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ORIGINAL RESEARCH

Statistical machine learning model 
for capacitor planning considering uncertainties 
in photovoltaic power
Xueqian Fu*   

Abstract 

New energy integration and flexible demand response make smart grid operation scenarios complex and change-
able, which bring challenges to network planning. If every possible scenario is considered, the solution to the plan-
ning can become extremely time-consuming and difficult. This paper introduces statistical machine learning (SML) 
techniques to carry out multi-scenario based probabilistic power flow calculations and describes their application to 
the stochastic planning of distribution networks. The proposed SML includes linear regression, probability distribu-
tion, Markov chain, isoprobabilistic transformation, maximum likelihood estimator, stochastic response surface and 
center point method. Based on the above SML model, capricious weather, photovoltaic power generation, thermal 
load, power flow and uncertainty programming are simulated. Taking a 33-bus distribution system as an example, this 
paper compares the stochastic planning model based on SML with the traditional models published in the literature. 
The results verify that the proposed model greatly improves planning performance while meeting accuracy require-
ments. The case study also considers a realistic power distribution system operating under stressed conditions.

Keywords:  Uncertainty, Statistical machine learning, Stochastic programming, Renewable energy

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

1  Introduction
The optimal placement of distributed energy resources 
(DERs) and capacitor banks is an important issue in 
power systems. Nondeterministic characteristics of loads 
and DERs are important challenges for the economic 
and safe operation of power grids, and will greatly affect 
distribution network planning \* MERGEFORMAT [1]. 
To characterize the nondeterministic characteristics 
of power flows, the interval power flow is an effective 
method. In practical systems, uncertainty brings chal-
lenges to power grid optimization. Mathematically, the 
interval model of power grid uncertainty faces the non-
convex nonlinear programming problem, known to be 
NP-hard. Energy storage allocation has become a popu-
lar method to solve uncertainty optimization problems of 

power grids \* MERGEFORMAT [2]. An optimizing-sce-
nario model is presented to handle the uncertain power 
flow problem in [3], while power flow calculations within 
a nonlinear programming algorithm require advanced 
metering infrastructure to collect smart meter data [4]. A 
static equivalent method is proposed to meet the optimi-
zation requirements of optimal reactive power flow using 
measurements in [5], whereas in [6], a static equivalent 
model for gas networks is proposed such that electric-
ity–gas co-optimization becomes feasible in mathemat-
ics. Stochastic planning of distribution networks not 
only deals with the stochastic optimization operation 
described in the above literature but also pursues annual 
performance from the perspective of economy and 
technology.

To achieve optimal planning for distribution networks, 
uncertainty programming models are necessary, consid-
ering the uncertainties in loads and DERs. Reference [7] 
presents an uncertainty programming model for optimal 
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planning of plug-in electric vehicle charging stations, 
whereas planned energy storage based on photovoltaic 
(PV) correction is presented in \* MERGEFORMAT 
[8], which analysed the economic value of energy stor-
age. To improve frequency stability, it is suggested that 
wind power frequency regulation should be predicted \* 
MERGEFORMAT [9]. An optimal planning strategy is 
formulated to make full use of the fast-response capa-
bility of DERs in [10], while to provide reliable planning 
results for microgrids, not only the stochastic nature 
of DERs but also the operational criteria of each power 
apparatus should be considered [11]. In conclusion, the 
stochastic programming model based on the probability 
distribution function has become the main method for 
uncertainty planning of distribution networks.

It is common that probabilistic power flow (PPF) results 
are available for power system planning [12]. However, 
PPF theory faces some difficult problems. Specifically, 
the requirements of PPF algorithms include being able to 
deal with the nonlinear correlations between new ener-
gies and random loads, and not only numerical charac-
teristics but also the probability density function (PDF) 
and cumulative probability distribution function (CPDF). 
PPF algorithms should ensure the estimation accuracy 
and improve the efficiency of calculation.

Based on our previous work, this paper studies the 
application of probability, statistics and PPF theories to 
the problem of distribution network planning, subjecting 
it to uncertainties in random loads and PV generation. 
First, the combination of chance-constrained functions 
and particle swarm optimization (PSO) is used to solve 
the chance-constrained stochastic programming model 
considering PV uncertainty [13]. Second, the minimum 
load rate is considered to improve the classic loss factor 
method for estimating energy loss, which is an important 
index for the planning of distributed generation in distri-
bution networks [14]. Third, PPF calculation methods are 
presented, considering the correlation and uncertainty of 
new energy sources in power systems [15] and integrated 
energy systems [16]. Finally, PPF is used to build a sto-
chastic power system planning model as in [17].

