Yang etal.
Protection and Control of Modern Power Systems
https://doi.org/10.1186/541601-022-00251-0

Protection and Control of

(2022) 7:36
Modern Power Systems

REVIEW Open Access
()]

Check for
updates

Comprehensive summary of solid oxide fuel
cell control: a state-of-the-art review

Bo Yang', Yulin Li', Jiale Li', Hongchun Shu', Xinyu Zhao?, Yaxing Ren®” and Qiang Li*

Abstract

Hydrogen energy is a promising renewable resource for the sustainable development of society. As a key member of
the fuel cell (FC) family, the solid oxide fuel cell (SOFC) has attracted a lot of attention because of characteristics such
as having various sources as fuel and high energy conversion efficiency, and being pollution-free. SOFC is a highly
coupled, nonlinear, and multivariable complex system, and thus it is very important to design an appropriate control
strategy for an SOFC system to ensure its safe, reliable, and efficient operation. This paper undertakes a comprehen-
sive review and detailed summary of the state-of-the-art control approaches of SOFC. These approaches are divided
into eight categories of control: proportional integral differential (PID), adaptive (APC), robust, model predictive (MPC),
fuzzy logic (FLQ), fault-tolerant (FTC), intelligent and observer-based. The SOFC control approaches are carefully evalu-
ated in terms of objective, design, application/scenario, robustness, complexity, and accuracy. Finally, five perspectives

are proposed for future research directions.
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1 Introduction

With the continuous depletion of nonrenewable
resources and deterioration of the environment, coun-
tries all over the world are accelerating the pace of their
energy structure reform [1-7]. Leading the innovation
and application of high efficiency and clean energy are
hydrogen, geothermal, wind, and solar energy [8-18].
The fuel cell (FC) is also a member of the renewable
energy family. It has a simple working principle, high effi-
ciency, and fewer disadvantages than other clean energy
sources. Thus FC has attracted a lot of global attention
[13, 14]. Compared with traditional power generation
methods, the FC does not require a thermal engine pro-
cess and is not restricted by the Carnot cycle, and there-
fore has higher energy conversion efficiency. Generally,
depending on the electrolytes, FCs are divided into alka-
line (AFC) [19, 20], phosphoric acid (PAFC) [21], proton
exchange membrane (PEMFC) [22], molten carbonate
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(MCEC) [23], solid oxide (SOFC) [24], and direct metha-
nol, etc. [25, 26].

SOEC is an energy exchange device which can directly
convert the chemical energy of fuel and oxidant into elec-
trical energy through an electrochemical reaction [24]. It
can have a wide variety of fuels, and has high efficiency,
zero emission, and waste heat utilization. Because of
these benefits, SOFC is considered to be one of the most
promising FC technologies [27, 28]. With the continu-
ous development and progress of FC technology, SOFC
can serve a large variety of applications, including mobile
[29], auxiliary power units (APU) [30, 31], backup power
systems, stationary small-scale combined heat and power
systems, and medium-large scale power generation sys-
tems [32]. Therefore the commercial application of SOFC
is very broad.

In the operation of an SOFC, an appropriate control
strategy is very important to ensure its safe and reliable
operation and to achieve the expected objectives. In the
control of an SOFC, it is necessary to ensure that:
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+ The power supply is sufficient when the load fluctu-
ates frequently, and the system output voltage has
good robustness;

« There is safe and efficient operation of the entire
system;

« Unnecessary battery loss is reduced with improve-
ment in operation [33].

In addition, an appropriate SOFC model is very
important for research and development. According to
whether the dynamic behavior is considered, the mod-
els of SOFC can be divided into steady-state models
and transient models. From the perspective of dimen-
sion, models can also be divided into zero-, one-, two-,
and three-dimensional [34, 35]. Appropriate models
need to be used for different control objectives, such
as constant output voltage [36—38], improving dynamic
response speed [39, 40], and prolonging system service
life [41].

Reference [42, 43] reviews SOFC control, with the con-
trol objectives and control variables of SOFC described
in detail, while the control strategies of various hybrid
SOEC systems are introduced. However, the main atten-
tion is on the traditional control methods while modern
control strategies (such as adaptive control (APC), robust
control, model predictive control (MPC), etc.) are not
introduced nor summarized [42, 43]. Reference [44] sorts
out and summarizes the performance evaluation, fault
diagnosis, and health control of SOFC in relative detail,
and points out the shortcomings of the current research
on the fault diagnosis and control of SOFC. However, it
does not focus on the controller itself, and does not clas-
sify and evaluate various control strategies. Reference
[45] focuses on the SOFC system with anode exhaust gas
recirculation and summarizes the representative con-
trol strategies. However, it lacks generality and does not
describe the control strategy in detail. In addition, arti-
ficial intelligence (AI) has opened a new round of rapid
development in recent years. This is gradually developing
from a single technology to an integrated approach with
new technologies such as big data and high-performance
computing, and from shallow learning to deep learning.
Research on the application of Al technology in SOFC
control is of great research value due to the difficulties of
SOFC control [46].

