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Small signal stability enhancement of a large 
scale power system using a bio‑inspired whale 
optimization algorithm
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Abstract 

A whale optimization algorithm (WOA)-based power system stabilizer (PSS) design methodology on modified single 
machine infinite bus (MSMIB) and multi-machine systems to enhance the small-signal stability (SSS) of the power 
system is presented. The PSS design methodology is implemented using an eigenvalue (EV)-based objective func-
tion. The performance of the WOA is tested with several CEC14 and CEC17 test functions to investigate its potential 
in optimizing the complex mathematical equations. The New England 10-generator 39-bus system and the MSMIB 
system operating at various loading conditions are considered as the test systems to examine the proposed method. 
Extensive simulation results are obtained which validate the effectiveness of the proposed WOA method when com-
pared with other algorithms.
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1  Introduction
It is well-known that a power system is a practical exam-
ple of a highly non-linear interconnected system formed 
by a number of transmission lines, switchgear equipment, 
various generators with diversified configurations, and a 
variety of loads. Increasing electrical energy demand has 
led almost all power grids to operate at their stability lim-
its. Under such highly stressed conditions, the nonlinear 
behavior of the system is more pronounced by small dis-
turbances. The Power System Stabilizer (PSS) has been 
developed as a supplementary controller to produce the 
necessary damping torque to suppress electromechani-
cal oscillations in the range of 0.1–1.5 Hz originated from 
small disturbances [1].

The role of the PSS in coordination with the excitation 
system in a generator is illustrated in [2–8], while many 

classical PSS design techniques on various scenarios have 
been developed after the realization of the role PSS role 
in the power system. Such techniques include the pole 
placement technique [9, 10], sliding mode approach 
[11–14], linear quadratic regulator [15, 16], H − ∞ tech-
nique [17, 18], and fuzzy logic [19, 20]. The design of a 
PSS using the above-mentioned conventional methods 
for single machine and multi-machine interconnected 
systems of highly varying loading conditions is tedi-
ous, requires extensive expertise, and consumes much 
computational time. Many mathematical calculations 
and several parameters are required to design the PSS 
parameters for such a highly non-linear, time-varying, 
and complex large scale power system. In addition, the 
design of a PSS using conventional techniques for the 
multi-machine power system, one that always operates 
at variable loading conditions is a complex process. In 
recent decades, heuristic search algorithms have evolved 
and have proven their significance in solving complex 
problems, optimizing design parameters, and minimizing 
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the cost of fuel. PSS design using heuristic algorithms can 
reduce the above- mentioned drawbacks.

Extensive literature is available on the methods of PSS 
design for the single machine and multi-machine power 
systems including-Tabu search [21, 22], and algorithms 
such as genetic [23, 24], particle swarm optimization 
(PSO) [25–29], differential evolution (DE) [30, 31], hybrid 
differential evolution [32, 33], chaotic swarm optimization 
[34], fire-fly [35], harmony search [36], bacterial foraging 
search [37], cuckoo search [38], bat [39, 40], gravitational 
search [41], and grey wolf [42] algorithms. The above PSS 
design techniques, implemented on single and multi-
machine systems have proven their efficacy in improving 
the small-signal stability of the power system. However, 
some drawbacks and limitations have also been observed 
including lack of fast convergence, the need for large num-
bers of design parameters, and not maintaining a good 
balance between the exploitation and exploration stages. 
To address these issues, a Whale Optimization Algorithm 
(WOA) is implemented in this paper on single machine 
and large scale multi-machine systems to design the PSS 
parameters. Recently, WOA [43, 44] has been developed 
based on the hunting strategy of the humpback whale. 
The advantage of the WOA is the maintenance of a good 
balance between exploitation and exploration stages to 
identify the best global solution, while very few numbers 
of control parameters are required to. Compared to other 
heuristic search algorithms the number of steps involved 
in the evolving process and the rate of the convergence in 
the WOA are also improved. To validate the performance 
of the WOA, it is tested on various CEC 14 and CEC 17 
test functions before designing the PSS parameters. Two 
test cases working with various loading conditions under 
several disturbance conditions are considered in the design 
of the PSS parameters using WOA. The first test case is the 
recently developed MSMIB system which is the modified 
version of the SMIB system. This takes the transformer 
secondary bus voltage of the generator side, instead of an 

infinite bus voltage. The details of this model are illustrated 
in [44]. The well-known IEEE New England 10-generator 
39-bus MM test system is considered as the second test 
case to design the PSS parameters using the WOA.

The remainder of the paper is as follows: the test sys-
tems considered are described in Sect. 2, while the struc-
ture of the PSS and formulation of the objective function 
for the PSS design are provided in Sect.  3. PSS design 
using the WOA is described in Sect. 4, and in Sect. 5, the 
performance analysis of the WOA on CEC 14 and CEC 
17 test functions is presented. Simulation results are pre-
sented in Sect. 6 and finally, Sect. 7 draws the conclusion.

2 � Systems under consideration
2.1 � Case 1: MSMIB system
For a stability investigation, power system compo-
nents, for example, synchronous generators, exciters, 
and transmission networks are required to structure 
proper dynamic models. A unique model of the power 
system, one which consolidates all the elements of the 
system, is represented by the SMIB system, which is 
modelled as the K-constant model or HP model. This 
model has become very familiar to those studying SSS 
issues in a power system. Numerous controllers have 
also been developed for this model to investigate the 
small-signal stability behavior [45]. A, modified ver-
sion of this model is developed which gives similar 
performance to the Heffron Phillip’s (HP) model and 
is called the Modified HP model (MHP). In this study, 
the PSS designed on the MHP model is considered as 
MPSS and on the multi-machine system is considered 
as PSS. It is created by taking the generator side trans-
former secondary bus voltage as the reference rather 
than considering an infinite bus voltage. One line dia-
gram for the MSMIB system is shown in Fig. 1 and the 
block diagram of the MHP model is represented in 
Fig.  2. Table  1 depicts the loading conditions consid-
ered for case 1.

