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A soft actor‑critic deep reinforcement 
learning method for multi‑timescale 
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Abstract 

This paper develops a multi-timescale coordinated operation method for microgrids based on modern deep rein-
forcement learning. Considering the complementary characteristics of different storage devices, the proposed 
approach achieves multi-timescale coordination of battery and supercapacitor by introducing a hierarchical two-
stage dispatch model. The first stage makes an initial decision irrespective of the uncertainties using the hourly 
predicted data to minimize the operational cost. For the second stage, it aims to generate corrective actions for the 
first-stage decisions to compensate for real-time renewable generation fluctuations. The first stage is formulated as 
a non-convex deterministic optimization problem, while the second stage is modeled as a Markov decision process 
solved by an entropy-regularized deep reinforcement learning method, i.e., the Soft Actor-Critic. The Soft Actor-Critic 
method can efficiently address the exploration–exploitation dilemma and suppress variations. This improves the 
robustness of decisions. Simulation results demonstrate that different types of energy storage devices can be used 
at two stages to achieve the multi-timescale coordinated operation. This proves the effectiveness of the proposed 
method.
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1  Introduction
The microgrid is considered a promising self-sufficient 
energy system to incorporate renewable energy sources 
(RES) into the main grid. It is defined as a small cluster 
of distributed generators (DGs) and energy storage sys-
tems (ESS). These can operate in grid-connected or iso-
lated modes [1]. Energy management is usually designed 
for microgrid operation to improve energy efficiency 
and minimize the operational cost [2]. From the view 
of microgrid control and operation, energy manage-
ment can be considered as the high-level (tertiary) con-
trol in the hierarchical microgrid control architecture 
[3]. The objectives of energy management are to decide 

the amount of electricity buying (selling) from (to) the 
main grid and dispatch the available energy resources in 
a microgrid (e.g., ESS, DGs). In an energy management 
strategy, the energy storage system plays a key role in 
compensating for power mismatch. Many kinds of stor-
age devices can be used as an ESS in a microgrid, such as 
supercapacitors, batteries, and fuel cells. Power density 
and energy density are the two main metrics for selecting 
the proper devices. With the increase of RES penetration 
level in the microgrid, intermittency, uncertainty, and 
non-dispatchability of RES make it challenging to main-
tain the supply–demand balance. To address the instanta-
neous fluctuations of RES and meet different operational 
requirements, hybrid ESS (HESS), consisting of various 
types of storage devices (typically battery and superca-
pacitor), inherits advantages of each type, and therefore 
can be deployed as an effective infrastructure to support 
microgrid operation. Different types of energy storage 

Open Access

Protection and Control of
Modern Power Systems

*Correspondence:  huchunchao@139.com

5 School of Electrical and Electronic Engineering, South China University 
of Technology, Guangzhou 510640, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-022-00252-z&domain=pdf


Page 2 of 10Hu et al. Protection and Control of Modern Power Systems            (2022) 7:29 

devices have different characteristics. For instance, a bat-
tery usually has a high energy density but low power den-
sity, while, in contrast, a supercapacitor has a low energy 
density but high power density. To fully exploit the HESS, 
the different types of devices should be optimally coordi-
nated so that the operational cost is reduced.

In previous studies, many algorithms have been pro-
posed for HESS-based microgrid operation. These can 
be generally categorized into rule-based and optimiza-
tion-based approaches [4]. Rule-based methods [5–7] 
are based on experience and empirical evidence, and are 
widely used for real-time operation because of their sim-
plicity. However, rule-based methods are limited by the 
short-vision and may not accurately reflect the actual 
conditions of ESS in the long run. Optimization-based 
approaches employ advanced optimization theory and 
can be classified into global (off-line) optimization [8–12] 
and real-time (on-line) optimization [13–15]. Neverthe-
less, optimization-based algorithms are complex and 
usually cause heavy computational burden in online 
applications [4]. In addition, the uncertainties from RES 
affect the effectiveness of optimization methods. For 
example, stochastic optimization suffers from heavy 
computational burden, and usually requires the probabil-
ity distributions of RES that are difficult to obtain, while 
robust optimization has to make the trade-off between 
economy and conservatism.