This paper aims to comprehensively and systematically
review the research on SOFC control. It summarizes the
control strategies of SOFC and classifies them into eight
categories of control approaches. It can be regarded as
the latest one-stop manual for SOFC control. We also
provide some prospects for future research in this field.
The main contributions of this paper can be summarized
as follows:
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+ Eight control strategies are included, and the control
strategies of SOFC are classified and summarized;

+ Three indices of complexity, robustness and accuracy
are used to evaluate the performance of each control
strategy;

+ A comprehensive summary and comparison of these
control strategies are provided.

The rest of the paper is organized as follows. Section 2
explains the review screening methods of this paper,
while Sect. 3 provides the working principle of SOFC and
the system composition of SOFC. Section 4 describes
the various SOFC control strategies in detail, and Sect. 5
summarizes the characteristics of the different control
strategies. Finally, Sect. 6 describes the challenges and
perspectives.

2 Statistical analysis and evaluation indices
2.1 Review screening methods
Since the advent of SOFC, researchers have proposed a
large number of controller designs. We present a com-
prehensive literature review of research on SOFC con-
trol, using three digital databases (ScienceDirect, Web of
Science and Google Scholar), searching on terms such as
SOFC, PID control, MPC and related control methods.
The flow chart of the search filtering is shown in Fig. 1a,
while the statistical data of relevant studies over the past
ten years (from 2011 to Oct. 2021) are shown in Fig. 1b.
At present, the main research methods include litera-
ture research, investigation, qualitative analysis, quantita-
tive analysis, and observation. In this paper, the control
strategies of SOFC are summarized and analyzed using
the literature research method, and the robustness, accu-
racy and complexity of various control strategies are
evaluated.

2.2 Evaluation criteria

The complexity, accuracy and robustness of each control
method are evaluated [47, 48], and the evaluation criteria
of each controller are as follows.

Complexity: Complexity is mainly evaluated accord-
ing to the principle, structure and composition of each
controller. In addition, some elements can add additional
complexity to the controller, e.g.: (a) Linear algebraic
calculation; (b) Nonlinear algebraic calculation; (c) Inte-
gration or differentiation; (d) Discontinuous function or
absolute calculation; (e) Matrix calculation. Note that
among the above five elements, one additional element
will be assigned to one additional *.

Accuracy: Accuracy is evaluated mainly by the over-
shoots of the outputs in the results presented in the cor-
responding papers. It can be divided into five grades: (a)
above 20% (low, *); (b) 15% to 20% (lower, **); (c) 10% to
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Fig. 1 Review screening method of related references in the last decade: (a)

15% (general, ***); (d) 5% to 10% (higher, ****); and (e)
Less than 5% (high, *****). It is worth noting that some
previous research results have not been quantitatively
analyzed, so the accuracy of these control methods can
only be judged through simulation results.

Robustness: Robustness is mainly evaluated by the
output deviation of simulations and experiments in
previous studies. It is worth noting that some papers

execution procedure and (b) research statistics

don’t have quantitative analysis, so the robustness
of the control method can only be evaluated vaguely
through the characteristics and simulation results. It
can also be divided into five levels: (a) Higher than 10%
(weak, *); (b) 7.5% to 10% (Relatively weak, **); (c) 5%
to 7.5% (general, ***); (d) 2.5% to 5% (Relatively strong,
*##%); (e) Less than 2.5% (strong, *****).
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3 Operating principle and system structure

of SOFC
3.1 Operating principle of SOFC
A FC is a device that converts chemical energy into elec-
trical energy by electrochemical processes. An SOFC
has a sandwich structure that is mainly composed of an
anode, a cathode and an electrolytic layer [42]. An SOFC
can use a variety of fuels, such as hydrogen, hydrocar-
bons and carbon monoxide, while air (or oxygen) is used
as the oxidant [39]. Fuel flows in from the anode side,
while oxygen flows in from the cathode side. During the
reaction process, oxygen reacts with free electrons on the
cathode side to produce oxygen ions and flows through
the electrolytic layer to chemically react with the fuel on
the anode side to produce electric energy [49, 50]. The
operating principle of an SOFC with hydrogen as fuel is
shown in Fig. 2. The main chemical reactions are:

Anode side:

1
H, + 502 — H,O (1)
Cathode side:
1 B .
502 +2¢ — O (2)

When hydrogen is used as fuel, water is the only by-
product, and the power generation process is almost
zero-emission. Thus, hydrogen is a fuel with high elec-
trical efficiency. In practical applications, it is difficult to
apply hydrogen on a large scale because of the difficul-
ties in its production, storage and transportation [49].
Thus, methane is commonly used as fuel for an SOFC. In

0,
O~ % (oxygen)
() /8
Gas diffusion é‘ 1 s '
electrode oo’
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Fig. 2 SOFC operation mechanism
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the working process, methane is steam reformed in the
reformer to generate H, and CO, and then the H, and CO
participate in the reaction to generate electrical energy
[51]. At the same time, to eliminate the demand for exter-
nal reformers, FCs can internally reformat natural gas or
other hydrocarbon fuels to extract the necessary hydro-
gen [24]. An SOFC is usually one of two types: self-sup-
ported and externally supported. There are many papers
on SOFC geometry, but the mainstream research direc-
tion is plane and tubular geometries [52].