The academic viewpoints of this paper are as fol-
lows. For power system problems with clear physi-
cal concepts and models, the data-driven method 
is unnecessary, while the black box may not lead to a 
better effect. Machine learning technology can be 
introduced to solve the problem of distribution net-
work reinforcement planning considering nonlinear 
stochastic programming. This has a detrimental effect 
on the model-driven method. The explicable charac-
ter of machine learning is of paramount importance 
in the field of artificial intelligence (AI) techniques in 
power systems. ‘Explicit’ and ‘faithful’ are two keys to 

the explainability of AI. Explicit stands for how many 
intersections exist between an explanation and the 
comprehension ability of a given group of people. The 
clearer the explanation is, the greater the intersections 
are. Faithfulness reflects the correctness of the explana-
tion, i.e., to what extent the explanation reveals the real 
mechanism of the AI system. Statistical machine learn-
ing (SML) makes full use of the explanation of mathe-
matical statistics, and this can improve the explanation 
of machine learning and break through the obstacles of 
AI application in distribution network planning. This is 
the motivation for the current paper.

The potential benefits deriving from the application of 
the proposed method can be outlined as follows.

(1)	 Deterministic planning cannot solve the uncer-
tainty problems of new energy distribution net-
works. Robust optimization is good at dispatching 
and can ensure the security of the power grid. From 
the perspective of mathematical programming, it 
can obtain the maximum economy in probability 
under the premise of high probability security using 
probabilistic planning.

(2)	 Power distribution system planning is not charac-
terized by strict time constraints, but it can signifi-
cantly improve the feasibility of complex optimiza-
tion by greatly reducing the calculation time while 
ensuring the accuracy of the planning model.

(3)	 The planning of distribution networks does not 
simply depend on the results of power flow or PPF.

It has been proven that probability theory and machine 
learning are effective methods for simulating new energy 
scenarios. However, the existing methods do not consider 
the seasonal differences of random new-energy output. 
Probabilistic power flow is considered to be an effective 
method for uncertainty analysis, but its use for uncer-
tainty planning has not been studied. This paper presents 
a methodology based on statistical machine learning in 
power distribution networks. It focuses on the context 
of active distribution networks subject to uncertainties 
due to the large penetration of distributed renewable 
generation.

The main contributions of the paper can be summa-
rized as follows.

(1)	 A SML-based capricious weather model is pro-
posed, which considers not only uncertainty but 
also seasonality. Such a model is novel and has sig-
nificance for modelling renewable energies. Based 
on the proposed weather model, the uncertainty 
simulation of annual PV power generation and 
cooling load is realized.
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(2)	 A fast calculation method is proposed to analyse the 
uncertainty of renewable energy systems, instead of 
a power flow calculation based on the maximum 
likelihood approach, singular value decomposi-
tion, and the stochastic response surface method 
(SRSM).

(3)	 A novel probabilistic programming model for 
capacitor planning, one which considers uncertain-
ties in PV generation, is proposed, and the prob-
ability information of probabilistic power flow is 
converted into constraint information of planning 
models using the central point method.

2 � Problem description
Different from the traditional passive distribution net-
works, modern active distribution networks may contain 
a high proportion of distributed PV generation. Because 
of the randomness of user behavior, heating, ventilation 
and air conditioning (HVAC) loads are uncertain. Conse-
quently, random PV output and electricity consumption 
behaviors bring bilateral uncertainty to the analysis and 
planning of distribution networks, as shown in Fig. 1.

If the uncertainty is not considered and the determin-
istic model is used to plan the distribution networks, the 
planning effect may not be optimal or even acceptable. 
Stochastic programming theory can be used to solve the 
uncertainty planning problem, while deterministic power 
flow (DPF) is not adequate for stochastic programming. 
In the solution of power system stochastic optimization 
problems, if there are insufficient scenarios, the uncer-
tainty will not be described accurately. As a result, the 
quality of the optimal solution will be harmed and the 
risk to power system operation may also increase. In 
contrast, if the number of classic scenarios is too large, 
although the accuracy of the solution can be guaranteed, 
the computational complexity of stochastic optimization 
will increase dramatically. In addition, as the efficiency of 

the solution is reduced, the problem may even become 
more difficult to solve.

3 � Methodology
To simulate stochastic optimal planning, several SML-
based simulation modules are presented, including the 
scenario model, PPF model and planning method, as 
shown in Fig. 2.

The probabilistic scenario model simulates uncertainty, 
and the simulated data sets can be obtained on both the 
generation and demand sides. The above simulated data 
sets are sent to the PPF model, which estimates power 
flow responses considering the speed-accuracy trade-off 
effect. The planning model transforms the PPF informa-
tion into probabilistic information of objectives and con-
straints for the eventual stochastic programming.