Recently, there has been increased interest in using 
deep reinforcement learning (DRL) to make real-time, 
sequential, and reliable decisions with the existence of 
uncertainty. Reference [16] proposes an energy manage-
ment approach for real-time scheduling of microgrids 
considering the uncertainty of demand, RES, and elec-
tricity price, while [17] establishes a DRL-based energy 
management strategy in the energy internet. An intelli-
gent multi-microgrid energy management method based 
on deep learning and model-free reinforcement learning 
(RL) is introduced in [18]. However, existing works on 
DRL-based energy management only focus on long or 
short-term economic dispatch of ESS operation under 
different conditions without considering the coordina-
tion of different types of storage devices. In addition, 
previous studies mostly adopt the single-stage dispatch 
model. However, simply implementing a DRL agent in 
the system may lead to unexpected decisions. In addition, 
entirely depending on a DRL agent to make decisions 
lacks reliability in practical operation, and interpretability 
is usually unsatisfactory.

To address the highlighted problems, this paper pro-
poses the use of a two-stage coordinated approach to 
guide a DRL agent so that it can select actions within 
a proper range to improve the reliability of decisions. 

A DRL-based multi-timescale coordinated operation 
method for microgrids with HESS is developed. The 
microgrid has two types of ESS, i.e., battery with high 
energy density and supercapacitor with high power den-
sity. This method realizes multi-timescale coordination 
by introducing a hierarchical two-stage dispatch model. 
The first stage makes an initial decision without consid-
ering the RES uncertainties to minimize the operational 
cost, including the degradation cost and regulation cost 
from the utility grid. Power references of the battery and 
electricity from the utility grid are also calculated, and 
these will be further used in the second stage. The second 
stage generates corrective actions to compensate for the 
first-stage decision after the uncertainty is realized. The 
first stage is a nonlinear programming problem and is 
solved by an off-the-shelf solver over a longer timescale 
(1  h), while the second stage is modeled as a Markov 
decision process addressed by DRL in real-time.

The Soft Actor-Critic (SAC), as an efficient DRL algo-
rithm for a continuous control problem [19], is adopted 
in the approach. The SAC is a stochastic off-policy actor-
critic algorithm based on the concept of entropy, and it 
returns a probability distribution over the action space. 
The entropy term is used to evaluate the randomness of 
the policy, while the SAC introduces an entropy term in 
the reward function so that the return and exploration 
can be maximized at the same time during the train-
ing process. This improves exploration and robustness. 
Compared with the deep deterministic policy gradient 
(DDPG), another effective DRL method [20], the policy 
learned by the SAC is a stochastic policy that returns a 
probability distribution over the action space, while 
DDPG often has larger variations and can easily con-
verge to a local optimum [21]. Thus, the SAC can better 
address the uncertainty existing in the decision due to its 
stochastic policy.

The contributions of this paper can be summarized as 
follows:

(1)	 A DRL-based two-stage energy management 
framework is established for microgrids with HESS. 
The first stage schedules the output of battery and 
regulation from the utility grid (buying/selling elec-
tricity from/to grid), while the second stage adjusts 
the scheduling from the first stage and determines 
the power of the supercapacitor to deal with the 
instantaneous fluctuations of RES.

(2)	 The degradation models of battery and supercapaci-
tor are derived and considered during operation 
so that the long-term capital cost and short-term 
operational cost can be coordinated.
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(3)	 An advanced DRL algorithm, namely the SAC, is 
derived to improve training efficiency and perfor-
mance in the second stage. The results show that 
the SAC agent has low variation and stable perfor-
mance.

2 � Microgrid operation modelling
2.1 � Microgrid
Here the microgrid consists of HESS and RES, including 
photovoltaic (PV) and wind turbine (WT), and aggre-
gated load. The microgrid can interact with the utility 
grid through the point of common coupling (PCC). Fig-
ure  1 shows the schematic of the microgrid for energy 
management. When the microgrid operates in the grid-
connected mode, it can benefit from selling electricity 
to the utility grid or buying electricity from the grid to 
maintain the power balance. The power balance to be 
maintained can be expressed as:

Among these variables, PL , PPV  and PWT are consid-
ered to be uncontrollable, and the objective of energy 
management is to determine optimal values for PGrid , 
PB and PSC so that the microgrid operation cost can be 
minimized. We also assume that the utility grid adopts a 
dynamic real-time pricing scheme in which the price is 
determined based on the bidding of the electricity mar-
ket participants and is usually available for the public sev-
eral hours ahead, allowing customers to make a schedule 
in advance [22]. The price data from the Energy Market 
Authority (EMA) in Singapore [23] over a year is used in 
this work.