3.2 SOFC model
In the past decade, a lot of work has been done on on the
physical model of an SOFC. A variety of accepted SOFC
dynamic models, which are widely used in control research
on SOFC, are shown in Fig. 3, while the parameters of the
models are shown in Table 1. Here, $${V}_{\mathrm{d}\
mathrm{c}}$$ indicates the stack output voltage (V), $${P}_
{{\mathrm{H}}_{2}}$$, $${P}_{{\mathrm{O}}_{2}}$$ and
$${P}_{{\mathrm{H}}_{2}\mathrm{O}}$$ indicate the par-
tial pressures of hydrogen, oxygen, and water (Pa), respec-
tively [53]. The input hydrogen and oxygen flow rates are
represented by $${q}_{{\mathrm{H}}_{2}}*{\mathrm{i}\
mathrm{n}}$$ and $${q}_{{\mathrm{O}}_{2}}*{\mathrm{i}\
mathrm{n}}$$, respectively. To ensure the safe and stable
operation of an SOFC system, researchers mainly control
the variables such as air/fuel flow rates, current and tem-
perature to maintain the parameters such as system stack
temperature, fuel utilization etc.

Using Nernst’s equation and considering the resistance,
concentration and activation losses (i.e., Nohmics Neonc and
Nact), the stack output voltage can be expressed as:

Electrical
energy
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Fig. 3 Dynamic model of an SOFC

Ve = Vo — Nact — NMohmic — Mconc (3)
RoTo, Pu,(Po,/101325)'/2
Vo = NolEo + In 1 4
2F, Py,0 )
where pressures are:
1/Ky, 1
Py, = —— — 2K.1
=17 TH,S 1+ rfsqf D) ®)
1/Ko, 1/tH-o
Po, = — K1
O, 1+ 10,5 1+ 1 qt 1) (6)
1/Kn,0
P = —=—9K,.I
H0 1+ tH,08 ! )
and the losses are:
Nohmic = Ir (8)
Nact = 0 + Blnl 9)
RoTy I
Nconc = — 2F, ln(l - E) (10)

3.3 SOFC balance of plant
At the system level, an SOFC power system mainly
includes an SOFC stack and corresponding balance of

plant (BOP) subsystem. This has the functions of gas
transmission, heat exchange and gas treatment, as shown
in Fig. 4. A BOP subsystem can generally be divided into
fuel-processing (FPS) and thermal management subsys-
tems (TMS) [54].

3.3.1 Fuel-processing subsystem
An FPS is mainly composed of pre reformer, burner,
mixer, etc. Its main task is to convert methane into
hydrogen for the normal operation of an SOFC.
Reformer The preheated methane from the fuel heat
exchanger and a separate stream of steam are fed into
the reformer, where an endothermic reaction takes place
between CH, and H,O [55].
Reforming reaction:

CH4 + H,O — CO + 3H; (11)
Water-gas shift reaction:
CO +HyO = COy + Hy (12)

Burner In the burner, there is remaining fuel after the
stack reaction is completely burned with air, and hot gas is
then generated in the burner. At this stage, it is important
to provide extra air to completely burn the remaining fuel.
The molar flow rate after gas reaction in the burner can be
obtained as [56]:

Nowt = Nin + ) _R; (13)
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Fig. 4 Structure diagram of a typical SOFC system
Table 1 Parameters of the models of SOFC systems
Parameter Value Unit Representation
To 1273 K Absolute temperature
Fo 96485 C/mol Faraday’s constant
Ro 8314 J/(mol-K) Gas constant
Eo 1.18 V |deal standard potential
Ki 0.99 x 1073 Mol/(s-A) Constant, K, = No/4Fg
K, 832 x 1076 Mol/(s-Pa) Constant for hydrogen
Kn,0 277 x 107 Mol/(s-Pa) Constant for water
T, 26.1 S Response time of hydrogen
TH,0 783 S Response time of water
70, 291 S Response time of oxygen
TH—0 1.145 - Ratio of hydrogen to oxygen
r 0.126 - Ohmic loss
T 5 S Lime constant
a 0.05 - Tafel constant
B 0.11 - Tafel slope
IL 800 A Limiting current density

where N represents the molar flow rate, and R, represents
the electrochemical reaction rates of fluid i.

Mixer In the mixer, the gas coming from the bypass
valve is mixed with the outlet cold gas of the heat
exchanger [57].

3.3.2 Thermal management subsystem (TMS)

In the normal operation of an SOFC system, to achieve
high overall operation efficiency, the temperatures of
many key components need to be accurately controlled.
Therefore, a TMS is very important for the stable
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operation of an SOFC, and is mainly used to maintain
the temperatures of fuel and oxidant to achieve an effec-
tive chemical reaction. A TMS mainly includes heat
exchanger, air compressor, etc. [53]. Generally speak-
ing, an SOFC power generation system usually has two
heat exchangers, which are used to preheat fuel and air,
respectively. In order to reduce the temperature differ-
ence between the two at the stack inlet, the exhaust gas
in the burner can be used to heat the fuel and air [58,
59]. Assuming that the heat exchanger is a counter-flow
tube heat exchanger, part of the hot gas flow (waste gas)
from the burner flows into the outer tube while the cold
air flow (cold fuel and air) flows into the inner tube [55].