Fig. 1  One line diagram of the MSMIB system
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2.2 � Case 2: The New England 10‑generator 39‑bus system
This test system [46] is the second case study for the 
design of PSS. Optimal tuning of PSS parameters for 
the test case is carried out using the proposed tech-
niques. Various disturbances are created on the system 
to investigate the performance of the proposed tech-
nique. The block diagram of the New England 10-gen-
erator 39-bus system is shown in Fig. 3.

3 � PSS structure
It is well-known that a complex interconnected power 
system is always subjected to various types of dis-
turbances. Maintaining system stability under such 

conditions is a crucial task for the operation engineers. 
PSS has developed as the supplementary controller to 
the excitation system to provide the required damping 
to mitigate the oscillations originatig from the distur-
bances. Typically, the PSS is formulated by three impor-
tant blocks namely, the phase compensation, washout, 
and gain blocks. The damping performance of the system 
is affected by the contribution of each block. The phase 
compensation block acts as a lead-lag compensator, the 
wash out block acts as the high pass filter, and the gain 
block provides necessary gain value to damp the oscilla-
tions. The transfer function of the PSS is represented as

here Vs is the output from the PSS, Kpssi is the gain value 
of the PSS, subscript ’i’ represents the ith machine, Twi is 
the time constant of the washout block, T1i, T2i, T3i, and 
T4i are the phase compensation blocks’ time constants 
and Δωi is the speed deviation of the ith machine. It has 
been shown in the literature that the performance of the 
PSS for any test system can be significantly affected by its 
parameters. Thus the proposed algorithm is developed 

(1)

VS = KPSSi

sTWi

1+ sTWi

[

(1+ sT1i)(1+ sT2i)

(1+ sT3i)(1+ sT4i)

]

�ω1(s)

Fig. 2  Block diagram of the MHP model

Table 1  Loading conditions considered for case 1

Loading 
condition

Xe Pt Qt

1 0.3-Higher loading 1 0.2

2 0.4-Nominal loading 0.8 0.41

3 0.8-Weak loading 1 0.5

4 Lead.P.F loading 1 − 0.5
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to properly design the parameters using the mentioned 
objective function for all the case studies.

3.1 � Formulation of the EV‑based objective function for PSS 
design

The single objective function for the design of the PSS is 
formed by combining two independent objective func-
tions to place the lightly damped and unstable EVs of the 
system into the required s-plane regions. Figure 4 repre-
sents eigenvalue regions of the EV-based objective func-
tion. The first objective function is represented as

where Np is the total number of loading conditions con-
sidered for the optimization process, σi is the real part of 
the ith eigenvalue of the system and σ0 is a constant value 
of the expected damping factor and is chosen as − 1.5. 
The real parts of poorly damped EVs of the system will be 
improved when the PSS is designed using the objective 

(2)min Ja =

NP
∑

j=1

∑

σi≥σ0

(σ0 ≥ σi)
2

function. Hence the EVs will move to the left region of 
the imaginary axis as shown in Fig.  4a. The damping 
ratios of the lightly damped oscillating modes of the sys-
tem will be improved, if the second objective function is 
considered alone. This is represented as

where ζi is the damping ratio of the ith EV of the sys-
tem, ζ0 is a constant value of the expected damping ratio 
and is considered to be greater than 0.3. The EVs will be 
pushed into the wedge shape sector of Fig. 4b, when the 
PSS parameters are optimized based on this objective 
function. The advantage of this objective function is that 
the damping ratio of the low damped EVs of the system 
can be improved. Finally, the desired objective function 
is constructed by combining the two objective functions 
into one by assigning a weighting factor-C, used to offset 
the weights of Ja and Jb as the value of c is chosen as 10 
[22].

(3)min Jb =

Np
∑

j=1

∑

ζi≥ζ0

(ζ0 − ζi)
2

Fig. 3  Block diagram of the New England 10-generator 39-bus system
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Thus, all the poorly damped eigenvalues will be shifted in 
the marked regions as shown in Fig. 4c, when JI is used.

4 � PSS design using WOA
The WOA was developed by Seyedali Mirjalili in 2016, 
by observing the hunting strategy of Humpback whales. 
Humpback whales, when attacking targets, follow a spe-
cial type of hunting technique which is known as the 
bubble-net feeding method. In this technique, the whales 
create two types of mechanisms to reach the target, i.e.,: 
a shrinking encircle mechanism and a spiral mechanism. 
The WOA has been developed based on these two hunting 
mechanisms and it has several advantages over other meth-
ods. The biggest advantage of the WOA is that only one 
design parameter (a) is required for the optimization pro-
cess [43]. This is fewer than other PSO and DE algorithms. 
The convergence rate of the WOA is superior and the num-
ber of steps required in the WOA is also fewer than PSO 
and DE. After initialization of the design parameters, PSO 
requires an update of the position and velocity for each 
particle. For DE algorithm, crossover and mutation steps 
are required for the optimization process. For any optimi-
zation algorithm, exploration and exploitation are the two 
important stages upon which the convergence of the opti-
mal solution depends. The exploration stage is to get the 