3.1 � Probabilistic scenario model
The application of SML to the PV and HVAC model 
can be divided into two steps. First, the PV and HVAC 
models are constructed using SML-based models 
instead of traditional circuit models. A weather prob-
ability model is then constructed as input to the PV 
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and HVAC models. Because of the important impact of 
weather on PV power output and HVAC load, the exist-
ing proven models are based on weather rather than 
direct probabilistic modeling of power data [18, 19]. 
The advantage for such an approach is that strict physi-
cal constraints can be placed on the PV and HVAC 
models, and the generalizability can then be guaran-
teed. The PV and HVAC models for generating power 
samples are described in Table 1.

The PV model uses the solar radiation and outdoor 
temperature to calculate the PV power, while the HVAC 
model uses thermostat temperature setpoints and out-
door temperature to calculate the power loads. The 
distribution law of thermostat temperature setpoints 
represents HVAC electricity consumption behavior.

Remark 1  As the PV model is built on SML theory 
rather than a physical model, it is essentially a statisti-
cal regression model that is used to find the relationship 
between variables, i.e., PV power, solar radiation and 
temperature. The HVAC model depends on the distri-
bution law of thermostat temperature setpoints, and the 
modeling method belongs to SML theories.

To explain the concept of the proposed method 
clearly, the existing weather probability models are 
compared in Table 2.

Given the difference between the characteristics of the 
solar radiation and temperature curves, different statisti-
cal machine learning theories are proposed.

The temperature model is introduced first, where 
the hourly temperature series is modeled as a sum of 
two components, i.e., a deterministic component that 
explains the seasonal temperature and a stochastic com-
ponent that explains predictive deviations. The determin-
istic component is modeled using nonlinear regression, 
i.e., a sum of sines, which represent the physical nature 
of the periodicity of temperature. A fit object is created 
to encapsulate the results of fitting the model specified by 
the sum of sine functions to the serial data, as:

where Tfit is a fit curve of temperature for a given hour in 
a given year, x is a vector of hourly dates, which is con-
verted into serial date numbers. ai is the amplitude, bi is 
the frequency, ci is the phase constant, and n = 2 is the 
number.

The parameters of (1) are obtained using nonlinear 
least-squares. From (1), it follows that:

where Tres is the residual, i.e., the stochastic component, 
while Traw is the observed data for a given hour in a given 
year.

The stochastic component is modeled with a seasonal 
autoregressive model with seasonal lags, such that:

where εk is the white noise, and a0, a1, …, ap are the 
regression coefficients. The coefficients of the multiple 
linear regression are solved using least squares.

In a linear model, observed values are random vari-
ables, as are their residuals. Residuals have a t-location-
scale distribution, which can be shown to provide a 
good fit, as:

where PDF (·) is a probability density function, Tres2 is 
the residual of (3), Γ(·) is the gamma function, µ is the 
location parameter, σ is the scale parameter, and v is the 

(1)Tfit =
n

∑

i=1

ai × sin(bi × x + ci),

(2)Tres = Traw − Tfit,

(3)Tres,k = a0 + a1Tres,k−1 + · · · + apTres,k−p + εk ,

(4)

PDF(Tres2) =
Ŵ

�

v+1
2

�

σ
√
vπŴ

�

v
2

� ×







v +
�

Tres2−µ
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




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2

Table 1  PV and HVAC models

Ref Model Subject SML

[17] Discrete probability distribution Consumption 
behavior

yes

[18] Equivalent thermal model HVAC no

[19] Linear regression PV yes

Table 2  Existing weather probability models

Ref Mathematical 
theory

Subject

[20] Correlation coefficient,
Nataf transformation,
Known probability 
distributions

Probability theory

[15] Copula function,
Known probability 
distributions

Probability theory

[16] Copula function,
Maximum entropy 
distributions

Probability theory and 
information theory

[17] Copula function,
Known probability 
distributions
Markov chain

Probability theory and 
stochastic processes

Proposed Nonlinear regression,
Linear regression,
Probability distribu-
tion,
Markov chain

SML
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shape parameter. These are estimated using maximum 
likelihood estimates.

Following the temperature model, the solar radiation 
model is then described. The hourly temperature sam-
ple is modeled using a beta distribution [21]:

where α and β are the shape parameters, and G and 
Gmax are the current and maximum solar radiations, 
respectively.

It is impossible to simulate seasonal characteristics 
and stochastic processes with only one probability dis-
tribution. Thus, the solar radiation model is improved 
using the Markov chain:

where pij is the one-step transition probability, pm
ij is the 

m-step transition probability, and the state is defined 
by splitting the beta CDFs of temperature samples. The 
Chapman-Kolmogorov equations provide a method for 
computing pm

ij, as:

The method of stochastic simulation of full-year solar 
radiation is as follows.

Step 1 Seasonality modeling.