4 SOFC control

4.1 PID control

A PID controller is a linear combination of the propor-
tion, integral and differential of the deviation and the
functions of each correction link of the PID controller are:

(a) Proportional link: it reflects the deviation signal of
the control system in proportion. After the devia-
tion is generated, the controller acts immediately to
reduce the deviation.

(b) Integration link: it is mainly used to eliminate static
error and improve the error-free degree of the sys-
tem. The strength of integration depends on the
integration time constant.

(c) Differential link: it reflects the change rate of devia-
tion signal and introduces an early correction signal
into the system, so as to increase the speed of the
system and reduce the adjustment time [60].

PID control is one of the earliest control strategies. It
has a simple structure and high reliability and has been
widely used in SOFC. PID controllers are of different
types and can be divided into traditional [61-67], decen-
tralized [40], fuzzy [68], adaptive [69], robust [70, 71]
and intelligent [8]. Table 2 comprehensively summarizes
the control variables and application scenarios of all PID
control strategies and evaluates the control effect from
three aspects: complexity, robustness and accuracy.

An SOFC is a multivariable, nonlinear and strongly cou-
pled system [8, 63]. In order to pursue the best control
effect, PID control is often combined with other control
strategies. In reference [70], a multivariable robust PID
control system is proposed for a kW SOFC system. The
control strategy adopts a multi-loop feedforward/feedback
control structure to solve complex dynamic problems, and
has good robustness and dynamics for the change of oper-
ating point of the SOFC system within its working range.
Reference [8] proposes a new intelligent proportional-
integral adaptive sliding mode controller (IPI ASMC)
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with an anti-saturation compensator to deal with uncer-
tainty and actuator saturation, and reduce the influence
of current load disturbance, so as to effectively control
the output voltage of the SOFC and enhance the dynamic
performance of the system. The control system is mainly
composed of three parts: the extended state observer
(ESO) based on intelligent proportional-integral for esti-
mating the unknown state, an adaptive sliding mode con-
trol (ASMC) for compensating the estimation error of
unknown parameters, and an anti-saturation compensator
based on inverse calculation for dealing with the saturation
problem caused by input constraints. The architecture of
the controller is shown in Fig. 5, where y(¢) represents the
output voltage, V. represents the feedback output vari-
able, £(¢) represents an unknown quantity, S represents
the integral sliding surface, u,(f) represents the auxiliary
input, e,(f) and e(f) represent the integrator input and out-
put tracking errors, respectively. u (£) and u,(¢) indicate the
controlled variables before and after the saturation unit,
respectively. In addition, the continuous development of
intelligent optimization algorithms has seen them being
applied in many research fields. In reference [72], the fire-
fly algorithm is used to adjust the parameters of the frac-
tional PID controller. After algorithm optimization, the
anti-interference ability of the PID controller is enhanced,
which improves the operation reliability of the SOFC.

As the most mature control method, PID control is widely
used. Although the traditional PID control is reliable and
simple, PID cannot meet the current control requirements
because of the increased demand for accuracy in the system.
To ensure control performance, PID control is constantly
combined with other control methods. The performance of
PID control combined with other control methods is shown
in Table 3. A decentralized PID controller has the charac-
teristics of fewer setting parameters and simple design and
implementation. However, in a decentralized control struc-
ture, to ensure the stability of the system, the adjustment
of the controller is relatively loose, which affects the work-
ing efficiency of the SOFC system. Adaptive PID control
reduces the dependence on the model and enhances the
robustness of the system. However, control accuracy and
dynamic performance are reduced because of fuzzy signal
processing. Robust PID control is more conducive to keep-
ing the system running in a safe range, though the control
accuracy of the system is reduced. The combination of intel-
ligent and PID control improves the accuracy and robust-
ness of the control system, but general intelligent control
structure is complex and difficult to realize.

4.2 Adaptive control
APC generates the corresponding feedback control law
according to the detected change in the performance
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do)=I
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)=V,

ur(t) = qf
e (1)
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Fig. 5 IPI-ASMC control structure

Table 3 performance of PID control

Control methods Traditional PID

Decentralized PID  Adaptive PID

Robust PID Intelligent PID

Complexity Low (%) v

Lower (*¥) V4

General (***)
Higher (****)

Robustness Weak (¥)

Relatively weak (**) v v

General (***)
Relatively strong (****)
Strong (*****)

Accuracy Low (¥)

Lower (**) N4 v

General (***)
Higher (****)

index, to eliminate the change and achieve the desired
control goal. APC can be divided into model reference
adaptive control and self-tuning control systems.