(4)JI = Ja + cJb

(5)JI =

Np
∑

j=1

∑

σi≥σ0

(σ0 − σi)
2 + C

Np
∑

j=1

∑

ζi≥ζ0

(ζ0 − ζi)
2

global best solution and the exploitation stage is required 
to get the local best solution. Achieving a good balance 
between the two stages is the most challenging task for an 
optimization algorithm because of the stochastic nature of 
the algorithm. If an algorithm can succeeded in obtaining 
a good balance between the two, the optimal solutions can 
be found. As the WOA has been more successful in main-
taining a good balance between the exploitation and the 
exploration stages than the other algorithms [43], it is used 
here for the design of the parameters of the PSS for the test 
cases.

4.1 � Steps involved in the WOA algorithm
In the WOA, the steps of the hunting strategy of the whales 
are listed as:

4.1.1 � Step 1: Initialization
To start the optimization process, PSS parameters are 
selected as control variables and their ranges with mini-
mum and maximum values are listed in Table 2. The num-
ber of iterations taken as 100, and the population size is 
selected to be 40. The initial solutions are randomly gener-
ated by using the expression given as:

where ’X’ is the control variable, and Xj
min and Xj

max are 
its minimum and maximum values, respectively. j = 1, 
2,…, N, where N is the number of control variables, and 
i = 1, 2, 3, …, NP, where NP is the population size, rand 
€[0, 1] is a random number that changes between 0 and 1. 

(6)X0

ji
= Xmin

j + rand.
(

Xmin

j − Xmax

j

)

Fig. 4  Eigenvalue regions of the EV-based objective function

Table 2  Ranges of control parameters to be evolved

Loading condition-1 Loading condition-2 Loading condition-3 Loading condition-4

10 ≤ Kpss ≤ 100 10 ≤ Kpss ≤ 100 10 ≤  Kpss ≤ 100 10 ≤  Kpss ≤ 100

0.001 ≤ T1 ≤ 1 0.001 ≤ T1 ≤ 1 0.001 ≤ T1 ≤ 1 0.001 ≤ T1 ≤ 1

0.001 ≤ T2 ≤ 1 0.001 ≤ T2 ≤ 1 0.001 ≤ T2 ≤ 1 0.001 ≤ T2 ≤ 1

0.001 ≤ T3 ≤ 1 0.001 ≤ T3 ≤ 1 0.001 ≤ T3 ≤ 1 0.001 ≤ T3 ≤ 1
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All the tuneable parameters are selected with their ranges 
and randomly generated using (16).

4.1.2 � Step 2: Determination of EV‑based objective function
To place the EVs in pre-determined regions, the EV-based 
objective function described in Sect.  3 is used. After ini-
tial solutions of the PSS are randomly generated, the Sim-
ulink models of the test cases in the MATLAB program are 
called and then the EVs of the test systems are determined. 
The EV-based objective function for the given population 
size s then found, and the EV-based objective function is 
determined for both test cases working with various oper-
ating conditions.

4.1.3 � Step 3: Updating hunting agent path using shrinking 
encircling mechanism

After determining the objective function, updating the 
hunting agent process using the WOA is imitated. All the 
PSS parameters are treated as hunting agents in the opti-
mization process. When the location of the target is iden-
tified, the hunting agent updates its posture by using this 
mechanism to reach the prey. Since the best solution is not 
obvious, WOA assumes that the current solution is the 
optimum solution and updates its position using:

where �S is the distance between the whale and target, �R 
and, �A are the coefficient vectors, t is the current itera-
tion, P* corresponds to the optimum solution attained up 
to now, and �P stands for the position vector.; || represents 
the absolute value, and ’.’ is the multiplication of elements 
to elements. The vectors �A , and �R are characterized as:

(7)�S =
∣

∣

∣

�R · �P ∗ (t)�P(t)
∣

∣

∣

(8)�P(t + 1) = �P∗(t)− �A · �S

(9)�A = 2�a · �r − �a

(10)�R = 2 · �r

where �A is a random value that decreases from 2 to 0 dur-
ing the optimization process and �r is an arbitrary number 
that varies between (0and,1). In every iteration process, 
the values of a, A, R are updated for each hunting agent. 
The present hunting agents update their locations by (7), 
but if the value of �A  is less than 1, the following are used 
instead:

(11)�S =
∣

∣

∣

�R · �Prand − �P
∣

∣

∣

(12)�P(t + 1) = �P∗(t)− �A · �S

Fig. 5  Flowchart for WOA to design the PSS parameters

Table 3  Design parameters of optimization algorithms

#Algorithm# Parameters

PSO Number of generations = 100
Population size = 50
C1 = 2, C2 = 2
Weighing factor, w = (0.9–04)

DE Number of generations = 100
Population size = 50
Mutation constant, F = 0.5
Cross over constant, C.R = 0.8

WOA Number of generations = 100
Population size = 50
Constant, a = varies between 2 and 0
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where �ω is a position of the whale selected randomly 
from the present population.