•	 Divide the collected solar radiation in a given year 
into multiple seasonal intervals.

•	 Record the number where the solar radiation is not 
zero.

	 Step 2 Probability distribution estimation.
•	 Estimate the CDFs of the nonzero solar radiation 

using (5) for each seasonal interval.
	 Step 3 Seasonality modeling.
•	 Split the CDFs into several partitions for each sea-

sonal interval.
•	 Compute the Markov chain empirical probability of 

going to state (j) from state (i) via statistical CDFs.
•	 Estimate empirical discrete distributions for each 

interval on each state.
•	 Create sample state path from empirical probability.
•	 Simulate a CDF when the above empirical discrete 

distribution is used in a simulated state.
	 Step 4 Simulate solar radiation throughout the year.
•	 Generate solar radiation using the inverse of the beta 

CDF for each seasonal interval.

(5)

PDF(G) = Ŵ(α + β)

Ŵ(α)Ŵ(β)

(

G

Gmax

)α−1(

1− G

Gmax

)β−1

,

(6)Pm
ij = P

{

Xn+k = j|Xk = i
}

, m ≥ 0, i, j ≥ 0,

(7)Pm+h
ij =

∞
∑

k=0

Pm
ik P

h
kj for all m, h ≥ 0, all i, j,

•	 Replace the real nonzero solar radiation using the 
above simulated solar radiation.

•	 Connect the multi-segment seasonal simulation data 
in sequence.

Remark 2  PDF and CDF in probability theory are clas-
sical methods of uncertainty modeling for PPF calcula-
tion, but they become invalid for seasonal and dynamic 
characteristics. For modern active distribution networks, 
weather models can be simulated using an SML-based 
model, which helps improve the simulation of HVAC and 
PV.

3.2 � PPF model
A high proportion of new energies and flexible demand-
side resources make power flow uncertain, but it can be 
effectively analyzed using PPF. It is clear from numerous 
studies that PPF modeling does not need to consider the 
dynamic characteristics in either power generation or 
load demand. When PPF modeling depends on the power 
and load data calculated from the simulated weather 
data, the dynamic characteristics of weather data should 
be considered.

A series of SML algorithms, listed in Table  3, are 
adopted to calculate the PPF using the data of nonde-
terministic demand loads (HVAC loads) and DERs (PV 
power). The involved SML algorithms include principal 
component analysis (PCA), isoprobabilistic transforma-
tion, maximum likelihood estimator (MLE), singular 
value decomposition (SVD) and the stochastic response 
surface method (SRSM).

First, the isoprobabilistic transformation is adopted to 
transform the non-normal variables into standard nor-
mal variables, as:

where pi is the PV power and HVAC load, and F−1 (·) is 
the estimated inverse cumulative distribution function. 
Φ (·) is the standard normal CDF, and x is the standard 
normal variable. When the dimensionality of v is not suf-
ficiently low, the dimensionality of X should be reduced.

Second, the calculation formula of intrinsic dimension-
ality based on MLE is given by [22]:

(8)pi = F−1
i (�(xi)),

(9)d̂MLE = 1

k2 − k1 + 1

k2
∑

k=k1

dk ,
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where d̂MLE is the intrinsic dimensionality of X, k1 is 
equal to 10, k2 is equal to 20, and n is the sample size of V. 
dk(·) is the maximum likelihood estimator of the intrinsic 
dimensionality, and Tj (·) is the Euclidean distance from 
point x to the jth nearest neighbor within the hyper-
sphere centered at x.

The number of DPFs, which are inputs and outputs 
of the SRSM, is equal to the sample size of pi, which 
depends on the intrinsic dimensionality, as:

where p is the order of the SRSM and l is the sample size 
of the uncertainty variables. It generates l points between 
1 and n using:

where linespace (·) is a function that linearly generates 
spaced vectors, and ind is the serial number of scenarios 
whose size is equal to 8760. The sample size is reduced to 
X by retaining the sequence number ind. In addition, X 
becomes X1 by reducing the sample size. An important 
rule here is that the intrinsic dimension will affect the 
SRSM sample size, which is the same as the number of 
DPF calculations.

(10)dk = 1

n

n
∑

i=1

d̂k(xi),

(11)dk(x) =





1

k − 1

k−1
�

j=1

log
Tk(x)

Tj(x)





−1

,

(12)na = (n+ p)!
n!p! ,

(13)l = 2× na,

(14)ind = linspace(1, n, l)

Third, a novel dimensionality reduction method is 
introduced. SVD produces a diagonal matrix S of the 
same dimension as X so that:

where C is the covariance matrix of X, cov(·) is the covar-
iance function, and the covariance matrix U is a l × l 
matrix. S is a diagonal matrix with l rows and n columns, 
and V has dimensions of l × l. Note that V is the inverse 
of the square matrix U.