(1)
PL = PPV + PWT + PGrid + PB + PSC

PESS

2.2 � Renewable energy sources
PV panels and WTs are deployed as generation units. PV 
generation varies dramatically with weather conditions, 
especially for passing clouds. Similar, wind power depends 
on wind speed that varies from day to day, and from sea-
son to season. The power generation uncertainty makes 
it difficult to deal with the instantaneous supply–demand 
balance. The objective of the proposed multi-timescale 
coordinated method is to dispatch different storage devices 
based on their characteristics to deal with the instantane-
ous fluctuations of RES. The PV and WT hourly predicted 
power generation data are from [9], which are used in the 
first stage. In order to simulate the uncertain fluctuations of 
RES, a 10% forecast error is added on the predicted data in 
the second stage.

2.3 � Hybrid energy storage systems (HESSs)
The microgrid has two kinds of ESS: battery and superca-
pacitor. The battery has high energy density to store energy, 
while the supercapacitor has high power density and can 
rapidly respond to charging/discharging events. Because 
of their different characteristics, the battery and superca-
pacitor should be scheduled for different objectives, i.e., the 
battery is scheduled for economic dispatch over a longer 
timescale while the supercapacitor maintains instantane-
ous power balance. Particularly, the degradation cost dur-
ing operation is considered in this paper, where the models 
are presented in the following sections.

2.3.1 � Battery degradation model
Degradation of life is important for battery operation, and 
is visible in two main aspects, i.e., the aging of cycle life and 
the reduction of capacity. The primary determinant of life-
cycle and capacity is the depth of discharge (DOD), which 
is defined as the energy that is discharged from a fully 
charged battery, divided by the battery capacity. The curve 
of battery lifecycles under different DODs, LB , can be fitted 
by the formula in [9]:

where a, b, c are curve-fitting coefficients.
Then the degradation cost CBDC(t) related to the dis-

charging/charging events can be expressed as:

where CR
B is the battery replacement cost, and ηBc  and ηBd 

are the charging and discharging efficiencies, respec-
tively. It is worth mentioning that the degradation cost 
of charging events equals that of discharging events. The 
battery capacity will depreciate after this cycling event as:

(2)LB(DOD) = a× DOD−b × e−c·DOD

(3)CBDC(t) =
CR
B · |PB(t)|�t

2LB · EB
cap(t) · DOD · ηBc · ηBd

Fig. 1  Microgrid model for energy management
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where EB
rated is the rated capacity of the battery.

2.3.2 � Supercapacitor degradation model
The predominant advantage of a supercapacitor over a bat-
tery is that the supercapacitor can weather several tens of 
thousands of discharge/charge cycles under very high cur-
rent. Degradation of its lifetime centres on the increase of 
equivalent series resistance and the reduction of capacity. 
Reference [24] indicates that the aging of a supercapaci-
tor is closely related to the evaporation rate of electrolytes, 
while the temperature and voltage are two principal factors 
influencing the aging rate.

A supercapacitor can work for its estimated lifetime 
under normal operating conditions (i.e., within the proper 
temperature and voltage ranges). Therefore, the superca-
pacitor degradation cost can be treated as a linear function 
of DOD per charging/discharging event [10]. Considering 
a time interval [t, t +�t] and given the estimated superca-
pacitor lifetime LSC and the replacement cost CR

SC , the deg-
radation cost can be expressed as:

As (5) shows, the cost is linear over time if used properly 
in a microgrid. Therefore, a supercapacitor is suitable for 
dealing with instantaneous power imbalance.

3 � Multi‑timescale coordinated two‑stage 
operation of microgrid with HESS

In this section, a two-stage multi-timescale coordinated 
method considering the complementary characteristics 
of battery and supercapacitor is developed. The first stage 
addresses a deterministic optimization problem using the 
hourly predicted data, and then corrective action is taken 
in the second stage to compensate for the first-stage deci-
sion after the uncertainty is realized.