4.1.4 � Step 4: Updation of hunting agent path using a spiral 
mechanism

In this step, the hunting agents follow in a spiral-
shaped path to reach the target. To simulate the spi-
ral-shaped track between the whale and target, a spiral 
equation is formulated. All the hunting agents update 
their position based on the formulated equations as:

where

Here ’l’ is a stochastic limit that diverges between 0 and 1.
The shrinking encircle itinerary and spiral itinerary 

are merged by giving 50% probability to each of them 
to update the positions of the hunting agents to reach 
the prey as:

(13)�P(t + 1) = �S′ebl · cos(2
∏

I)+ �P ∗ (t)− �A · �S

(14)�S =
∣

∣

∣

�P∗(t)− �P(t)
∣

∣

∣

(15)

�P(t + 1) =

{

�P ∗ (t)− �A · �S if δ∠0.5
�S′ebl · cos(2

∏

I)+ �P ∗ (t)− �A · �S if δ ≥ 0.5

where δ is an arbitrary number that varies between 0 to 1.
The flowchart for the WOA to design the PSS 

parameters is depicted in Fig. 5, which describes vari-
ous steps involved in the WOA. It starts with the ini-
tialization of the PSS parameters with their minimum 
and maximum values, and then leads to the genera-
tion of initial solutions, determination of the objective 
function, optimization of the PSS parameters accord-
ing to the mechanisms mentioned above, and stopping 
criteria of the algorithm when the number of genera-
tions is completed. Table  3 shows the design param-
eters of the optimization algorithms.

5 � Performance analysis of WOA
Many complex test functions are tested with the pro-
posed WOA to prove its performance in finding the 
global solution, and the test results for CEC 14 and CEC 
17 functions are displayed in Tables  4 and 5 respec-
tively. CEC14 test functions,e.g., High Conditioned 
Elliptic, Discuss, Rosenbrocks, Weierstrass, Griewanks, 
Rastrigins’s, Katsuura, Happy Cat, and Griewanks plus 
Rosenbrocks Functions are with the proposed WOA. 
The test results are also compared with PSO and, DE 
algorithms. As shown in Table 4, the results show that 
the WOA is succeeded in finding the global best fit-
ness values for all test functions better than the other 
algorithms.

Table 5  Test results of CEC 17 test functions

S. nos. Name of the function Order of the 
function

WOA DE PSO
Fitness value

1 Bent Cigar function f1(x) 4.0897 e−88 3.3893 e−04 1.9313 e−15

2 Sum of differential power function f2(x) 99.515675945535875 99.5157 99.5157

3 Zakharov function f3(x) 9.5876 e−80 4.1649 e−09 2.7229 e−06

4 Rosenbrocks function f4(x) 1.1866 e−06 3.0034 e−03 1.6720 e−02

5 Rastrigins’s function f5(x) 1.3548 e−80 5.6960 e−05 0.001.2 e−03

6 Expanded Schaffers function f6(x) 0.0097 0.0065 0.0532

7 Lunaeek bi-Rastrigin function f7(x) 2.7252 e−07 0.0373 0.1205

8 Levy function F8(x) 70.0737 e+00 70.3698e+00 78.0292e+00

9 Modified Schwefel’s function F9(x) 4.1183e+06 4.1479e+06 4.1482e+06

10 High conditioned elliptic function f10(x) 3.5101 e−80 3.5632 e−04 1.6684 e−80

11 Discuss function F11(x) 1.7573 e−73 8.6146 e−13 3.1554 e−22

12 Ackley’s function F12(x) 1.6556e+002 1.6587e+002 8.5076e+00

13 Weierstrass function F13(x) 9.441375732713 e−03 9.441375732812 e−03 9.441375733129 e−03

14 Griewanks function F14(x) 5.6654 e−08 0.3131 e−04 1.0852 e−07

15 Katsuura function f15(x) 1.7937 e−10 4.4305 e−10 1.7377e−10

16 HappyCat function f16(x) 1.7126 e−04 0.9555 1.6875 e−08

17 HGBat function f17(x) 2.7428 e−06 2.5256 e−03 8.2076 e−04

18 Expanded Griewanks plus Rosen-
brocks function

f18(x) 63.6412 4.5131 7.9816

19 Schffer’s function F19(x) 0.1606 0.0090 0.4613
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Similarly, the CEC17 test functions are such as Ras-
trigins’s, Lunaeek bi-Rastrigin, Ackley’s Function, Grie-
wanks, HG Bat, Griewanks plus Rosenbrocks and 
Schffer’s functions are tested with the proposed WOA to 
derive the best fitness value. The test results prove that 
the WOA can derive the best i.e. better than the other 
algorithms. The convergence plots of CEC14 and CEC 
17 functions are shown in Fig.  6. From these results, it 
can be seen that WOA performed better in deriving the 
global best fitness values than the other algorithms.

6 � Simulation results and discussions
6.1 � Case 1
The WOA and DE algorithms are run several times con-
sidering the new objective function. Evolved PSS param-
eters for four loading conditions are listed in Table 6. The 
following disturbances are considered to test the efficacy 
and vigor of the proposed WOA-MPSS.