From the above equations, the constructed matrix Z is 
obtained:

where μX stands for the mean of X1, the size of μX is equal 
to the size of X1, and Z is the constructed independent 
random variable.

The importance coefficient can be calculated using:

where m is the number of uncertainty variables, i.e., the 
dimensionality of the PV power and HVAC load. The 
dimensionality of Z is reduced by retaining the d̂MLE 
dimensional importance uncertainty variables based 
on PCA theory. In addition, Z becomes X2 by reduc-
ing dimensionality, and an important rule here is that 
SVD and PCA reduce not only sample size but also 
dimensionality.

X2 should be standardized using:

where E(·) is the mean function, D(·) is the standard devi-
ation function, and ξ = {ξi}d̂MLE

i=1  is the input of the SRSM.

Remark 3  SVD can help realize the decoupling of ran-
dom variables, so independent random variables can be 
obtained. The independence is the usage premise of PCA 
for dimensionality reduction.

Fourth, a second-order SRSM is considered to compute 
PPF [23]:

(15)C = USV
T,

(16)C = cov(X1),

(17)Z = V
T × (X1 − µX),

(18)
γi =

si
m
∑

i=1

si

(19)ξ = [X2 − E(X2)]/
√

D(X2),

(20)E
(

yi
)

= a0,

(21)V
(

yi
)

=
K
∑

i=1

a2
i
+2

K
∑

i=1

a2ii+
K−1
∑

i=1

K
∑

j>i

a2ij ,

Table 3  Probability distributions for PPF estimation

SML Problem solved Application 
description

Isoprobabilistic trans-
formation

Standard normal Step 1: Convert PV and 
HVAC data into standard 
normal data

MLE Intrinsic dimension-
ality

Step 2: Calculate intrin-
sic dimensionality of 
normal data

SVD && PCA Dimensionality reduc-
tion

Step 3: Reduce dimen-
sion of normal data to 
intrinsic dimensionality

SRSM PPF estimation Step 4: Estimate PPF 
using low dimensional 
data
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where ai is an unknown deterministic coefficient of 
SRSM, V(·) is the variance function, and yi is a certain 
power flow response.

3.3 � Planning model
A stochastic programming model is proposed as follows:

where fobj(·) is the objective function, ploss is the power 
loss, S is the capacitor capacity, and S− is the upper 
boundary of the reactive capacity. num denotes the 
capacitor bus number, and numsys is the bus number of 
the power network. vi is the ith bus voltage amplitude, v_ 
is the voltage lower boundary, Pr(·) is a probability func-
tion, and α is the confidence level.

In this planning model, power system operation is bal-
anced, and power flow limits are considered in the DPF 
calculation. The formulas of power flow constraints are 
not given here. Only the formulas of bus voltage ampli-
tude constraints are shown.

Equation  (20) is used to directly calculate fobj(S,num), 
while (20) and (21) are used to calculate Pr(vi > v_) via a 
center point method, which is an SML. The limit state 
function is:

Equation  (23) is expanded into a Taylor series at the 
center point, and the first-order term is retained as:

where vi = E(vi ), C(·) is the covariance function, g(vi) is 
the mean value of g(vi) , and σ(·) is the variance function. 
The structural reliability β is obtained by dividing (25) by 
(26):

where Φ(·) is the normal CDF.

(22)

min fobj(S, num) = E(ploss)

s.t.











0 ≤ S ≤ S−

2 ≤ num < numsys

Pr(vi > v−) ≥ α

,

(23)g(vi) = vi − v−,

(24)g(vi) ≈ g(vi)+ (vi − vi)
T∇g(vi),

(25)g(vi) ≈ g(vi),

(26)σ
(

g(vi)
)

≈
√

[∇g(vi)]
TC(vi)∇g(vi),

(27)β = g(vi)
√

[∇g(vi)]
TC(vi)∇g(vi)

,

(28)Pr (vi > v−) = 1−�(−β),

4 � Simulation
First, the simulation results of capricious weather models 
are introduced. These are inputs for PV and HVAC mod-
els. PPF is then estimated using different methods, and 
stochastic optimal planning of distribution networks is 
simulated.

4.1 � Capricious weather simulation
In the simulation, annual weather data in 2015, includ-
ing temperature and the solar radiation of Beijing, is col-
lected. The data comes from [16], and the principle of 
maximum entropy (POME) distribution in [16] and nor-
mal distribution in [17] are used to verify the proposed 
temperature model. To verify the proposed solar irradi-
ance model, a beta distribution in [21] is introduced as 
a reference. The sample size of simulation is 8760. The 
characteristics of the time series are analyzed first and 
then followed by the probability characteristics of the 
simulation results. As the probability model obviously 
cannot reflect the time series characteristics, it is no 
longer necessary to analyze the time series characteristics 
of the POME distribution in [16] and the normal distri-
bution in [17].