Figure 2 illustrates the framework of the proposed DRL-
based multi-timescale coordinated microgrid operation, 
where Tf  and Ts are the lengths of the prediction hori-
zons for the first stage and second stage, respectively. The 
first stage consists of a nonlinear model predictive control 
framework with a time horizon tf ∈ {1, 2, ...,Tf } , while 
the second stage is a Markov decision process solved by 
a DRL algorithm (Soft Actor-Critic) with a time horizon 
ts ∈ {1, 2, ...,Ts} , using the reference values provided by the 
first stage. For both stages, the power balance constraint 
shown in (1) needs to be met at all times. In addition, the 
following constraints also need to be satisfied:

(4)EB
cap(t +�t) = EB

cap(t)−
EB
rated

LB

(5)CSCDC(t) =
CR
SC ·�t

LSC

Equation (6) is the power limit constraint of buying/
selling electricity from/to utility grid, while (7), (8) are 
the charging or discharging power limits of the battery 
and supercapacitor, respectively. Equations (9), (10) are 
the state of charge (SOC) limits required to avoid the 
battery and supercapacitor over-charging or over-dis-
charging, respectively.

State dynamics of the battery and supercapacitor 
are depicted as (11) in terms of charging/discharging 
power [9]:

(6)Pmin
Grid ≤ PGrid(t) ≤ Pmax

Grid , t ∈ {tf , ts}

(7)Pmin
B ≤ PB(t) ≤ Pmax

B , t ∈ {tf , ts}

(8)Pmin
SC ≤ PSC(ts) ≤ Pmax

SC

(9)SOCmin
B ≤ SOCB(t) ≤ SOCmax

B , t ∈ {tf , ts}

(10)SOCmin
SC ≤ SOCSC(t) ≤ SOCmax

SC , t ∈ {tf , ts}

(11)

EB(t +�t) =

{
EB(t)− PB(t)�t · ηBc , PB(t) ≤ 0

EB(t)− PB(t)�t/ηBd , PB(t) > 0

(12)

ESC(ts +�ts) =

{
ESC(ts)− PSC(ts)�ts · η

SC
c , PSC(ts) ≤ 0

ESC(ts)− PSC(ts)�ts/η
SC
d , PSC(ts) > 0

Fig. 2  Framework of the proposed DRL based multi-timescale 
coordinated microgrid operation
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where t ∈ {tf , ts} and �t ∈ {�tf ,�ts} , EB(t) and ESC(t) 
are the remaining energy in the battery and supercapaci-
tor at time t respectively, and SOCB/SC = EB/SC/E

B/SC
cap

. Since the supercapacitor is scheduled only at the sec-
ond stage, the state dynamics in (12) and constraint in 
(8) are only considered in the second stage with a short 
timescale.

3.1 � Mathematical model for first stage
The objective of the first stage is to optimize the decision 
variables {Pf

Grid(tf ),P
f
B(tf )} with hourly predicted data, 

including load, PV, and WT power generation, to minimize 
the operational cost. The objective function is expressed as:

where Cf
Grid is the cost of buying electricity from the util-

ity grid, which can be expressed as:

where cbuyg (tf ) is the buying price in the market at time tf  
and csellg (tf ) is the selling price. When Pf

Grid > 0 , it means 
the microgrid buys electricity from the utility grid, and 
when Pf

Grid < 0 the microgrid sells electricity to the grid. 
tf  is the battery operation cost, given as:

where δ(t) is an auxiliary function to indicate the state 
transition on the charging and discharging events in two 
consecutive time intervals, as:

The depth of discharge, DOD(tf ), is calculated based on 
the accumulated energy before the cycling event changes 
as:

where EB
a (tf ) is the accumulated energy before the 

cycling event changes, formulated as:

(13)
Tf
∑

tf =1

C
f
Grid(tf )+ CB(tf )

(14)

C
f
Grid(tf ) =

{

c
buy
g (tf ) · P

f
Grid(tf )�tf , P

f
Grid(tf ) > 0

csellg (tf ) · P
f
Grid(tf )�tf , P

f
Grid(tf ) ≤ 0

(15)
CB(tf ) = CBDC(tf ,DOD(tf ))

−[1− δ(tf )] · CBDC(tf ,DOD(tf − 1))

(16)δ(tf ) =

{

0, P
f
B(tf ) · P

f
B(tf − 1) > 0

1, P
f
B(tf ) · P

f
B(tf − 1) ≤ 0

(17)DOD(tf ) =
EB
a (tf )

EB
cap(tf )

(18)EB
a (tf ) = [1− δ(tf )] · E

B
a (tf − 1)+ P

f
B(tf )�tf

Based on the above equations, the optimization problem 
in the first stage is summarized as:

3.2 � Mathematical model for second stage
The second stage aims to modify the decisions (i.e., 
battery output power and utility regulation) from 
the first stage and make a schedule for the superca-
pacitor so that variations caused by RES uncertain-
ties can be minimized. The decision variables are 
{P

s,tt
Grid(ts),P

s,tt
B (ts),P

s,tt
SC (ts)} for each first-stage time slot 

[tf , tf +�tf ] , and they should satisfy (6)-(8). This stage 
is modeled as a Markov decision process. To apply the 
DRL algorithm and achieve the real-time decision-
making, several necessary components (i.e., observa-
tions, actions, reward function) should first be defined.

3.2.1 � Observations
For the second stage, the environment is the micro-
grid, and therefore the state of the environment (usu-
ally termed as observations) at ts in the time slot 
[tf , tf +�tf ] can be expressed as:

where SOCB(ts), SOCSC(ts) are the current states of 
charge of the battery and supercapacitor, respectively, 
and satisfy (9) and (10). Pnet

L (ts) is the net load at current 
time step, given by:

3.2.2 � Actions
The actions performed by the DRL agent are corrective 
items for the first stage decisions and the output power 
of the supercapacitor, shown as:

The relations between the decision variables 
{P

s,tf
Grid(ts),P

s,tf
B (ts),P

s,tf
SC (ts)} and actions are summarized 

as:

min

Tf
∑

tf =1

C
f
Grid(tf )+ CB(tf )

(19)s.t. (1)− (4), (6), (7), (9), (11), (14)− (18)

(20)s(ts) = {Pnet
L (ts), SOCB(ts), SOCSC(ts)}

(21)Pnet
L (ts) = PL(ts)− PPV (ts)− PWT (ts)

(22)a(ts) = {�PGrid(ts),�PB(ts),PSC(ts)}

(23)P
s,tf
Grid(ts) = P

f
Grid(tf )+�PGrid(ts)
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From (23)–(25), it can be seen that the actions gen-
erated by the second stage are corrective terms for the 
decisions made in the first stage. The first stage is a 
deterministic optimization process without considering 
the uncertainties of RES, and therefore an additional 
second stage is introduced so that the trained DRL 
agent can make real-time decisions after the uncertain-
ties are realized.

3.2.3 � Reward function
The state transition follows the rule stated in (11) and 
(12). As mentioned, the first stage provides reference val-
ues for the second stage and the realized uncertainties 
are dealt with by the supercapacitor. Therefore, penalties 
for deviations from the reference values can be defined 
as:

where cpg (ts) is the penalty cost of deviation of the power 
from/to utility grid, and cpB(ts) is the penalty cost of devia-
tion of the battery power. Apart from these two penalties, 
the SOC of the supercapacitor at the end of each time 
interval [ts −�ts, ts] should be maintained at a nomi-
nal value so that it has enough energy for the next time 
interval. Therefore, the penalty term that accounts for the 
SOC of the supercapacitor can be expressed as:

Based on (27)–(29), the reward function is defined as:

where the first three items are penalty costs, and the last 
is the supercapacitor degradation cost.

With the above definitions, the optimization problem 
in the second stage when considering the future rewards 
is formulated as:

(24)P
s,tf
B (ts) = P

f
B(tf )+�PB(ts)

(25)P
s,tf
SC (ts) = PSC(ts)

(26)c
p
g (ts) = [�PGrid(ts)]

2

(27)c
p
B(ts) = [�PB(ts)]

2

(28)cpsc(ts) = (SOCSC(ts)/100− 1)2

(29)r(ts) = −c
p
g (ts)− c

p
B(ts)− cpsc(ts)− CSCDC

max

Ts∑

ts=1

γ ts · r(ts)

where γ is the discount factor. This problem will be solved 
by the DRL algorithm, SAC. Since the policy is composed 
of deep neural networks, a completely trained agent can 
compute the dispatch actions within a few seconds for 
real-time decision-making.

3.3 � SAC training process
The SAC is one of the actor-critic approaches similar 
to DDPG and Twin delayed DDPG (TD3) but has bet-
ter performance for continuous control problems. In the 
actor-critic architecture, the actor uses the policy gradi-
ent to find the optimal policy while the critic evaluates 
the policy produced by the actor. Instead of using only the 
Q function, the critic in the SAC takes both the Q func-
tion and the value function to evaluate the policy. This 
can stabilize the training and provide convenience to train 
simultaneously with the other networks. There are three 
networks in the SAC, one actor network (policy network) 
to find the optimal policy, and two critic networks (a value 
network and a Q network) to evaluate the policy. They 
will be explained in detail in the following sections.