	 i.	 10% step change at Vref

	 ii.	 10% step change at �Tm

Table 4  Test results of CEC 14 test functions

S. nos. Name of the function Order of the 
function

WOA DE PSO
Fitness value

1 High Conditioned Elliptic function f1(x) 3.5101e−80 3.5632 e−04 1.6684 e−80

2 Bent Cigar function f2(x) 4.0897e−88 3.3893e−04 1.9313e−15

3 Discuss function f3(x) 1.7573 e−73 8.6146 e−13 3.1554 e−22

4 Rosenbrocks function f4(x) 1.1866 e−06 3.0034 e−03 1.6720 e−02

5 Ackley’s function f5(x) 4.4409 e−14 4.4409 e−14 4.4409 e−14

6 Weierstrass function f6(x) 9.441375732713 e−03 9.441375732812 e−03 9.441375733129 e−03

7 Griewanks function f7(x) 4.6928 e−08 7.0573 e−07 4.2514 e−06

8 Rastrigins’s function f8(x) 1.3548 e−80 5.6960 e−05 0.001.2 e−03

9 Modified Schwefel’s function f9(x) 0.0073 0.0038 0.0083

10 Katsuura function f10(x) 1.7937 e−10 4.4305 e−10 1.7377 e−10

11 HappyCat function f11(x) 1.7126 e−04 0.9555 1.6875 e−08

12 HGBat function f12(x) 2.7428 e−06 2.5256 e−03 8.2076 e−04

13 Expanded Griewanks plus Rosen-
brocks function

f13(x) 63.6412 4.5131 7.9816

14 Expanded Schaffer’s function f14(x) 0.009.7 e−03 0.006.5 e−03 5.32 e−02

Fig. 6  Convergence plots of CEC14 and CEC 17 functions
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The simulation plots are shown in Fig.  7 for distur-
bance of 10% step change at Vref  and Fig. 8 for the distur-
bance of 10% step change at �Tm for the four operating 
conditions. The plots represent system responses for 
the conventional design of PSS (MPSS), PSO-based 
MPSS (PSO-MPSS), PSO-PID-based MPSS (PSO-PID-
MPSS), and WOA-based MPSS (WOA-MPSS). The 

plots obtained using the ISE objective function by PSO 
and PSO-based PID are compared with the WOA and 
DE based PSS which are tuned with the EV-based objec-
tive function. The reason behind using the EV-based 
objective function is that it can relocate the unstable and 
lightly damped poles into the desired locations. From 
the results, it can be seen that that the intensity of the 

Table 6  Evolved Parameters of PSS for the four loading conditions

Loading conditions #Algorithm# PSS parameters

Kpss T1 T2 T3 T4

1 WOA 42.33 0.1053 0.0247 0.0481 0.0192

DE 39.2799 0.1004 0.02330 0.0499 0.0210

PSO 40.9652 0.1001 0.0257 0.0120 0.0251

MPSS 13.00 0.0952 0.0217 0.0952 0.0217

2 WOA 43.125 0.129 0.031 0.0601 0.0301

DE 39.2597 0.113 0.028 0.0505 0.029

PSO 40.6325 0.1011 0.0284 0.0101 0.0284

MPSS 13.00 0.0952 0.0217 0.0952 0.0217

3 WOA 39.789 0.0124 0.0119 0.0348 0.0147

DE 39.2799 0.1004 0.0233 0.0499 0.0210

PSO 25.025 0.1000 0.0232 0.1110 0.1240

MPSS 13.00 0.0952 0.0217 0.0952 0.0217

4 WOA 41.0215 0.1124 0.0214 0.0487 0.0412

DE 39.2597 0.1130 0.0280 0.0505 0.0340

PSO 40.0257 0.251 0.0284 0.3000 0.0284

MPSS 13.00 0.0952 0.0217 0.0952 0.0217

Fig. 7  System response plots for the disturbance of 10% step change at Vref
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oscillations has been minimized with the WOA-MPSS. 
The time taken for the oscillations to settle down is also 
reduced with WOA-MPSS when compared to other sta-
bilizers in all cases. Hence it is concluded that the pro-
posed WOA-MPSS tuned with the EV-based objective 
function shows superior performance over the MPSS, 
PSO-MPSS, DE-MPSS, and PSO-PID-MPSS for all the 
loading conditions under the typical disturbances.

To further, demonstrate the performance of the pro-
posed PSS design technique, EV analysis (EVA) is car-
ried out for all the loading conditions and is displayed in 
Table 7 for four loading conditions with NO-PSS, MPSS, 
PSO-MPSS, DE-MPSS, PSO-PID-MPSS, and WOA-
MPSS. It is seen from the EVs that some of the poles lie 
on the right-hand side of the s-plane when the PSS is not 
established in the system and hence the system becomes 
unstable. It is known that, for any system, the complex 
conjugate or imaginary poles with low damping ratio are 
responsible for the oscillatory behavior and the oscilla-
tory behavior is pronounced when they are located near 
the imaginary axis. On the other hand, the real poles do 
not cause any oscillatory behavior in the system as the 
damping ratio of the real root is unity. In the present 
work, the real roots of the system with the proposed and 
other methods for all the loading conditions are already 
located in the desired and stable regions. However, the 
damping ratio of the oscillation causing eigenvalues is 
less than unity and there is a need to improve the damp-
ing ratio of these eigenvalues to improve the damping 
performance of the system. Therefore, in this work, much 
attention is paid to these complex conjugate poles with 
low damping ratios which causes oscillations in the sys-
tem. Therefore, the oscillation causing eigenvalues or 

complex conjugate poles with low damping ratios are 
considered to be shifted into the stable regions. Because 
of this reason, the EV-based objective function is con-
structed in such a way that only lightly damped oscillat-
ing modes are shifted into the desired locations.