SOEFC brings challenges to control because of its slow
dynamics, complex nonlinearity and operational con-
straints. In reference [73], an SOFC control strategy
based on APC is proposed. The main core of the con-
trol method is optimal utilization based on the safety

range of the utilization factor, in which the hydro-
gen fuel flow rate is a controllable variable. The utili-
zation factor value is used to determine the hydrogen
fuel valve, while the air valve is adjusted according to
the hydrogen fuel valve. This method can prevent the
overuse and underuse of the SOFC system, and effec-
tively improve the problem of the slow dynamics of
the SOFC system. To solve the control problem of an
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Fig. 6 Design flow chart of model-free APC strategy

SOFC system with I/O measurement data, an improved
model-free APC strategy is proposed [74]. The design
flow chart of the SOFC control system is shown in
Fig. 6, where y* is the reference trajectory, ¢ is the com-
pensation signal, [ is the current load, ¢ is the sensi-
tivity of SOFC output voltage V. to control input ¢,
and ¢ is the sensitivity of V,, to L. Further details can
be found in reference [73]. In the design process of the
controller, to maintain the fuel utilization within a safe
range, a dynamic anti-saturation compensator is used
to deal with the motion amplitude and rate saturation
of the SOFC control input.

Adaptive control with low requirements for a model
is very suitable for SOFC control because of difficulties
in obtaining accurate models of an SOFC system. A self-
tuning controller based on a neural network shows great
potential in the control of highly nonlinear and uncertain
systems. These show the great advantages of adaptive
control. However, the fuzzy signal processing and com-
putational burden of adaptive control can affect control
accuracy and dynamic performance. This needs to be
addressed.

4.3 Robust control

A ‘robust’ controller refers to the control that main-
tains the system stability and offers a certain dynamic
performance quality when there is a certain degree of
parameter uncertainty and a certain limit of unmod-
eled dynamics [75]. Robust control has always been a
research hotspot in the control field, and typical robust
control theories include H-infinity and sliding mode
control (SMC) and structural variational theory [76,

77]. Reference [78] uses a robust regulator to solve the
hypoxia problem of an SOFC system. To achieve the
thermal management of an SOFC system and improve its
performance, reference [79] designs a feedback control-
ler based on the H-infinity principle. To reduce voltage
oscillation and deviation and to keep the fuel utiliza-
tion unchanged, an H-infinity control is designed in [80]
based on the derived state-space representation of the
SOFC. Two controller design schemes are proposed in
[81], one being the robust nonlinear control strategy,
and the other the standard H-infinity method. To ensure
asymptotic stability, an interval-based SMC controller is
proposed in [82] to carefully consider the estimation of
uncertain parameters and bounded disturbances, while
a robust SMC method is proposed in [83] to achieve the
optimal operation of fuel and energy in an SOFC system.
In addition, for SOFC systems with input constraints, a
new model-free discrete-time SMC is proposed in [82] to
adjust the output voltage under load disturbance. Table 4
summarizes and evaluates previous studies on robust
controller strategies for an SOFC.

An optimal robust control strategy is proposed in [57].
It consists of three parts: an SOFC model with parameter
uncertainty, a robust optimizer, and a robust controller.
To ensure the safe operation of the system, two feedfor-
ward controllers and a robust high-order sliding mode
controller are used to control fuel utilization, air excess
coefficient and stack temperature. The control scheme is
shown in Fig. 7. The input fuel rate, the inlet air flow rate
and the opening ratio of the bypass value are employed
as the manipulated variables, i.e., u'= [u; u, u;] = [W;
W, 8]. I is the stack current, F is Faraday’s constant, N is
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Fig. 8 Control flow chart of MPC

the number of cells, ¥7,0, and x1,cH, are mole fractions
of oxygen and methane, respectively. The control strategy
can effectively maintain the safe and efficient operation of
the system.

Robust control is an effective method for solving the
problems of control object and external disturbance
uncertainty, and has attracted a lot of attention. SMC can
effectively maintain the safe operation of an SOFC sys-
tem because of its strong robustness and fast response.
However, it is difficult to apply in practice because of the
oscillation phenomenon of SMC. Although the robust
control based on H-infinity theory can improve the

anti-interference ability of an SOFC system, the control-
ler structure is complex and the control accuracy is low.

4.4 Model predictive control

MPC is a control algorithm in which a dynamic process
model is used to predict and optimize system perfor-
mance [85]. It is mainly composed of four parts: a predic-
tion model, feedback correction, rolling optimization and
reference trajectory. The prediction model predicts the
output within a future period, the rolling optimization
carries out online optimization in the finite time domain,
and the feedback correction revises the prediction model



Yang et al. Protection and Control of Modern Power Systems (2022) 7:36 Page 14 of 31

1
Y. Neen,BP
= FOPS lookup table (Neai,BP)

(Nair> Ntuclinitial

Reference Trajectory

y, (k) = (k)
b)) =0l Yy H(1—al)s

olling optimizationM in

Snten-ntenT

+Z“  [AUGk+j D]

2
u
w Input Niir, Nfucl)
onstraints it

A

Y sys
u
Output predicting Feedback
: 5 : revising line TS fuzzy -~
Wo(k4)=G(z ) A U(k+5- b/ 0 model -
Y WY AUG-1) .
Y
e Y+

L

Fig. 9 SOFC system controller structure

and improves the prediction accuracy through prediction
error feedback. During the whole action cycle, the model
output error is used for feedback correction, and is com-
pared with the reference trajectory. Rolling optimization
is then carried out, and finally the control applied to the
system at the current time is calculated. The flow chart of
classical model predictive control is shown in Fig. 8. MPC
not only has characteristics of strong robustness, good
stability, and convenient modelling but is also suitable for
dealing with the system control problem of large-scale
multivariable object input [86]. Therefore, there has been
a lot of MPC research on SOFC control, as summarized
and evaluated in Table 5. It mainly includes traditional
model predictive [87-92], data-driven predictive [86],
nonlinear model predictive (NMPC) [93-97], generalized
predictive (GPC) [98-102], constrained model predictive
(CMPCQ) [53, 103], fuzzy MPC [14], and adaptive model
predictive control (AMPC) [104].

