

POA 118 161 179 153

ACS 112 171 186 153

Oscilloscope

OP5700 Simulator

Host Computer

Fig. 15  Hardware-in-the-loop experiment using RTLAB platform

(a)

(b)

(c)

(d)
Fig. 16  Output characteristics of (15 × 15) TEG system for simulation 
and experiment under various HgTDs optimized by ACS: a diagonal, 
b outer, c inner, and d random
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3.	 Comprehensive case studies verify that ACS has a 
better performance in dynamic reconfiguration than 
other MhAs. In particular, the maximum output 
power of ACS is 103.1%, 116.3%, 114.3%, 110.7%, 
108.4%, 104.7%, and 113.7% of that of ABC, ACO, 
GA, PSO, SA, TS, and POA under symmetrical sce-
nario with random temperature distribution, respec-
tively. The expected output power is enhanced by 
34.6 W-247.8 W via ACS compared with that of ini-
tial solutions under eight HgTDs, which further vali-
dates that ACS can significantly improve the poten-
tial GMPP of TEG systems.

4.	 Statistical results show that EROS can significantly 
reduce the number of action modules required under 
various cases. This can boost the practicability and econ-
omy of TEG systems with low generation efficiency.

However, it is necessary to reasonably set the number 
of individuals and iterations of ACS according to the 
scale of the TEG system in practical application in order 
to obtain an acceptable computational cost. The comple-
tion of the dynamic reconfiguration of the TEG system 
relies highly on accurate and reliable temperature meas-
urement equipment, which increases the cost. Therefore, 
the deployment of the thermometer and operator of ACS 
can be further optimized, while ACS can be extended to 
the reconfiguration of PV and PV-TEG systems in future 
studies.
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Fig. 17  Output characteristics of (20 × 15) TEG system for simulation 
and experiment under various HgTDs optimized by ACS: a diagonal, 
b outer, c inner, and d random
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