For example, for loading condition 1, with MPSS, the 
pair of complex conjugate poles which causes the oscil-
latory behavior are located at − 1.34 ± 6.39i with the 
damping ratio ( ς0 ) of 0.20. It is shifted to − 2.03 ± 6.44i 
with a damping ratio of 0.30 when MPSS is optimized 
with PSO. It means that the real value (σ) of the com-
plex conjugate pole is shifted from − 1.34 to − 2.03. Then 
it is further shifted to − 6.16 ± 10.1i with a damping 
ratio of 0.52 when PSS is tuned with PSO- PID-MPSS. 
Finally, with WOA-PSS, it is shifted to − 2.06 ± 1.57i and 
the damping ratio is improved to 0.79. Thus the damp-
ing ratio has been improved from 0.20 to 0.79 with the 
proposed WOA-MPSS. Similarly, for loading condition 
2, the oscillation causing eigenvalue pair are located at 
− 1.24 ± 6.27i with the damping ratio of 0.19. When the 
PSO-MPSS is established in the system the damping ratio 
is improved to 0.23 and, with DE-MPSS it is improved to 
0.26. After that with PSO-PID-MPSS, the damping ratio 
of the oscillatory causing eigenvalue is improved to 0.43, 
and finally to 0.80 with the proposed WOA-MPSS For 
the loading condition 3, the damping ratio is improved 
from 0.15 to 0.70 with the proposed WOA-MPSS. A sim-
ilar improvement has also been observed with the fourth 
operating condition. Hence, from all these results it is 
seen that when the PSS parameters are optimized with 
the proposed WOA, the damping ratios of the oscilla-
tion causing eigenvalues are improved and the damping 
performances of the system with the proposed optimized 

Fig. 8  System response plots for the disturbance of 10% step change at ΔTm



Page 11 of 17Dasu et al. Protection and Control of Modern Power Systems            (2021) 6:35 	

Ta
bl

e 
7 

Ei
ge

nv
al

ue
 a

na
ly

si
s 

of
 fo

ur
 lo

ad
in

g 
co

nd
iti

on
s

Lo
ad

in
g 

co
nd

iti
on

 1
Lo

ad
in

g 
co

nd
iti

on
 2

Lo
ad

in
g 

co
nd

iti
on

 3
Lo

ad
in

g 
co

nd
iti

on
 4

N
O

-P
SS

0.
91

 ±
 8

.5
5i

−
 0

.1
0

8.
60

1.
84

 ±
 9

.5
9i

−
 0

.1
88

9.
77

1.
75

 ±
 8

.9
0i

−
 0

.1
9

9.
07

2.
88

 ±
 1

2.
8i

−
 0

.2
20

13
.1

−
 2

6.
1 
±

 1
3.

3
0.

89
29

.3
−

 2
7.

1 
±

 1
5.

1i
0.

87
31

.0
22

.0
1.

00
22

.0
−

 2
8.

1 
±

 2
4.

3i
0.

75
7

37
.2

M
PS

S
−

 0
.5

1
1.

00
0.

51
−

 0
.5

15
1.

00
0.

51
−

 0
.5

1
1.

00
0.

51
−

 0
.5

9
1.

00
0.

52

−
 1

.3
4 
±

 6
.3

9i
0.

20
6.

53
−

 1
.2

4 
±

 6
.2

7i
0.

19
6.

39
−

 1
.0

3 
±

 6
.7

3i
0.

15
6.

81
−

 1
.7

1 
±

 6
.0

7i
0.

27
6.

30

−
 1

5.
6

1.
00

15
.6

−
 1

6.
9

1.
00

16
.9

−
 1

7.
8

1.
00

1.
78

−
 8

.7
4

1.
00

8.
74

−
 4

4.
3

1.
00

44
.3

−
 5

6.
2 
±

 1
5.

6i
0.

96
58

.4
−

 4
9.

0
1.

00
49

.1
−

 2
9.

8
1.

00
29

.8

−
 7

6.
6

1.
00

76
.6

−
 6

6.
6

1.
00

66
.6

−
 1

16
1.

00
11

6

PS
O

-M
PS

S
−

 0
.5

1.
00

0.
52

−
 0

.5
1

1.
00

0.
51

−
 0

.5
1

1.
00

0.
51

−
 0

.5
5

1.
00

0.
55

−
 2

.0
3 
±

 6
.4

4i
0.

30
6.

75
−

 1
.5

8 
±

 6
.5

5i
0.

23
6.

73
−

 1
.6

3 
±

 6
.7

9,
0.

23
6.

99
−

 3
.6

6 
±

 5
.7

1i
0.

54
6.

78

−
 1

7.
7

1.
00

17
.7

−
 1

9.
5

1.
00

19
.5

−
 2

0.
1

1.
00

20
.1

−
 8

.1
1

1.
00

8.
11

−
 4

5.
3 
±

 4
.5

0i
0.

99
45

.5
−

 4
5.

5 
±

 1
2.

5i
0.

96
47

.2
−

 4
2.

3 
±

 7
.1

8i
0.

98
42

.9
−

 2
8.

2
1.

00
28

.2

PS
O

-P
ID

-M
PS

S
−

 1
.7

0e
−

15
1.

00
1.

7e
−

15
−

 2
.1

e−
16

1.
00

2
1e
−

16
−

 1
.0

0e
−

15
1.

00
1.

0e
−

15
−

 2
.1

e−
15

1.
00

2.
1e
−

15

−
 0

.2
6

1.
00

0.
26

-0
.3

7
1.

00
0.

37
−

 0
.3

9
1.

00
0.

39
−

 0
.0

2
1.

00
0.

02

−
 6

.1
6 
±

 1
0.

1i
0.

52
11

.8
−

 3
.5

3 
±

 7
.4

2i
0.

43
8.

22
−

 3
.8

6 
±

 8
.1

0i
0.