In [100, 101], a thermoelectric decoupling method and
thermoelectric cooperative control strategy of an SOFC
system are proposed based on the transient analysis of
the power switching process with optimal operating
points (OOPs). The control strategy includes an OOPs-
based feedforward controller for thermal management,
and a GPC controller based on Takagi Sugeno (TS)
fuzzy model for power tracking, fuel shortage preven-
tion and input constraint processing. The schematic dia-
gram of the proposed controller is shown in Fig. 9, where
Gj(z_l)AL[(k +j—1), Fj(z_l) and Hj(z_l) are calculated

from the prospective control increment sequence, the
known output sequence, and the known input incre-
ment sequence separately. E{*} represents the expectation
operator, 7; represents the control weighing sequence
that limits the amplitude of the control sequence, N, rep-
resents the maximum cost horizon, N, represents the
control horizon, y(k + j) represents the predictive system
output and « is the smoothing factor.

The model of MPC is relatively easy to obtain and has
good robustness and stability, but is difficult to put into
practical use for complex dynamic problems. Because
an SOFC system is a complex system with strong cou-
pling and is multivariable, it is difficult to model. There-
fore, if the system data can be obtained effectively, the
data-driven predictive controller can have great poten-
tial. For complex systems with strong nonlinearity, it is
difficult for linear MPC to obtain a satisfactory control
effect. Therefore, NMPC is proposed to solve the control
problem of complex systems. However, the calculation
of NMPC is large, and it is difficult to obtain the model.
In addition, GPC with good control performance is not
suitable for a control system that needs a fast response
because of the large number of calculations. To ensure
the safe operation of anSOFC, a CMPC controller and
fuzzy MPC controller has been designed to solve the
problems of strong coupling and a multivariable system.
However, the structure of the former is complex and
time-consuming, while the control accuracy of the latter
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Table 6 Performance of predictive control
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Control methods MPC NMPC

Data-driven PC GPC CMPC Fuzzy MPC

Low ()

Lower (**)

Genera I(***) v

Higher (****) v
High (%)

Weak (*)

Relatively weak (**) v

Genera I(***)

Relatively strong (****) v
Strong (***%)

Low (¥)

Lower (**)

General (***) v

Higher (***¥) v
High (%)

Complexity

Robustness

Accuracy

v

is poor. The evaluation of the above predictive control
methods is shown in Table 6.

4.5 Fuzzy logic control

Fuzzy logic control (FLC) is a kind of nonlinear control,
and belongs in the category of intelligent control. A typi-
cal FLC controller is mainly composed of the following
parts: independent variable, fuzzification, rule base,
fuzzy reasoning and defuzzification. FLC first determines
the fuzzy rules according to experience and then blurs
the real-time signals. The fuzzy signals are used as input,
and the fuzzy reasoning is completed to obtain the out-
puts sent to the actuator. The structure diagram of a typi-
cal fuzzy reasoning system is shown in Fig. 10 [105].

FLC strategy can be used to control highly nonlinear,
time-varying and poorly defined systems. FLC does
not require an accurate mathematical model and has
lower cost in controller design and implementation
[106]. Therefore, FLC has attracted attention. In [106],
a fuzzy logic controller is designed for an SOFC math-
ematical model. Reference [107] puts forward a non-
linear model of SOFC transient behavior, including an
AC voltage control and active/reactive power control
strategy for the DC/AC inverter, with a designed TS
fuzzy controller for this purpose.

4.6 Fault-tolerant control

Fault-tolerant control (FTC) can work in both nor-
mal and faulty states. It is one of the feasible methods
to ensure the operational safety and reliability of an
SOEFC system. Generally, FTC can be divided into active

(AFTC) and passive fault-tolerant control (PFTC). PFTC
is based on robust control technology and does not need
any online fault information. The controller is designed
according to the predicted fault to ensure that the system
is not sensitive to a fault, so as to ensure the stability and
performance of the system. In contrast, AFTC readjusts
the parameters/structure of the controller through the
online fault diagnosis signal. In the relevant literature,
FLC, MPC and PID control are used to construct FTC
to improve the service life and load tracking ability of the
system. In Table 7, various FTC studies of SOFC systems
are summarized and evaluated.