3.3.1 � Critic network
The critic in the SAC uses both the value function and 
the Q function to evaluate the learned policy, and the two 
functions are approximated by two separate deep neural 
networks. The value network is denoted by V  , the param-
eter of the network is ψ and the parameter of the target 
value network is ψ ′ . Therefore,Vψ(s) is the value function 
(state value) approximated by a neural network param-
eterized by ψ . In the entropy-based reinforcement learn-
ing framework, the theoretical state value V  is calculated 
as:

where Q(s, a) is the state-action value function (Q-value), 
π is the stochastic policy that maps the state to a prob-
ability distribution over the action space, α log π(a|s) is 
the entropy term, and ai is the entropy weight, which is 
adjusted dynamically during the training process. Two 
neural networks Qθ1 and Qθ2 are used to compute the Q 
value, and this can avoid overestimation during the train-
ing process [25]. The policy is expressed by the actor net-
work (policy network) πφ parameterized by φ . Therefore, 
the loss function of the value network can be defined as:

(30)s.t. (1), (5)− (12), (20)− (29)

(31)V (s) = Eπ [Q(s, a)− α log π(a|s)]
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where N is the number of state transitions sampled from 
replay buffer D, i is the index of sample, si and ai are state 
observation and action defined in (20) and (22), respec-
tively. The value network parameter ψ is updated by gra-
dient descent, as:

where � is the learning rate. Then the target value net-
work is updated by soft replacement, as:

where τ is the soft replacement coefficient that is set to 
0.001.

For the two Q networks, Qθ1 and Qθ2 , the loss functions 
are defined as:

where ri is the immediate reward defined in (29), γ is the 
discount factor that gives importance to the immediate 
reward or future rewards. s′i is the new state after the 
action ai is performed. Then θ1 and θ2 are updated by the 
following rules:

3.3.2 � Critic network
The actor network, also named policy network, is param-
eterized by φ . The loss function is defined as:

Then the actor network parameter can be updated by:

3.4 � Algorithm
The proposed DRL based method for multi-timescale 
coordinated operation of microgrid is summarized in 
Algorithm 1.

(32)

LV (ψ) =
1

N

∑

i

[min
j=1,2

Qθj (si, ai)− α log πφ(ai|si)− Vψ(si)]
2

(33)ψ = ψ − �∇ψLV (ψ)

(34)ψ ′ = τψ + (1− τ)ψ ′

(35)LQ(θ1) =
1

N

∑

i

[ri + γVψ(s
′
i)− Qθ1(si, ai)]

2

(36)LQ(θ2) =
1

N

∑

i

[ri + γVψ(s
′
i)− Qθ2(si, ai)]

2

(37)θ1 = θ1 − �∇θ1LQ(θ1)

(38)θ2 = θ2 − �∇θ2LQ(θ2)

(39)

Lπ (φ) =
1

N

∑

i

[min
j=1,2

Qθj (si, ai)− α log πφ(ai|si)]
2

(40)φ = φ + �∇φLπ (φ)

4 � Case studies
4.1 � Simulation settings
In this section, the DRL based method for multi-time-
scale coordinated operation of microgrids is dem-
onstrated. The model shown in Sect.  3 and the SAC 
algorithm are implemented in MATLAB. The optimiza-
tion problem in the first stage is solved by Gurobi [26], 

Table 1  Energy storage device parameters

Device Capital
Cost ($/
kWh)

Capacity 
(kWh)

Power
Limit (kW)

SOCmin SOCmax

Battery 600 12 4 10% 90%

Supercapaci-
tor

3600 1 10 0% 100%
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and the DRL training process is conducted by the MAT-
LAB Reinforcement Learning Toolbox [27].