43
8.

97
−

 3
.7

3 
±

 1
0.

0i
0.

34
10

.7

−
 1

3.
6

1.
00

13
.6

−
 2

1.
3

1.
00

21
.3

−
 1

9.
1

1.
00

19
.1

−
 1

1.
6

1.
00

11
.6

−
 1

09
1.

00
10

9
−

 1
06

1.
00

10
6

−
 1

07
1.

00
10

7
−

 1
58

1.
00

15
8

D
E-

M
PS

S
0.

51
1.

00
0.

51
48

.1
1.

00
48

.1
−

 0
.4

4
1.

00
0.

44
−

 3
.3

2 
±

 5
.4

2i
0.

52
6.

35

−
 1

.8
9 
±

 6
.4

6
0.

28
6.

73
−

 1
.7

0 
±

 6
.0

61
i

0.
26

7.
24

−
 1

.6
0 
±

 6
.8

4i
0.

22
7.

03
−

 8
.8

4
1.

00
8.

84

−
 1

7.
6

1.
00

17
.6

−
 2

0.
2

1.
00

20
.2

−
 1

9.
9

1.
00

19
.9

−
 2

7.
7

1.
00

27
.7

43
.9

1.
00

43
.9

−
 4

0.
5

1.
00

40
.5

−
 3

8.
7

1.
00

38
.7

−
 6

7.
8

1.
00

67
.8

−
 6

1.
9

1.
00

61
.9

−
 4

1.
4

1.
00

41
.4

−
 4

6.
5

46
.5

1.
00

Pr
op

os
ed

 W
O

A
-M

PS
S

−
 0

.1
0

1.
00

0.
10

−
 0

.1
0

1.
00

0.
10

−
 0

.1
0

1.
00

0.
10

−
 0

.1
0

1.
00

0.
10

−
 2

.0
6 
±

 1
.5

7i
0.

79
2.

59
−

 1
.8

5 
±

 1
.4

1i
0.

80
2.

33
−

 1
.9

8 
±

 2
.2

6i
0.

70
3.

00
−

 1
.9

1 
±

 1
.3

6
0.

81
2.

34

−
 7

.2
5

1.
00

7.
25

−
 1

4.
0 
±

 7
.8

5i
0.

90
0.

16
−

 8
.2

6
1.

00
8.

26
−

 1
4.

6 
±

 1
.3

6i
0.

98
15

.0
0

−
 3

5.
10

 ±
 1

0.
00

i
0.

96
36

.5
0

−
 1

17
.0

0
1.

00
11

7
−

 2
7.

10
1.

00
27

.1
−

 1
28

.0
0

1.
00

12
8.

0



Page 12 of 17Dasu et al. Protection and Control of Modern Power Systems            (2021) 6:35 

parameters of the WOA are better enhanced for all the 
loading conditions than other methods.

6.2 � Case 2
To test the efficacy of the suggested WOA-PSS, a second 
test case is considered. The optimal design of PSS is car-
ried out by considering the EV-based objective function 
using the WOA, DE, and PSO algorithms. All the gen-
erators except generator one, are equipped with PSS and 
the parameters are optimized using the WOA. In total 
45 parameters named KPssi, T1i, T2i, T3i and T4i are opti-
mized, as listed in Table 8. To test the effectiveness and 
robustness of the proposed WOA-PSS various distur-
bances are created at various locations of the test system. 
These conditions are extremely harsh from a stability 
point of view with the following cases studied to investi-
gate the efficacy of the WOA-PSS:

Scenario 1 line outage between 21 and 22.
Scenario 2 line outage between 14 and 15.
Scenario 3 25% increase in loads at buses 16 and 21, 
25% increase in the generation of G7, and line outage 
between 21 and 22.

Figure 9 represents Scenario 1 of case 2. To create the 
disturbance, the line between buses 21 and 22 is open-
circuited and the stability behavior of the generators with 
the proposed WOA-PSS and other PSSs are studied. 
After that, another disturbance of line outage between 
buses 14 and 15 (scenario 2) is created and the results 
are shown in Fig. 10. Similarly, the third disturbance con-
dition of the line outage between 21 and 22 is created 
under scenario 3 to effectiveness of the proposed PSS 
design technique, and Fig.  11 shows the corresponding 
speed deviation of the system. It can be observed from 
the results that the system becomes unstable when PSSs 
are not connected to the generators. When PSSs are 

incorporated (without proper tuning), more oscillations 
are observed in the system. This is because of the lack 
of sufficient damping torque. This is not desirable from 
the stability point of view. On the other hand, when PSS 
parameters are designed with the WOA and placed at 
respective generators, the oscillations are reduced. The 
intensity of the oscillations is considerably lower with 
WOA-PSS compared to PSO-PSS and DE-PSS, and the 
simulation results show that WOA-PSS provides better 
dynamic performance characteristics over DE-PSS and 
PSO-PSS.