As shown in Figs.  3 and 4, the proposed temperature 
model can simulate the stochastic time series correctly. 
The sample autocorrelation functions (ACFs) of the tem-
peratures show that the time series properties and char-
acteristics are well simulated. Descriptive statistics such 
as CDF, mean and standard deviation are introduced to 
test the probabilistic digital characteristics of tempera-
ture simulation models. As shown in Fig. 5 and Table 4, 
the normal distribution in [17] is calculated, and the pro-
posed model is accurate according to the evaluation cri-
terion of probability digital characteristics. The POME 
distribution in [16] can realize the judgment of the whole 
situation under the condition of missing data informa-
tion, i.e., the CDF can be obtained by using moments. 
The above reasons lead to the difference between the 
CDF of the POME distribution and the empirical distri-
bution function of the actual data. Lack of data informa-
tion can necessitate a POME theory.

As shown in Fig. 6 and Table 5, it can be seen that the 
simulation results of the proposed model are accurate 
according to the evaluation criteria of dynamic char-
acteristics and probability digital characteristics. The 
proposed model harnesses a Markov chain to obtain 
the dynamic characteristics of solar radiation fluc-
tuations, while the CDF data generated by the Markov 
chain can grasp the probability characteristics of solar 
radiation. In addition, reasonable division of the whole 
year can ensure the seasonality of the solar radiation 
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data. The research here does not try to demonstrate 
that the previous uncertainty models are not good. 
Rather, it shows that the novel SML weather model is 
more effective in solving PPF problems.

Discussion 1  The traditional methods in [15–17] do 
not take into account the seasonal variation of the sce-
narios, and thus lose the same data dependence perfor-
mance in the month and season dimensions. The essence 
of PPF is to estimate the probability characteristics of 
state variables. It may be considered that it is sufficient 
to estimate PPF by mastering the probability characteris-
tics of capricious weather variables. However, it is neces-
sary to include the dynamic changes in the weather for 
HVAC loads due to building thermal inertia, since not 
only the current temperature but also past temperatures 
affect the HVAC loads. The stochastic process model for 
PV generation can improve the PPF calculation results 
of distribution networks with inertia HVAC loads, while 
the stochastic process of weather conditions should 
also be considered at the same time. The proposed SML 
can model both the stochastic process and probability 
characteristics.

4.2 � PPF estimation simulation
The simulation data and parameters are elaborated 
as follows: (a) The simulated weather data in Section 
A are the input to the HVAC and PV models; (b) It is 
assumed that one 2  MW PV generation is installed at 
bus 3 in case 33 bw from MATPOWER, and the load of 
each PQ node is set to 1 kW base load plus 10 HVAC 
loads; (c) Each HVAC cools 140 areas, and other HVAC 
parameters are set according to those in [20]. The 
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Fig. 3  Temperature values simulated based on the proposed model
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Table 4  Descriptive statistics for simulated temperatures

Model Mean/°C Standard 
deviation/°C

Real 12.65 11.49

Proposed 11.76 11.68

Ref. [16] 15.58 10.64

Ref. [17] 12.71 11.29
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Fig. 6  Solar radiations simulated based on the proposed model

Table 5  Descriptive statistics for simulated temperatures

Model Mean (kW/m2) Standard 
deviation 
(kW/m2)

Real 0.16 0.24

Proposed 0.16 0.24

Ref. [17] 0.17 0.25
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probability law of customer thermostat setting is listed 
in Table 6.

In this section, MATPOWER is selected to calcu-
late DPF in a real scenario. The probability statistics of 
DPFs under 8760 scenarios can be called the full sce-
nario approach (FSA), and the results of the FSA can be 
regarded as the correct results. In addition to the FSA, 
the point estimate method (PEM) in [23] is also com-
pared with the proposed method. Time consumptions 
of the algorithms are listed in Table  7, and the listed 
CPU times can be explained by the number of scenarios 
and nondeterministic variables listed in Table 8.

Discussion 2  The calculation time of the PEM is deter-
minable. The DPF number for the proposed method is 
3.3 times that for the PEM. Note that more scenarios rep-
resent more DPF calculations and cost more CPU time, 
while the number of nondeterministic variables will not 
affect DPF calculation and its time. The calculation time 
of the proposed method depends on the nondetermin-
istic variable intrinsic dimension, which determines the 
number of scenarios. These are the key explanations for 
the time consumption of the two methods.