The simulation parameters are listed in Table  1. The 
scheduling horizon is set as 48 h, the length of the time 
interval in the first stage is 1 h and the time interval in 
the second stage is set to 5  min. It is worth mention-
ing that although in this paper the time interval is set 
as 5 min for simplicity, the proposed method can adapt 
to a shorter one. The data about the power of load, PV 
and WT can be found in [9], while the uncertainties of 
the PV and WT power generation in the second stage are 
expressed by a 10% forecast error. The real-time electric-
ity price data are obtained from [23], and the charging/
discharging efficiencies of the battery and supercapacitor 
are set as 0.95 and 0.92, respectively. For the DRL train-
ing process, the DRL parameters, including the iteration 
number, learning rate � , discount factor γ , size of replay 
buffer and soft replacement coefficient τ , are set as 600, 
3× 10−4 , 0.99, 1000, and 0.001, respectively. Figure  3 
shows the reward value of each training episode of the 
SAC agent. As shown, episode reward is the total reward 
in the scheduling horizon 48  h, and average reward is 
the average of rewards of all finished episodes. After sev-
eral hundreds of training episodes, episode and average 
rewards converge to a maximum value, and it can be seen 
that the SAC algorithm converges very quickly. After the 
training process, entropy weight α is set to 0.2296 and the 
DRL agent with the optimal policy is implemented for 
real-time decision-making.

4.2 � Numerical results
The results of optimal dispatch based on the real-time 
pricing scheme computed by the proposed two-stage 
framework are shown in Figs.  4 and 5. Figure  4 is the 
results of the first stage without considering the uncer-
tainties of PV and WT power generation, whereas Fig. 5 
is the results of the second stage considering the uncer-
tainties. As shown, the battery is rapidly discharged at 
hours 16, 20 and 37 when the electricity price is high, 

while when the electricity price is lower from hours 0–8 
and 21–35 the microgrid buys a large amount of electric-
ity from the main grid to satisfy demand and charge the 
battery. The average computation time of the first stage 
is 18.85  s. From Fig.  5, it can be seen that the superca-
pacitor is scheduled to rapidly respond to the instanta-
neous fluctuations of PV and WT power generation. The 
computation time of a step in the second stage is 0.86 s. 
Figures 6 and 7 show the SOCs of the battery and super-
capacitor during the scheduling horizon respectively. 
These present the periodic features as expected. As seen, 
the SOC curve of the battery is much smoother than 

Fig. 3  Episode and average rewards during the training process

Fig. 4  First-stage economic dispatch without considering the 
uncertainty

Fig. 5  Second-stage economic dispatch considering the PV and WT 
uncertainties (10% forecast error)

Fig. 6  SOC of battery during dispatch horizon

Fig. 7  SOC of supercapacitor during dispatch horizon
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that of the supercapacitor since the output power of the 
supercapacitor is closely related to the variations of RES.

Figures  8 and 9 provide the overview of battery deg-
radation cost and utility grid regulation cost over the 
scheduling horizon, respectively. Comparing Figs. 8 and 
5, it can be seen that the degradation cost is high when 
the battery is quickly charged or discharged. It can also be 
seen from Figs. 9 and 5 that the profile of the utility grid 
regulation cost is closely related to the electricity price. 
Table  2 gives the detailed dispatch results. As seen, the 
total operation cost is $264.2974 and the battery degra-
dation cost is $0.9222. After the DRL agent is completely 
trained, it takes 0.1563 s to make the decisions for each 
step. This is sufficiently quick for real-time operation.

5 � Conclusions
In this study, a DRL based method for multi-timescale 
coordinated microgrid operation is developed. The first 
stage makes an initial decision irrespective of the uncer-
tainties to minimize the operation and degradation costs, 
while the second stage aims to generate corrective actions 

to compensate for the first-stage decision after the uncer-
tainty is realized. The first stage is a non-linear model pre-
dictive control problem while the second stage is modeled 
as a Markov decision process solved by an SAC. Since the 
battery has high energy intensity while the supercapaci-
tor has high power intensity, the battery is scheduled to 
store a large amount of energy over a long timescale while 
the supercapacitor works for instantaneous power balanc-
ing. The training results of the SAC agent show that this 
method can stabilize the performance well and converges 
to the optimal policy quickly. For online application, the 
agent can adjust the power bought from the main grid, 
battery power, and supercapacitor power in real-time to 
maintain the power balance under the fluctuations of RES.

In summary, this paper establishes a feasible data-driven 
multi-timescale coordinated microgrid operation method. 
In future work, the problem in the first stage will be further 
analyzed and solved by the DRL algorithm to form a multi-
agent DRL-based coordinated framework. In addition, 
more types of energy storage device will be considered.
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Table 2  Numerical results
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