The system behavior under the second disturbance 
of line outage between 14 and 15 is studied. Extensive 
simulation results on the speed deviations are obtained 
and presented in Fig.  12. The simulation results show 
that WOA-PSS provides better damping performance 
than the other two methods. For the third scenario, the 
speed deviation under the disturbance of a 25% increase 
in loads at buses 16 and 21, a 25% increase in the gen-
eration of G7, and the line outage between 21 and 22 are 
shown in Fig. 13. From these responses, it is noted that 
the oscillations are reduced and settled in quicker with 
the WOA-PSS compared to DE-PSS and PSO-PSS at all 
the generators shown. Hence, WOA-PSS can provide 
better damping performance than the other two stabiliz-
ers. Table  9 depicts the time response specifications of 
generators under scenario 2. As seen, the settling time 
is decreased from 9.8300 to 8.9371 s with WOA-PSS for 
generator two. In the case of generator three, the settling 
time is reduced from 8.4502 to 8.4913  s, where as for 
generator five, oscillations are settled in 7.9892 s with the 
WOA-PSS. At generator six the settling time is 7.0971 s 
when PSO-PSS is used and is reduced to 6.1351  s with 
DE-PSS and to 5.9735  s with WOA-PSS. Similarly, the 
time taken for settling down the oscillations at generator 
seven with PSO-PSS is 7.1417 and is reduced to 6.7459 s 
with WOA-PSS. A similar decrement is also observed 
in the remaining generators. The peak overshoot is also 
decreased with WOA-PSS when compared to PSO-PSS 
and DE-PSS. Hence it is shown that the WOA-based sta-
bilizers give better transient responses than the other DE 
and PSO based stabilizers for all the generators under 
this disturbance with significant improvements in peak 
overshoot and settling time.

The strength of the WOA-PSS is tested with the third 
disturbance condition. and Fig.  13 depicts the speed 
deviation plots under the disturbance of a 25% increase 
in loads at buses 16 and 21, a 25% increase in the gen-
eration of G7, and the line outage between 21 and 22. 
The peak overshoots of the oscillations at generator two, 
seven, eight, and nine are reduced with the WOA-PSS 
compared to other stabilizers designed with the DE and 

Table 8  Evolved parameters of PSS for case 2 using WOA

#Gen Kpss T1 T2 T3 T4

G2 51.234 0.345 0.0136 0.412 0.014

G3 29.126 0.674 0.0275 0.623 0.039

G4 42.654 0.728 0.0501 0.698 0.048

G5 50.143 0.126 0.0621 0.294 0.026

G6 47.865 0.701 0.0152 0.964 0.065

G7 2.879 0.379 0.0282 0.478 0.122

G8 27.125 0.852 0.0169 0.757 0.019

G9 5.654 0.248 0.0512 0.265 0.298

G10 19.597 1.023 0.0389 1.21 0.031
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PSO algorithms. The oscillations are also settled quicker 
with the WOA-PSS. Thus, it is concluded that WOA-PSS 
can provide better damping performance than DE-PSS 
and PSO-PSS.

EVA is carried out for all the scenarios to test the effec-
tiveness of the proposed design technique. The EVA 
of the system under the three disturbance conditions is 
depicted in Table  10 and it can be seen that the lightly 
damped EVs are shifted more towards the left-hand side 
of the s-plane with the proposed WOA-based design 
technique at all the disturbance conditions than the 
other methods. This reveals that the damping factor of 
the lightly damped EVs is better improved and system 
enhanced with the WOA-PSS than with PSO-PSS and 
DE-PSS under all the disturbance conditions. From all 
the simulation results it can be concluded that the SSS of 
the system is improved with the proposed WOA-based 
PSS design technique, and better than with the other 
design approaches.

Fig. 9  Scenario 1 of case 2

Table 9  Time response specifications of generators under 
scenario 2

#Gen Time specifications PSO DE WOA

G2 Settling time (s)
%Overshoot

9.8300
218.9909

8.7539
180.5292

8.3971
146.1780

G3 Settling time (sec)
%Overshoot

8.4502
88.6049

8.6446
65.3729

8.4913
52.1090

G4 Settling time (s)
%Overshoot

7.8388
145.0600

8.2694
115.3542

8.0895
93.0143

G5 Settling time (s)
%Overshoot

7.6893
221.1063

8.1954
152.8303

7.9892
103.0659

G6 Settling time (s)
%Overshoot

7.0971
660.1628

6.1351
670.0134

5.9735
667.3342

G7 Settling time (s)
%Overshoot

7.1417
474.768

6.9144
470.9769

6.7549
465.1441

G8 Settling time (s)
%Overshoot

8.0548
85.6159

8.3397
66.6644

8.259
52.7958

G9 Settling time (s)
%Overshoot

8.3247
83.1522

8.1519
53.5511

8.5480
44.7755

G10 Settling time (s)
%Overshoot

7.9526
162.2931

7.8140
149.6141

7.6259
141.9001
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Fig. 10  Scenario 2 of case 2

Fig. 11  Speed deviation plots under the disturbance of line outage between 21 and 22
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7 � Conclusion
A PSS design technique on the MSMIB and the large 
scale New England 10-generator 39-bus multi-machine 
systems using a WOA is proposed. The PSS design 
approach has been carried out by considering an EV-
based objective function. The performance of the pro-
posed WOA has been tested on standard CEC14 and 
CEC17 test functions. The results have shown that the 
proposed WOA-PSS design technique is very effective, 

requires less time for tuning, and reduces computational 
complexity compared to PSO-PSS, and DE-PSS. Results 
reveal that the proposed WOA-based PSS can improve 
the dynamic performance of the MSMIB and the large 
scale IEEE New England 10-generator 39-bus systems 
operating with various loading conditions at several dis-
turbance conditions, and do it more effectively than the 
other methods.

Fig. 12  Speed deviation plots under the disturbance of line outage between 14 and 15

Fig. 13  Speed deviation plots under the disturbance of 25% increase in loads at buses 16 and 21, 25% increase in generation of G7, and the line 
outage between 21 and 22
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