For the analysis of calculation accuracy, the results 
of active power loss and voltage amplitude are pro-
vided. The means and standard deviations of the PQ 
bus voltages are shown in Figs.  7 and 8, respectively, 
while the loss means are listed in Table  9. As can be 
seen, the accuracy of the proposed method is similar 
to the PEM, with the proposed method being more 
accurate for some statistical indices while the PEM is 
more accurate for other statistical indices. As shown in 

Fig. 9, the curve of the proposed method is close to the 
curve of the real results, while the curve of the PEM in 
\* MERGEFORMAT [24] is significantly biased.

A realistic power distribution system named Jiaokeng 
in Guangdong, China from [15] is included to verify the 
proposed method, as shown in Fig. 10. The voltage of bus 
0 is 10.5  kV, and the parameters of the PV and HVAC 
remain unchanged, while the samples are re-simulated. 
The means and standard deviations of the PQ bus volt-
ages are shown in Figs. 11 and 12, respectively, while the 

means of the power loss are listed in Table 10. It can be 
concluded from the results that the proposed method 
can be used in actual distribution networks.

Discussion 3  By comparing with the PEM method, the 
values of the proposed method can be summarized. (a) 
The usability of PEM depends on the correctness of the 
DPF, whose parameter errors can lead to errors in the 
PPF results. In contrast, the usability of the proposed 
method depends on the DPF data rather than the DPF 
model. As in China’s distribution networks, impedance 
parameters have not been correctly verified, and thus, the 
proposed method is needed. (b) The proposed method 

Table 6  Probability law for customer thermostat setpoints

Setpoint 
(°C)

Probability Setpoint 
(°C)

Probability Setpoint 
(°C)

Probability

16 0.01 21 0.025 26 0.2

17 0.01 22 0.025 27 0.025

18 0.01 23 0.2 28 0.025

19 0.01 24 0.2 29 0.025

20 0.01 25 0.2 30 0.025

Table 7  Time consumption of the algorithms

Method Scenario 
reduction (s)

SRSM (s) PEM (s) DPF (s) Total (s)

FSA 0.00 0.00 0.00 106.21 106.21

PEM 0.00 0.00 0.22 1.16 1.39

Proposed 1.54 0.05 0.00 0.24 1.83

Table 8  Number of scenarios and nondeterministic variables

Method Number of scenarios Number of 
nondeterministic 
variables

FSA 8760 33

PEM 66 33

Proposed 20 3
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Fig. 7  Mean value of the elements in bus voltage profiles
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has an advantage over the PEM in estimating the CDFs of 
power flow responses, since the CDF information of the 
PEM is from moments while for the proposed method, 
it is from power flow responses. (c) Both the PEM and 
proposed methods cannot exactly match the real results, 
while the extraction of key information based on SML 
also results in information loss. However, as the accuracy 
is guaranteed and the efficiency is greatly improved, the 
proposed method has application value and is consist-
ent with the idea that machine learning should balance 
robustness and bias.

4.3 � Stochastic programming simulation
This part of the simulation demonstrates the PPF-based 
power planning solution, to show the practical engineer-
ing significance of PPF calculation. It verifies the con-
servatism of inequality probability inequality (PI) theory 
in [17]. Being too conservative will lead to an insufficient 
economy, which is the motivation of this paper. To ver-
ify probability inequality, 8760 DPFs are calculated for 
the whole year, and the simulation results are listed in 
Table 11.

The fundamental purpose of the proposed method is 
to reduce the computing time of objective and constraint 
functions for each group of solutions. The essence of an 
efficient planning model is that its calculation efficiency 
is greatly improved under the premise of small calcula-
tion accuracy loss. A given planning scheme is used to 
verify the proposed method, as shown in Table  12 and 
Fig. 13.

Note that the SML does not blindly pursue the small 
deviation but also balances the deviation and generaliz-
ability. The proposed PPF method reduces 8760 scenarios 
to 20, and the central point method uses only mathemati-
cal expectations and variances. After these two steps, 
the calculation efficiency has been greatly improved. 
Although the calculation accuracy is slightly reduced, 
the feasibility and efficiency of the planning solution are 
guaranteed. Conservatism of the central point method 
is better than probability inequality and can be used in 
planning. The PSO algorithm in [17] is used to solve 
the proposed programming model, and the simulation 
results are listed in Table 13. As can be seen, compared 
with the total loss in Table 9, the optimum total loss in 
Table 13 is much smaller.