For the FTC of an SOFC system, references [109, 110]
propose a structure of fault detection and FTC of a dis-
tributed power system to ensure safe and reliable opera-
tion. Reference [108] uses a fault-tolerant controller
to control the system temperature within the allow-
able range and maintain high fuel utilization, while [112]
designs a fault-tolerant controller based on predictive
control to improve the life and performance of the system.
In addition, reference [111] proposes an optimal fault-tol-
erant control strategy, which uses a PID control loop to
achieve optimal operation. In [113], fault diagnosis is car-
ried out using a Bayesian regularized neural network, and
then four fuzzy controllers with different input signals
are designed, consisting of system power, burner outlet
temperature slope, system power and burner outlet tem-
perature, and the system power and its differential term.
The proposed FTC strategy is shown in Fig. 11, where P,
represents system power, fi;,o represents steam flow rate,
ATstack and Ty, represent stack temperature difference
and burner outlet temperature, respectively.
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Fig. 11 FTC strategy scheme of the SOFC system

AFTC can quickly adjust the control parameters or
structure according to the fault signal to achieve rela-
tively high control accuracy. However, the structure of
AFTC is complex and the cost is high. In contrast, PFTC
is highly reliable and easy to implement, but it is difficult
to realize an efficient operation of the SOFC system.

4.7 Intelligent control

Intelligent control is an effective control strategy for
dynamic nonlinear systems. It mainly includes neu-
ral network control, fuzzy control and expert control.
An expert control system is a programmed system with
a large amount of expertise and experience. It applies
artificial intelligence and computer technologies to rea-
son and judges according to the knowledge and experi-
ence provided by one or more experts, and simulates

‘ Fault-tolerant controller

fault

the decision-making process of human experts. Neural
network control refers to the application of neural net-
work technology to identify the neural network model of
complex nonlinear objects, that are difficult to accurately
model, to be used as the system controller. Compared
with other control strategies, intelligent control can
effectively control complex systems which are nonlinear,
fast time-varying and multivariable [114, 115]. Table 8
summarizes and evaluates the literature related to intel-
ligent control in an SOFC.

References [116, 117] establish a dynamic model
of a tubular SOFC and design an artificial neural net-
work (ANN) predictive controller to achieve the ther-
mal management of the SOFC. In [114], an adaptive
constrained PID control strategy based on a radial
basis function (RBF) neural network identification and
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Fig. 12 Fuel control framework of the SOFC with the TGSL-TD3PG-tuned PID controller

dynamic anti-saturation backpropagation (BP) neural
network is proposed. The control strategy can effec-
tively control the fuel utilization and eliminate the
divergence of parameter estimation and integrator sat-
uration. To effectively control the output voltage of the
SOFC, an SOFC output voltage data-driven controller
based on multi-agent large-scale deep reinforcement
learning is proposed in [118]. In reference [119], given
the adaptability and model-free features of deep learn-
ing, an adaptive fractional order proportional integral
derivative (FOPID) controller is proposed, and an intel-
ligent algorithm is used as the tuner of the controller,
so as to ensure that the fuel utilization of the SOFC is
always maintained within a safe range. A data-driven
adaptive PID controller is designed in [120], and its
control framework is shown in Fig. 12. As shown, K,
K, and K, are the proportional, integral and differen-
tial coeflicients, respectively, while 1 and g represent
the respective integral and differential orders. A new
large-scale deep reinforcement learning algorithm is
used to adaptively adjust the baseline parameters of the
controller to improve the tracking ability of the SOFC
output voltage. This is called a two-stage training strat-
egy large-scale twin delayed deep determination policy
gradient (TGSL-TD3PQ@). The data-driven adaptive PID
controller has the advantages of being model-free, and
having a simple structure. In addition, the algorithm
adopts a two-stage large-scale training framework to
improve the robustness and adaptability of the control-
ler. The controller also benefits from the universality

of PID control with good robustness. Compared with
the traditional algorithm, although the setting time of
TGSL-TD3PG algorithm is long, the adaptive ability of
TGSL-TD3PQG is strong. This can keep the fuel utiliza-
tion within a safe range and provide satisfactory output
voltage control performance. Therefore, the control
strategy can effectively improve the load tracking ability
and prevent violations.

Compared with traditional control, intelligent control
has the ability of self-organization, being self-adaptive
and self-learning, and can effectively control complex
problems which have strong nonlinearity and coupling.
However, the structure of intelligent control is often
complex, with high requirements for the amount of
data and being time-consuming. This leads to a diffi-
culty in applying intelligent control in a practical SOFC
system.

4.8 Observer-based control

The ‘observer’ mainly refers to an algorithm that com-
bines the sensing signal with other information from the
control system to generate the observation signal. The
observer can thus be used to supplement or replace the
sensors in the control system. In addition, the observer
can also be used to improve system performance, reduce
sampling delay etc. Some researchers have proposed
observer-based SOFC control strategies [56, 121]. In [56],
a time-delay control with an observer is introduced into
the fuel supply system to improve the load tracking abil-
ity, while [121] proposes a composite nonlinear controller
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Fig. 13 Schematic diagram of SOFC control strategy based on high order sliding mode observer

based on a high-order sliding mode observer. This has
fast tracking speed and small overshoot, and the tem-
perature gradient can reach the expected value. The sche-
matic diagram of the control strategy is shown in Fig. 13,
where T," is the maximum temperature gradient, % and
y are the observed values of the state and output varia-
bles, re 2l))ectlvely G(x) is a decoupling matrix, while W(l)
and W, are the control laws of the feedback lineariza-
tion and the feedforward controllers, respectively.

Although the observer-based control method can
effectively improve the performance of an SOFC system,
it increases the complexity. In addition, the robustness
of the observer is slightly worse than that when using
Sensors.

5 Summary and conclusion

To compare and analyze the control strategy of an SOFC
system, this paper gives a comprehensive overview of
SOEFC control strategy. The control strategies are divided
into eight categories: PID, APC, MPC, FLC, FTC, intelli-
gent, and observer-based control. Each control strategy is
analyzed and evaluated comprehensively. Figure 14 sum-
marizes the advantages and disadvantages of the eight
control strategies, and the main findings/conclusions are:

(1) The PID controller has the simplest structure asso-
ciated with relatively high reliability, so is widely
used for the SOFC in practice. However, its control
accuracy is usually low and it cannot achieve a con-

sistent control performance under large variations
in operational conditions;

APC does not need an accurate SOFC model and
can maintain a satisfactory control performance
with varying operational conditions and uncer-
tainties. However, it usually has a fairly complex
structure and high computational burden, and thus
requires significant computation time;

Robust control can effectively overcome various
uncertainties of SOFC, e.g., uncertain parameters
or unmodelled dynamics, such that strong robust-
ness of the closed-loop system can be achieved.
However, over-conservativeness is generally its
inherent limitation and hence control optimality
cannot be realized;

MPC usually has a relatively high control accuracy,
and can be easily combined with neural networks to
further enhance its adaptiveness and response rate.
However, its computational burden will grow dra-
matically in the face of strong nonlinearities;

FLC simplifies the complexity of control system
design without an accurate system model, and has
great robustness and adaptability. However, FLC
lacks generalizability and is difficult to apply to
complex systems as the fuzzy rules may become
significantly complicated;

FTC is based on a specific fault detection feature
which can generally achieve high control preci-
sion, safety and reliability. However, such a control

(6)
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Fig. 14 Advantages and disadvantages of eight categories of control strategies
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framework is largely case-oriented, which usually
requires empirical information on the studied prob-
lem and thus the generalizability is often low;

(7) Intelligent control is mostly data-driven and does
not require an accurate system model. It has satis-
factory robustness and adaptability under different
operating conditions and with various uncertain-
ties. For example, simulation results of the TGSL-
TD3PG algorithm demonstrate that the setting
time of the output voltage is reduced by 45.2% while
the magnitude of maximum voltage is reduced by
30%, together with zero constraint violation for fuel
utilization. However, its practical implementation
is difficult because of the requirement for a large
amount of data and notable computation costs;

(8) An observer-based controller can rapidly estimate
system states, uncertain parameters, unmodelled
dynamics, as well as time-varying external distur-
bances, such that a consistent and robust control
performance under the scenarios can be realized.
However, the use of different types of observers
inevitably increases the overall structural complex-
ity, e.g., system order and computational burden,
and it thus requires high-performance hardware
and hinders its implementation in practice.

6 Challenges and perspectives
From this study, the main challenges of SOFC control can
be summarized as follows:

(1) The measurement of variables/parameters is essen-
tial in various control strategies as SOFC control
is highly complex, multivariable, and nonlinear.
Therefore, advanced sensors must be employed
which increases the overall costs;

(2) Most of the advanced control methods are compli-
cated and difficult to apply in practical engineering;

(3) Because of the high temperature of an SOFC sys-
tem during operation, then in order to ensure sta-
ble operation of the control system and the service
life of its various components, the operating tem-
perature of the corresponding SOFC control system
hardware must be carefully controlled with effective
heat sinks;

(4) SOEC control usually requires multiple control
goals while most of the current controllers merely
consider a few control targets. Hence, coordinated
control of different control goals is a very challeng-
ing issue for the future.

(2022) 7:36
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In view of the development and advancement of SOFC,
the following five suggestions/perspectives for SOFC
control are proposed:

(1) Hybrid PV-SOFC system control design is worth
studying, in which the required hydrogen of the
SOFC system can be directly obtained by water
electrification through the generated electricity
from PV systems, such that the overall production
costs can be reduced;

(2) Hybrid SOFC (or other FCs) and electric energy
storage systems (EESSs) can enhance the reliability
of energy supply. Advanced controller design for its
energy management system (EMS) will be a very
promising research direction;

(3) For the aforementioned controllers, their control
gains/parameters can be optimally tuned by intel-
ligent optimization algorithms to ensure control
optimality and avoid the conventional time-con-
suming trial-and-error based parameter tuning pro-
cedure;

(4) Different types of controllers can be carefully incor-
porated to construct a hybrid control framework,
such that the merits of each controller can be effec-
tively combined or their inherent demerits can be
partially/fully compensated for;

(5) Thus far, few hardware experiments or hardware-
in-the-loop (HIL) tests have been undertaken to
validate the effectiveness of advanced SOFC con-
trollers. Hence, more experiments are encouraged.
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