Table 9  Means and standard deviations of loss (MW)

Method Mean

FSA 0.0619

PEM 0.0614

Proposed 0.0608
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Fig. 9  CDFs of the total losses for different methods

Fig. 10  Single-line diagram of the real power system
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Fig. 11  Mean value of the PQ bus voltages
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Fig. 12  Standard deviation of the PQ bus voltages

Table 10  Means of the power loss (MW)

Method Mean

FSA 0.022

PEM 0.020

Proposed 0.018
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A real 41-bus distribution network in Guangdong, 
China is included to verify the proposed method. The 
planning scheme remains unchanged except for changing 
the voltage lower limit to 0.9 p.u. Bus voltage qualifica-
tion probabilities are shown in Fig. 14, the fitness value of 
global optimal solution is shown in Fig. 15, and the plan-
ning results are listed in Table 14. As shown, compared 
with the total loss in Table 14, the optimum total loss in 
Table 10 is much smaller. Thus, the proposed method can 
be used for planning actual distribution networks.

The innovation of this paper is to establish an effi-
cient planning model rather than PSO (i.e., a mathe-
matical programming solver), and thus, its contribution 
is to improve the accuracy and efficiency of calculating 
a feasible solution via improving the planning model 
rather than improving a mathematical programming 
algorithm.

Discussion 4  Smart grid planning has economic and 
technical indicators. In terms of economic indicators 
(such as network loss), mathematical expectation can 
be used as an effective measure. For the technical index 
(such as voltage deviation), the boundary condition of the 
index rather than the probability characteristic is a prob-
lem of concern. Thus, PPF calculation results can be used 
directly for economic indicators, but it becomes chal-
lenging to apply them to technical indicators. Although 
it is feasible to transform the PPF probabilistic informa-
tion into boundary information, the conservatism of 
the transformation results is natural regardless of the 
adopted mathematical theory. It is reliable to apply PPF 
to stochastic programming via the central point method, 
which limits the probability of unqualified voltage devia-
tion to a certain range.

Table 11  Simulation results using theory in [17]

Item Value

Planning location Buses 7 and 8

Planning capacity [100 kVAr, 100 kVAr]

Voltage qualification limits [0.9 p.u., 1.1 p.u.]

Worst bus probability for FSA 1

Worst bus qualification probability for PI 0.9223

Table 12  Simulation results using the proposed method

Item Value

Planning location Buses 7 and 8

Planning capacity [100 kVAr, 100 kVAr]

Lower voltage limit 0.95 p.u

Cost time for FSA 220.2490 s

Cost time for the proposed method 0.6190 s

Objective function for FSA 0.0525 MW,

Objective function for the proposed method 0.0513 MW
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Fig. 13  Bus voltage qualification probabilities for different methods

Table 13  Optimum planning results

Item Value

Reactive capacity boundary 0–5000 kVAr

Number of particles 20

Number of iterations 10

Optimum planning location Buses 8 and 30

Optimum planning capacity [478 kVAr, 935 kVAr]

Objective function 0.0066 MW

Lower voltage limit 0.95 p.u

Worst bus confidence level 0.9984

Planning solution time 260 s
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Fig. 14  Bus voltage qualification probabilities
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5 � Discussion
The uncertainty of renewable energy can cause prob-
lems in the operation and planning of electric distri-
bution networks. Existing literature has highlighted 
probability theory in dealing with such uncertainty, 
and recent research demonstrates that a probability 
model can deal with the uncertainty of the distribu-
tion networks well when there are only small numbers 
of renewable energy plants. However, it becomes very 
complex, time-consuming and error-prone to develop 
and infer the stochastic planning model of distribu-
tion networks based on statistics. With large num-
bers of renewable energy plants, modeling uncertainty 
becomes complex and cannot be handled by traditional 
methods. SML is oriented to algorithms and attaches 
importance to prediction results. From the study, it can 
be concluded that the SML-based planning model has 
good controllability and scalability, and can overcome 
the limitations of the traditional statistical model devel-
opment and inference algorithms in distribution net-
work stochastic planning, thus realizing the in-depth 
development of SML in the field of renewable energy 
integration.

6 � Conclusions
A distribution network with large penetration of new 
energy is a large-scale high-dimensional dynamic sys-
tem with nonlinear, uncertain and complex character-
istics. High-dimensional nonlinearity and uncertainty 
bring difficulties and challenges to the refined analysis of 
operating performance and optimal planning solutions in 
distribution networks. In this paper, statistical machine 
learning techniques are introduced to carry out multi-
scenario based probabilistic power flow calculations and 
are applied to the stochastic planning of distribution net-
works. An SML-based capricious weather model is estab-
lished to improve accuracy, and a series of techniques 
are adopted to promote the efficiency of PPF estima-
tion with the PPF probabilistic information transformed 
into boundary information for the eventual stochastic 
programming. Both the IEEE 33-bus system and a real 

distribution network are studied to validate the proposed 
method. Simulation results show that the proposed SML-
based planning model performs better than traditional 
statistical models and algorithms in distribution network 
stochastic planning. Thus, the SML-based planning is 
adequate and has the potential for practical application.
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